RESUMO
A highly resolved and time-calibrated phylogeny based on nucleotide variation in 18 complete mitochondrial genomes is presented for all extant species and major lineages of fire-bellied toads of the genus Bombina (Bombinatoridae). Two sets of divergence time estimates are inferred by applying alternative fossil constraints as minima. Divergence time estimates from both analyses differed for the two oldest nodes. The earliest phylogenetic split occurred between small- and large-bodied Bombina (subgenera Bombina and Grobina, respectively) either in the Middle Oligocene or the Early Miocene. East Asian B. orientalis and European B. bombina+B. variegata diverged in the early or Middle Miocene. Divergence times inferred using the alternative fossil calibration strategies converged for the younger nodes, with broadly overlapping HPD intervals. The split between Bombina bombina and B. variegata occurred in the Late Miocene of Europe and somewhat preceded another deep mtDNA division between the Balkan B. v. scabra and B. v. variegata inhabiting the Carpathian Mts. Concurrently, the genetically distinct B. maxima diverged from other Grobina in southeast Asia in the Late Miocene or Pliocene. Our mtDNA phylogeny and a new species-tree analysis of published data (nuclear and mtDNA) suggest that B. fortinuptialis, B. lichuanensis and B. microdeladigitora may be conspecific geographic forms that separated due to Pleistocene climatic fluctuations in southeastern Asia. In the western Palearctic, the Late Pliocene to Pleistocene climatic vagaries most probably induced vicariant events in the evolutionary history of B. variegata that led to the formation of the two Balkan B. v. scabra lineages and the allopatric B. v. pachypus in the Apennine Peninsula. Divergence among B. bombina mtDNA lineages is low, with an Anatolian Turkey lineage as the sister group to the European mtDNA clades. In sum, Miocene diversification in the genus Bombina established six allopatrically distributed major mtDNA lineages that diversified during the Pliocene and Pleistocene and have survived until the present. The narrow habitat requirements of fire-bellied toads and extensive environmental changes throughout the Palearctic in the Neogene may have contributed to a putatively high extinction rate in these anurans resulting in the current east/west disjunction of their ranges.
Assuntos
Anuros/classificação , DNA Mitocondrial/classificação , Especiação Genética , Genoma Mitocondrial , Filogenia , Animais , Anuros/genética , Ásia , DNA Mitocondrial/genética , Europa (Continente) , Feminino , Masculino , Filogeografia , Fatores de TempoRESUMO
Since all forms of mimicry are based on perceptual deception, the sensory ecology of the intended receiver is of paramount importance to test the necessary precondition for mimicry to occur, that is, model-mimic misidentification, and to gain insight in the origin and evolutionary trajectory of the signals. Here we test the potential for aggressive mimicry by a group of coral reef fishes, the color polymorphic Hypoplectrus hamlets, from the point of view of their most common prey, small epibenthic gobies and mysid shrimp. We build visual models based on the visual pigments and spatial resolution of the prey, the underwater light spectrum and color reflectances of putative models and their hamlet mimics. Our results are consistent with one mimic-model relationship between the butter hamlet H. unicolor and its model the butterflyfish Chaetodon capistratus but do not support a second proposed mimic-model pair between the black hamlet H. nigricans and the dusky damselfish Stegastes adustus. We discuss our results in the context of color morphs divergence in the Hypoplectrus species radiation and suggest that aggressive mimicry in H. unicolor might have originated in the context of protective (Batesian) mimicry by the hamlet from its fish predators rather than aggressive mimicry driven by its prey.