RESUMO
Catalytic purification of industrial oxygenated volatile organic compounds (OVOCs) is hindered by the presence of water vapor that attacks the active sites of conventional noble metal-based catalysts and the insufficient mineralization that leads to the generation of hazardous intermediates. Developing catalysts simultaneously with excellent water resistance and a high intermediate suppression ability is still a great challenge. Herein, we proposed a simple strategy to synthesize a Pd/CoOOH catalyst that contains abundant hydroxyl groups and lattice oxygen species, over which a negligible effect was observed on CH3OH conversion with 3 vol % water vapor, while a remarkable conversion reduction of 24% was observed over Pd/Co3O4. Moreover, the low-temperature CO2 selectivity over Pd/CoOOH is significantly enhanced in comparison with Pd/Co(OH)2. The high concentration of surface hydroxyl groups on Pd/CoOOH enhances the water resistance owing to the accelerated activation of H2O to generate Co-OH, which replaces the consumed hydroxyl and facilitates the quick dissociation of surface H2O through timely desorption. Additionally, the presence of Pd-Olatt-Co promotes electron transport from Co to Pd, leading to improved metal-support interactions and weakened metal-O bonds. This in turn enhances the catalyst's capacity to efficaciously convert intermediates. This study sheds new insights into designing multifunctional catalytic platforms for efficient industrial OVOC purification as well as other heterogeneous oxidation reactions.
Assuntos
Dióxido de Carbono , Oxirredução , Dióxido de Carbono/química , Catálise , Metanol/química , Paládio/química , Água/química , Compostos Orgânicos Voláteis/químicaRESUMO
Oxygenated volatile organic compounds (OVOCs), emitted in large quantities by the chemical industry, are a major contributor to the formation of ozone and subsequent particulate matter. For the efficient catalytic oxidation of OVOCs, the challenges of molecular activation and intermediate inhibition remain. The construction of bifunctional active sites with specific structures offers a promising way to overcome these problems. Here, the Pd@Layered-CoOx/MFI bifunctional catalyst with core-shell active sites was rationally fabricated though a two-step ligand pyrolysis method, which exhibits a superb oxidation efficiency toward ethyl acetate (EA). Over this, 13.4% of EA (1000 ppm) can be oxidized at just 140 °C with a reaction rate of 13.85 mmol·gPd-1·s-1, around 176.7 times higher than that of the conventional Pd-CoOx/MFI catalyst. The electronic coupling of the Pd-Co pair promotes the electron back-donation from Pd nanoparticles to the layered CoOx shell and facilitates the formation of Pd2+ species, which greatly enhances the adsorption and activation of the electron-rich CâO bond of the EA molecules. In addition, the synergy of these core-shell Pd@Layered-CoOx sites accelerates the activation and transformation of *O species, which inhibit the formation of acetaldehyde and ethanol byproducts, ensuring the rapid total oxidation of EA molecules via the Mars-van Krevelen mechanism. This work established a solid foundation for exploring robust bifunctional catalysts for deep OVOC purification.
Assuntos
Oxirredução , Catálise , Paládio/química , Compostos Orgânicos Voláteis/química , Acetatos/químicaRESUMO
Developing efficacious catalysts with superior Cl resistance and polychlorinated byproduct inhibition capability is crucial for realizing the environmentally friendly purification of chlorinated volatile organic compounds (CVOCs). Activating CVOC molecules and desorbing Cl species by modulating the metal-oxygen property is a promising strategy to fulfill these. Herein, a bifunctional CoRu/Al2O3 catalyst with synergistic Co and Ru interactions (Ru-O-Co species) was rationally fabricated, which possesses abundant surface Co2+ and Ruδ+ sites and collaboratively facilitates the activation of lattice oxygen (O2-) and molecular oxygen (O2 â O2- â O-), accelerating 1,2-dichloroethane (1,2-DCE) decomposition via the reaction route of enolic species â aldehydes â carboxylate/carbonate. Furthermore, CoRu/Al2O3 stimulates 1,2-DCE oxidation under humid conditions as H2O molecules can be easily activated to active *OH (potential oxidizing agent) over Ru species, accelerating C-Cl dissociation and Cl desorption and promoting the transformation of catecholate-type (CâO) species to easily oxidizable carboxylic acid (COOH) species, remarkably suppressing the formation of hazardous CCl4 and CHCl2CH2Cl. This study provides critical insights into the development of bifunctional catalysts to synergistically activate surface oxygen species and H2O molecules for industrial CVOC stable and efficient elimination.