Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Infect Dis ; 18(1): 316, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986649

RESUMO

BACKGROUND: GII noroviruses are a common cause of acute gastroenteritis (AGE) outbreaks in institutional settings globally. However, AGE outbreaks caused by GI norovirus, especially the GI.5 genotype, are relatively uncommon. METHODS: In February 2017, an AGE outbreak occurred in a primary school in Shanghai, China. An outbreak investigation was undertaken, and fecal specimens, rectal swabs, and environmental swabs were collected. Pathogen detection was performed and the positive specimens were characterized by gene sequencing. RESULTS: The descriptive epidemiological analysis suggested that this outbreak, involving 19 cases in two classes (designated classes A and B), was a small-scale propagated epidemic and person-to-person transmission was the most plausible transmission mode. The outbreak comprised two peaks, with 15 cases occurring in class A during the main peak and four cases occurring in class B in the subsequent minor peak. The primary attack rate was 38% and the secondary attack rate was 10%. Univariable logistic regression indicated that contacting a suspect case was a risk factor for norovirus infection, with an unadjusted OR of 5.6 (95% CI: 1.6-20.1). Six fecal specimens were positive for GI norovirus, with a single genotype, GI.5 norovirus, being involved, as characterized by genotyping. This outbreak was the first reported outbreak of GI.5 norovirus in China. CONCLUSIONS: This study implies that GI.5 norovirus is a potential agent of outbreaks spread by person-to-person transmission in institutional settings. The investigation highlights the importance of sensitive surveillance, timely isolation of individuals who are ill, adequate hand hygiene, and proper environmental disinfection for prevention and control of AGE outbreaks caused by norovirus.


Assuntos
Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/transmissão , Gastroenterite/epidemiologia , Criança , China/epidemiologia , Surtos de Doenças , Desinfecção , Feminino , Gastroenterite/virologia , Genótipo , Higiene das Mãos , Humanos , Masculino , Norovirus/genética , Norovirus/patogenicidade , Instituições Acadêmicas/estatística & dados numéricos
2.
J Am Soc Mass Spectrom ; 30(12): 2670-2677, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31650462

RESUMO

Linear alkanes are a class of compounds known to negatively affect the physical performance of lubricant base oils. The ability to rapidly identify and quantify linear alkanes in lubricant base oils would enable oil companies to more effectively evaluate their refinery methods for converting crude oil to lubricant base oils. While mass spectrometry is a powerful method for elucidation of the structures of compounds in complex mixtures, it is not innately quantitative. An approach is presented here for the identification and quantitation of linear alkanes in base oil samples by utilizing GC×GC/EI TOF MS. Identification of the linear alkanes in base oils was achieved based on their retention times in both GC columns as well as their EI mass spectra. Linear alkane model compound mixtures were used to generate calibration plots for quantitation of the linear alkanes in the base oils. The accuracy of this method was greater than 83.8%, within-day precision lower than 6.2%, between-day precision lower than 16.2%, and total precision lower than 17.2%. All noted figures of merit surpass the acceptable limits for a new validated quantitative method, where accuracy must be better than 80% and precision lower than 20% at the lower limit of quantitation. The n-alkane content in both base oil samples was further validated using a GC×GC/FID method (the gold standard for quantitation), which provided nearly identical results to those obtained using the GC×GC/EI TOF MS method. Therefore, GC×GC/EI TOF MS can be used to both identify and quantitate linear alkanes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA