Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 460(Pt 3): 140755, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39121768

RESUMO

In this paper, tiger nut oil-loaded microcapsules (TNOMs) were prepared by complexation soybean protein isolate (SPI) and maltodextrin (MD) as wall materials using the spray drying method with tiger nut oil (TNO) as the core material, and its physicochemical properties and stabilities were characterized and analyzed. Under the optimum conditions, the encapsulation efficiency (EE) of TNOMs could reach up to 91.23%. Of note, after 60 days of storage at 60 °C, the peroxide value (PV) of TNO was almost 21.8 times as much as that of TNO encapsulated. Furthermore, TNOMs had good thermal stability below 200 °C and are sufficient for the general food processing needs. By fitting Arrhenius oxidation kinetics model, it was predicted that the shelf life of the product stored at 25 °C was 352.48 d. Therefore, it is promised to be applied to the development of high oleic acid food in the future. This study offered a theoretical framework for utilization and broadening the range of applications of TNO in the food industry.


Assuntos
Cápsulas , Cyperus , Oxirredução , Óleos de Plantas , Cápsulas/química , Óleos de Plantas/química , Cyperus/química , Polissacarídeos/química , Cinética
2.
J Food Sci ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327608

RESUMO

Employing lipidomics, this study investigated the lipid composition of seabuckthorn fruit oil processed via supercritical CO2 extraction and centrifugal separation. Qualitative analysis showed that a total of 2861 lipid molecules were identified in seabuckthorn fruit oil. Quantitative analysis showed that the content of lipids in seabuckthorn fruit oil extracted by supercritical CO2 extraction (927,539.84 µg/mL) was significantly higher than that in centrifugal-separated seabuckthorn fruit oil (735,717.63 µg/mL), with 17 distinct lipid classes and 215 lipid molecules differentiated through multivariate statistical analysis. Lipid molecules, such as diacylglycerol (DG), ceramides (Cer), monohexosyl ceramide, phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, and monogalactosyl DG, were predominantly found in the oil extracted using supercritical CO2. In contrast, monogalactosyl monoacylglycerol, diglycosyl ceramide, and Cer phosphate were significantly present in the oil extracted by centrifugal separation. These findings contribute new insights into how processing methods affect the quality and composition of seabuckthorn fruit oil and provide a basis for detecting oil adulteration.

3.
J Food Sci ; 89(9): 5576-5593, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39150698

RESUMO

Roasting is essential for developing the characteristic aroma of flaxseed oil (FSO), yet its impact on oil quality remains underexplored. This study employed headspace-gas chromatography-mass spectrometry coupled with multivariate analysis to elucidate the dynamic changes in volatile compounds and quality characteristics of FSO subjected to varying roasting temperatures. Our findings revealed that seven key aroma compounds, identified through the variable importance in the projection scores of partial least square-discrimination analysis models and relative aroma activity value, served as molecular markers indicative of distinct roasting temperatures. These compounds included 2,5-dimethylpyrazine, 2-pentylfuran, (E)-2-pentenal, 2-ethyl-3,6-dimethylpyrazine, heptanal, octanal, and 2-hexenal. Notably, roasting at 200°C was found to enhance oil stability and antioxidant capacity, with phenolic compounds and Maillard reaction products playing synergistic roles in bolstering these qualities. Network analysis further uncovered significant correlations between these key aroma compounds and quality characteristics, offering novel perspectives for assessing FSO quality under diverse roasting conditions. This research not only enriched our understanding of the roasting process's impact on FSO but also provided valuable guidance for the optimization of industrial roasting practices. This study would provide important practical applications in aroma regulation and process optimization of flaxseed oil. .


Assuntos
Culinária , Linho , Cromatografia Gasosa-Espectrometria de Massas , Temperatura Alta , Óleo de Semente do Linho , Odorantes , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Linho/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Culinária/métodos , Antioxidantes/análise , Reação de Maillard , Aldeídos/análise , Fenóis/análise , Manipulação de Alimentos/métodos
4.
J Food Sci ; 88(12): 4988-5001, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37872781

RESUMO

To investigate the effects of different extraction methods on volatile compounds in flaxseed oil (FSO), we first carried out solvent extraction, cold pressing, and hot pressing treatments of flaxseed [Linum usitatissimum (L.)], then applied the headspace-gas chromatography-ion mobility spectrometry technology to identify the volatile substance compositions, and established flavor fingerprints of solvent-extracted FSO, cold-pressed FSO, and hot-pressed FSO. In total, 81 volatile compounds were detected, including 27 aldehydes, 14 alcohols, 13 ketones, 9 heterocycles, 8 esters, 5 acids, 4 hydrocarbons, and 1 sulfur compound (dimethyl disulfide). Extraction methods had a great influence on the volatile profile of FSO. Solvent-extracted FSO had more sweet, mild, floral, and sour volatile profiles, cold-pressed FSO had stronger volatile profiles of winey, spicy, and fatty, and hot-pressed FSO had green, grass, and plastic volatile profiles. Principal component analysis and Euclidean distance demonstrated that the volatile compounds of three FSO samples could be clearly distinguished. Of note, the cold-pressed FSO and hot-pressed FSO had similar volatile profiles, and they were different from solvent-extracted FSO. This study could provide some guidance for improving the flavor quality of FSO and selecting the proper extraction method for FSO productions. PRACTICAL APPLICATION: Practical Application: This study shows extraction methods significantly affect the formation of aroma characteristics in flaxseed oil (FSO), and it provides theoretical guidance for production to use the appropriate extraction methods for high-quality FSO.


Assuntos
Linho , Compostos Orgânicos Voláteis , Óleo de Semente do Linho , Cromatografia Gasosa-Espectrometria de Massas/métodos , Álcoois/análise , Solventes , Compostos Orgânicos Voláteis/análise
5.
Food Chem ; 422: 136256, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141760

RESUMO

The binding and release behavior of flaxseed proteins to aldehydes is significant for the sensory properties of flaxseed foods. The key aldehydes of flaxseed were selected by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and odor activity value (OAV) method, and the interaction between flaxseed protein and flaxseed protein was investigated by multispectral, molecular docking, molecular dynamics simulation, and particle size techniques. The results showed that 2,4-decadienal presented a higher binding capability and a higher Stern-Volmer constant with flaxseed protein than pentanal, benzaldehyde, and decanal. Thermodynamic analysis revealed that hydrogen bonding and hydrophobic interactions were the main forces. Aldehydes contributed to a certain reduction in radius of gyration (Rg) value and α-helix content of flaxseed protein. In addition, the results of particle size showed that aldehydes caused the proteins to aggregate toward larger particles. This study could provide new insights into the interactions between flaxseed food and flavor.


Assuntos
Linho , Compostos Orgânicos Voláteis , Simulação de Acoplamento Molecular , Aldeídos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA