Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Scand J Gastroenterol ; 59(4): 480-488, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38179969

RESUMO

Objective: To examine the impact of moderate alcohol consumption on the progression of chronic kidney disease (CKD) in individuals diagnosed with non-alcoholic fatty liver disease (NAFLD), as NAFLD has been identified as an autonomous risk factor for CKD and previous research has demonstrated a reduction in overall mortality in NAFLD patients who consume alcohol in moderation.Methods: This study included participants from ten consecutive rounds of the National Health and Nutrition Examination Survey (NHANES:1998-2018). Multivariate logistic regression models were employed to assess the impact of moderate alcohol consumption on chronic kidney disease (CKD) in both male and female populations. Subgroup analysis was conducted by categorizing patients with non-alcoholic fatty liver disease (NAFLD) based on the Fibrosis-4 (FIB-4) index.Results: 17040 participants were eligible to be included in the study. The logistic regression analysis model showed that moderate alcohol consumption was a protective factor for CKD in male NAFLD patients, with an unadjusted OR: 0.37 (0.22,0.65), and p < 0.001. After further adjustment, the association persisted. However, the association was not significant in female patients with NAFLD. Among men with low risk of liver fibrosis group, moderate alcohol consumption remained a protective factor for CKD (OR = 0.32, 95% CI 0.12-0.84, p = 0.02), but the association was not significant in the high risk of liver fibrosis group. In female patients, both moderate alcohol consumption and excessive alcohol consumption were not significantly associated with CKD in either the low-risk group or the high-risk group.Conclusion: Moderate alcohol consumption is associated with a lower prevalence of CKD in men with NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Insuficiência Renal Crônica , Humanos , Masculino , Feminino , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Inquéritos Nutricionais , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/etiologia , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/epidemiologia , Cirrose Hepática/complicações
2.
Artigo em Inglês | MEDLINE | ID: mdl-38656637

RESUMO

AIM: Aberrant expression of ATPase sarcoplasmic/endoplasmic retic Ca2+ transporting 2 (ATP2A2) has attracted attention for its pathophysiologic role in pulmonary hypertension (PH). Several miRNAs, including miR-210-5p, have also been reported to be pathogenic factors in PH, but their exact mechanisms remain unknown. This study aimed to elucidate the potential mechanisms of miR-210-5p and ATP2A2 in MCT-induced PH. METHODS: Eighteen Sprague-Dawley rats were randomly divided into two groups-monoclonal (MCT) group and control group-and then administered MCT (60 mg/kg) and saline, respectively. mPAP, PVR, RVHI, WT%, and WA% were significantly increased in PH rats after 3 weeks, confirming that the modeling of PH rats was successful. Subsequently, we determined the expression of ATP2A2 and miR-210-5p in lung tissues using WB and qRT-PCR methods. We established an in vitro model using BMP4 and TGF-ß1 treatment of pulmonary artery smooth muscle cells (PASMCs) and examined the expression of ATP2A2 and miR-210-5p using the same method. To further elucidate the regulatory relationship between ATP2A2 and miR-210-5p, we altered the expression level of miR-210-5p and detected the corresponding changes in ATP2A2 levels. In addition, we demonstrated the relationship by dual luciferase experiments. Finally, the effect of silencing ATP2A2 could be confirmed by the level of cell membrane Ca2+ in PAMSCs. RESULTS: Up-regulation of miR-210-5p and down-regulation of ATP2A2 were observed in the MCT group compared with the control group, which was confirmed in the in vitro model. In addition, elevated miR-210-5p expression decreased the level of ATP2A2 while increasing the proliferation of PASMCs, and the results of the dual luciferase assay further confirmed that ATP2A2 is a downstream target of miR-210-5p. Additionally, silencing ATP2A2 resulted in increased cytoplasmic Ca2+ levels in PAMSCs. CONCLUSION: In MCT-induced PH, miR-210-5p promotes pulmonary vascular remodeling by inhibiting ATP2A2.

3.
Gen Physiol Biophys ; 42(5): 417-429, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37702447

RESUMO

Myocardial fibrosis is an underlying cause of many cardiovascular diseases. Novel insights into the epigenetic control of myocardial fibrosis are now emerging. The current work is focused on investigating the biological role of DNA methyltransferase 1 (DNMT1) in myocardial fibrosis as well as the underlying mechanism. Our findings revealed that DNMT1 expression levels were upregulated, whereas miR-133b expression levels were decreased in a rat model of myocardial fibrosis following myocardial infarction. In vitro, the expression levels of DNMT1 increased and those of miR-133b decreased after Ang-II treatment in cardiac fibroblasts. DNMT1 knockdown inhibited Ang-II-induced cardiac myofibroblast activation, and DNMT1 overexpression increased the proliferation and collagen generation of cardiac myofibroblasts. Furthermore, DNMT1 expression levels decreased, while miR-133b expression levels increased after treatment with 5-Aza (5-Azacytidine, a known inhibitor of DNA methylation) in Ang-II-induced cardiac fibroblasts. BSP (Bisulfite sequencing PCR) results showed a marked decrease in methylation levels in the miR-133b promoter region upon overexpression of DNMT1, whereas knockdown of DNMT1 blocked increased methylation levels in the miR-133b promoter region in Ang-II-induced cardiac fibroblasts. Finally, 5-Aza treatment reduced the progression of myocardial fibrosis after myocardial infarction in rats in vivo. Collectively, our results suggest that DNMT1 mediates CTGF expression in cardiac fibroblast activation by regulating the methylation of miR-133b. The present work reveals the unique role of the DNMT1/miR-133b/CTGF axis in myocardial fibrosis, thus suggesting its great therapeutic potential in the treatment of cardiac diseases.


Assuntos
MicroRNAs , Infarto do Miocárdio , Animais , Ratos , Azacitidina/farmacologia , Metilação de DNA , Fibrose , Coração , MicroRNAs/genética , Infarto do Miocárdio/genética
4.
Nano Lett ; 21(14): 6102-6110, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34269592

RESUMO

Realization of electromagnetic energy confinement beyond the diffraction limit is crucial for high-performance on-chip devices. Herein we construct an array of nonradiative anapoles that originate from the destructive far-field interference of electric and toroidal dipole modes to achieve ultracompact and high-efficiency electromagnetic energy transfer without the coupler. We experimentally investigate the proposed metachain at mid-infrared frequencies and give the first near-field experimental evidence of anapole-based energy transfer, in which the spatial profile of the anapole mode is also unambiguously identified on the nanoscale. We further demonstrate that the metachain is intrinsically lossless and scalable at infrared wavelengths, realizing a 90° bending loss down to 0.32 dB at the optical communication wavelength. The present scheme bridges the gap between the energy confinement and the transfer of anapoles and opens a new gate for more compactly integrated photonic and energy devices, which can operate in a broad spectral range.

5.
Adv Mater ; 36(36): e2405885, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39082203

RESUMO

Near-field radiative heat transfer (NFRHT) can exceed the blackbody limit by several orders of magnitude owing to the tunneling evanescent waves. Exploiting this near-field enhancement holds significant potential for emerging technologies. It has been suggested that coupled polaritons can give rise to orders of magnitude enhancement of NFRHT. However, a thorough experimental verification of this phenomenon is still missing. Here this work experimentally shows that NFRHT mediated by coupled polaritons in millimeter-size graphene/SiC/SiO2 composite devices in planar plate configuration can realize about 302.8 ±  35.2-fold enhancement with respect to the blackbody limit at a gap distance of 87  ±  0.8 nm. The radiative thermal conductance and effective gap heat transfer coefficient can reach unprecedented values of 0.136 WK-1 and 5440 Wm-2K-1. Additionally, a scattering-type scanning near-field optical measurement, in conjunction with full-wave numerical simulations, provides further evidence for the coupled polaritonic characteristics of the devices. Notably, this work experimentally demonstrates dynamic regulation of NFRHT can be achieved by modulating the bias voltage, leading to an ultrahigh dynamic range of ≈4.115. This work ambiguously elucidates the important role of coupled polaritons in NFRHT, paving the way for the manipulation of nanoscale heat transport, energy conversion, and thermal computing via the strong coupling effect.

6.
ESC Heart Fail ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287135

RESUMO

AIMS: This study sought to evaluate the correlation between waist-to-height ratio (WHtR) and heart failure (HF) outcomes across different ejection fraction (EF) categories. METHODS AND RESULTS: A prospective cohort study was conducted at a comprehensive tertiary hospital in China. The participants were categorized by WHtR and EF quartiles. Outpatient or telephone follow-up occurred every 6 months after the diagnosis of heart failure. The primary endpoint was all-cause mortality at 48 months. Cox proportional hazard regression analyses were employed to evaluate the association between WHtR and all-cause mortality. Among 859 enrolled participants, 545 (63.4%) were male, and the mean age was 65.2 ± 11.1 years. After adjusting for age and sex, WHtR demonstrated a strong correlation with both BMI (correlation = 0.703, P = 0.000) and WHR (correlation = 0.609, P = 0.000). Individuals with a high WHtR (≥0.50) had a higher prevalence of hypertension (56.4% vs. 39.6%) and diabetes (26.5% vs. 13.7%), higher levels of TC (3.61 ± 1.55 vs. 3.36 ± 0.90 mmol/L), TG (1.40 ± 0.81 vs. 1.06 ± 0.59 mmol/L), and LDL-C (2.03 ± 0.85 vs. 1.86 ± 0.76 mmol/L) compared with patients with low WHtR (<0.50). NT-proBNP levels were inversely correlated with EF values in both low and high WHtR groups. A total of 149 (18.9%) patients died at the conclusion of the follow-up period. The incidence of all-cause and cardiovascular death was higher in the low WHtR group compared with the high WHtR group [HRs = 1.83 (1.30-2.58), 1.96 (1.34-2.88), respectively]. There was no significant difference in noncardiovascular mortality or rehospitalization rates between the two groups. Patients with HFrEF/low WHtR exhibited a markedly elevated risk of all-cause mortality [HR = 2.31; (95% CI: 1.24-4.30)], heart failure mortality [HR = 3.52; (95% CI: 2.92-8.80)], and noncardiovascular mortality [HR = 4.59; (95% CI: 1.19-17.76)] compared with patients with HFrEF/high WHtR. WHtR has a negligible effect on the risk of all-cause and cardiovascular mortality in heart failure patients with preserved EFs. CONCLUSIONS: The obesity paradox, as delineated by WHtR, is observed in patients with HFrEF, yet absent in those with HFpEF.

7.
Nanoscale Adv ; 6(12): 3073-3081, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38868825

RESUMO

All-inorganic metal halide perovskites (MHPs) have attracted increasing attention because of their high thermal stability and band gap tunability. Among them, CsPbCl3 is considered a promising semiconductor material for visible-ultraviolet dual-band photodetectors because of its excellent photoelectric properties and suitable band gap value. In this work, we fabricated a visible-ultraviolet dual-band photodetector based on a CsPbCl3/p-GaN heterojunction using the spin coating method. The formation of the heterojunction enables the device to exhibit obvious dual-band response behavior at positive and negative bias voltages. At the same time, the dark current of the device can be as low as 2.42 × 10-9 A, and the corresponding detection rate can reach 5.82 × 1010 Jones. In addition, through simulation calculations, it was found that the heterojunction has a type II energy band arrangement, and the heterojunction response band light absorption is significantly enhanced. The type II energy band arrangement will separate electron-hole pairs more effectively, which will help improve device performance. The successful implementation of visible-ultraviolet dual-band photodetectors based on a CsPbCl3/p-GaN heterojunction provides guidance for the application of all-inorganic MHPs in the field of multi-band photodetectors.

8.
Comput Struct Biotechnol J ; 24: 493-506, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39076168

RESUMO

Transjugular intrahepatic portosystemic shunt (TIPS) is an essential procedure for the treatment of portal hypertension but can result in hepatic encephalopathy (HE), a serious complication that worsens patient outcomes. Investigating predictors of HE after TIPS is essential to improve prognosis. This review analyzes risk factors and compares predictive models, weighing traditional scores such as Child-Pugh, Model for End-Stage Liver Disease (MELD), and albumin-bilirubin (ALBI) against emerging artificial intelligence (AI) techniques. While traditional scores provide initial insights into HE risk, they have limitations in dealing with clinical complexity. Advances in machine learning (ML), particularly when integrated with imaging and clinical data, offer refined assessments. These innovations suggest the potential for AI to significantly improve the prediction of post-TIPS HE. The study provides clinicians with a comprehensive overview of current prediction methods, while advocating for the integration of AI to increase the accuracy of post-TIPS HE assessments. By harnessing the power of AI, clinicians can better manage the risks associated with TIPS and tailor interventions to individual patient needs. Future research should therefore prioritize the development of advanced AI frameworks that can assimilate diverse data streams to support clinical decision-making. The goal is not only to more accurately predict HE, but also to improve overall patient care and quality of life.

9.
Phytomedicine ; 134: 155976, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39265445

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a chronic lung disease characterized by the progressive pulmonary vascular remodeling with increased pulmonary arterial pressure and right ventricular failure. Pulmonary vascular remodeling involves the proliferation, migration, and resistance to apoptosis of pulmonary artery smooth cells (PASMCs). Parthenolide (PTN) is a bioactive compound derived from a traditional medical plant feverfew (Tanacetum parthenium), and it has been studied for treatment of pulmonary fibrosis, lung cancer, and other related ailments. However, the function of PTN in the treatment of PH has not been studied. PURPOSE: This study aimed to evaluate the anti-proliferation and pro-apoptosis effects of PTN on PH and investigate its potential mechanisms. METHODS: An in vivo hypoxia-induced pulmonary hypertension (HPH) model was established by maintaining male rats in a hypoxia chamber (10% O2) for 3 weeks, and PTN was intraperitoneally administered at the dose of 10 or 30 mg/kg. We assessed the impact of PTN on mean pulmonary arterial pressure (mPAP), pulmonary vascular remodeling, and right ventricular hypertrophy. In vitro, we evaluated hypoxia-induced cellular proliferation, migration, and apoptosis of rat PASMCs. Proteins related to the STAT3 signaling axis were analyzed by western blotting and immunofluorescence assays. Recovery experiments were performed using the STAT3 activator, colivelin TFA. RESULTS: PTN significantly alleviated the symptoms of HPH rats by attenuating pulmonary arterial remodeling. It also prevented the proliferation and migration of PASMCs. PTN also induced the apoptosis of PASMCs. PTN could directly interact with STAT3 and markedly inhibited STAT3 phosphorylation and nuclear translocation. In vitro, and in vivo experiments demonstrated that overexpression of STAT3 partially suppressed the effect of PTN. CONCLUSION: Our study indicated that PTN alleviated hypoxia-induced pulmonary hypertension in rats by suppressing STAT3 activity.


Assuntos
Apoptose , Proliferação de Células , Hipertensão Pulmonar , Hipóxia , Artéria Pulmonar , Ratos Sprague-Dawley , Fator de Transcrição STAT3 , Sesquiterpenos , Transdução de Sinais , Remodelação Vascular , Animais , Fator de Transcrição STAT3/metabolismo , Sesquiterpenos/farmacologia , Hipertensão Pulmonar/tratamento farmacológico , Masculino , Transdução de Sinais/efeitos dos fármacos , Hipóxia/tratamento farmacológico , Hipóxia/complicações , Artéria Pulmonar/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ratos , Movimento Celular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Tanacetum parthenium/química , Modelos Animais de Doenças , Hipertrofia Ventricular Direita/tratamento farmacológico
10.
Sci Rep ; 13(1): 15561, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730950

RESUMO

It has been demonstrated that lactate/albumin (L/A) ratio is substantially relevant to the prognosis of sepsis, septic shock, and heart failure. However, there is still debate regarding the connection between the L/A ratio and severe acute myocardial infarction (AMI). The aim of this study is to determine the prognostic role of L/A ratio in patients with severe AMI. Our retrospective study extracted data from the Medical Information Mart for Intensive Care III (MIMIC-III) database, included 1,134 patients diagnosed with AMI. Based on the tertiles of L/A ratio, the patients were divided into three groups: Tertile1 (T1) group (L/A ratio<0.4063, n=379), Tertile2 (T2) group (0.4063≤L/A ratio≤0.6667, n =379), and Tertile3 (T3) group (L/A ratio>0.6667, n =376). Uni- and multivariate COX regression model were used to analyze the relationship between L/A ratio and 14-day, 28-day and 90-day all-cause mortality. Meanwhile, the restricted cubic spline (RCS) model was used to evaluate the effect of L/A ratio as a continuous variable. Higher mortality was observed in AMI patients with higher L/A ratio. Multivariate Cox proportional risk model validated the independent association of L/A ratio with 14-day all-cause mortality [hazard ratio (HR) 1.813, 95% confidence interval (CI) 1.041-3.156 (T3 vs T1 group)], 28-day all-cause mortality [HR 1.725, 95% CI 1.035-2.874 (T2 vs T1 group), HR 1.991, 95% CI 1.214-3.266 (T3 vs T1 group)], as well as 90-day all-cause mortality [HR 1.934, 95% CI 1.176-3.183 (T2 vs T1 group), HR 2.307, 95% CI 1.426-3.733 (T3 vs T1 group)]. There was a consistent trend in subgroup analysis. The Kaplan-Meier (K-M) survival curves indicated that patients with L/A ratio>0.6667 had the highest mortality. Even after adjusting the confounding factors, RCS curves revealed a nearly linearity between L/A ratio and 14-day, 28-day and 90-day all-cause mortality. Meanwhile, the areas under the receiver operating characteristic (ROC) curve (AUC) of 14-day, 28-day and 90-day all-cause mortality were 0.730, 0.725 and 0.730, respectively. L/A ratio was significantly associated with 14-day, 28-day and 90-day all-cause mortality in critical patients with AMI. Higher L/A ratio will be considered an independent risk factor for higher mortality in AMI patients.


Assuntos
Ácido Láctico , Infarto do Miocárdio , Humanos , Estudos Retrospectivos , Albuminas , Cuidados Críticos
11.
Sci Rep ; 13(1): 2597, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788332

RESUMO

Low heart rate is a risk factor of mortality in many cardiovascular diseases. However, the relationship of minimum heart rate (MHR) with outcomes after cardiac surgery is still unclear, and the association between optimum MHR and risk of mortality in patients receiving cardiac surgery remains unknown. In this retrospective study using the Multi-parameter Intelligent Monitoring in Intensive Care (MIMIC-III) database, 8243 adult patients who underwent cardiac surgery were included. The association between MHR and the 30-day, 90-day, 180-day, and 1-year mortality of patients undergoing cardiac surgery was analyzed using multivariate Cox proportional hazard analysis. As a continuous variable, MHR was evaluated using restricted cubic regression splines, and appropriate cut-off points were determined. Kaplan-Meier curve was used to further explore the relationship between MHR and prognosis. Subgroup analyses were performed based on age, sex, hypertension, diabetes, and ethnicity. The rates of the 30-day, 90-day, 180-day, and 1-year mortalities of patients in the low MHR group were higher than those in the high MHR group (4.1% vs. 2.9%, P < 0.05; 6.8% vs. 5.3%, P < 0.05; 8.9% vs. 7.0%, P < 0.05, and 10.9% vs. 8.8%, P < 0.05, respectively). Low MHR significantly correlated with the 30-day, 90-day, 180-day, and 1-year mortality after adjusting for confounders. A U-shaped relationship was observed between the 30-day, 90-day, 180-day, and 1-year mortality and MHR, and the mortality was lowest when the MHR was 69 bpm. Kaplan-Meier curve analysis also indicated that low MHR had poor prognosis in patients undergoing cardiac surgery. According to subgroup analyses, the effect of low MHR on post-cardiac surgery survival was restricted to patients who were < 75 years old, male, without hypertension and diabetes, and of White ethnicity. MHR (69 bpm) was associated with better 30-day, 90-day, 180-day, and 1-year survival in patients after cardiac surgery. Therefore, effective HR control strategies are required in this high-risk population.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Frequência Cardíaca , Complicações Pós-Operatórias , Adulto , Idoso , Humanos , Masculino , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Cuidados Críticos , Diabetes Mellitus , Hipertensão , Prognóstico , Estudos Retrospectivos , Complicações Pós-Operatórias/mortalidade
12.
Gels ; 9(12)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38131973

RESUMO

The hard-healing chronic wounds of diabetics are still one of the most intractable problems in clinical skin injury repair. Wound microenvironments directly affect wound healing speed, but conventional dressings exhibit limited efficacy in regulating the wound microenvironment and facilitating healing. To address this serious issue, we designed a thermo-sensitive drug-controlled hydrogel with wound self-adjusting effects, consisting of a sodium alginate (SA), Antheraeapernyi silk gland protein (ASGP) and poly(N-isopropylacrylamide) (PNIPAM) for a self-adjusting microenvironment, resulting in an intelligent releasing drug which promotes skin regeneration. PNIPAM has a benign temperature-sensitive effect. The contraction, drugs and water molecules expulsion of hydrogel were generated upon surpassing lower critical solution temperatures, which made the hydrogel system have smart drug release properties. The addition of ASGP further improves the biocompatibility and endows the thermo-sensitive drug-controlled hydrogel with adhesion. Additionally, in vitro assays demonstrate that the thermo-sensitive drug-controlled hydrogels have good biocompatibility, including the ability to promote the adhesion and proliferation of human skin fibroblast cells. This work proposes an approach for smart drug-controlled hydrogels with a thermo response to promote wound healing by self-adjusting the wound microenvironment.

13.
Gels ; 8(7)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35877483

RESUMO

The Antheraea Pernyi silk gland protein originates from natural organisms and synthesized by tussah silk glands and has widely potential biomaterial applications due to the superior biocompatibility. This study investigates the Antheraea Pernyi silk gland protein-based drug-loaded bio-hydrogels for bioengineered tissue fabricated by using an eco-friendly method without the harsh extracting process and the usage of toxic chemicals. The drug-loaded bio-hydrogels exhibited a porous structure and interconnected pore walls. The swelling ratio and water absorption of drug-loaded bio-hydrogels were, respectively, above 95% and 1.5 × 103%. The cumulative release of drug loaded hydrogels all reached more than 90% within 4 h, and this indicates the potential of drug-loaded hydrogels as future drug-carrying biomaterials. RSC96 Schwann cells cultured on drug-loaded hydrogels for 72 h under cell culture medium show no toxic effects and more pro-proliferative effects. The results suggest the suitability of drug-loaded bio-hydrogels as natural biopolymer for the potential in vitro RSC96 cell culture platform and other biomaterial applications.

14.
ACS Appl Mater Interfaces ; 14(49): 54676-54687, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36454716

RESUMO

Daytime radiative cooling is a promising passive cooling technology for combating global warming. Existing daytime radiative coolers usually show whitish colors due to their high broadband solar reflectivity, which is not suitable for aesthetic demands and effective display. It is challenging to produce high-cooling performance materials with vivid colors because colors are often produced by the absorption of visible light, decreasing net cooling power. In this work, we design a series of colorful multilayered radiative coolers (CMRCs) consisting of an optimized selective emitter for cooling and coupled nanocavities for structural coloration, which can successfully delicately balance the trade-off between the chromaticity and cooling performance. By judiciously designing the geometric parameters and manipulating the coupling effect inside the coupled nanocavities, our coolers show sub-ambient cooling performance and a larger color gamut (occupying 17.7% sRGB area) than reported ones. We further fabricate CMRCs and demonstrate that they have temperature drops of 3.4-4.4 °C on average based on outdoor experiments. These CMRCs are promising in thermal management of electronic/optoelectronic devices and outdoor facilities.

15.
Front Microbiol ; 13: 1091502, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687595

RESUMO

Tardigrades, known colloquially as water bears or moss piglets, are diminutive animals capable of surviving many extreme environments, even been exposed to space in low Earth orbit. Recently termed tardigrade disordered proteins (TDPs) include three families as cytoplasmic-(CAHS), secreted-(SAHS), and mitochondrial-abundant heat soluble (MAHS) proteins. How these tiny animals survive these stresses has remained relatively mysterious. Cyanobacteria cast attention as a "microbial factory" to produce biofuels and high-value-added chemicals due to their ability to photosynthesis and CO2 sequestration. We explored a lot about biofuel stress and related mechanisms in Synechocystis sp. PCC 6803. The previous studies show that CAHS protein heterogenous expression in bacteria, yeast, and human cells increases desiccation tolerance in these hosts. In this study, the expression of three CAHS proteins in cyanobacterium was found to affect the tolerance to biofuels, while the tolerance to Cd2+ and Zn2+ were slightly affected in several mutants. A quantitative transcriptomics approach was applied to decipher response mechanisms at the transcriptional level further.

16.
Int J Biol Macromol ; 200: 362-369, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34973986

RESUMO

Araneid spider silk glands can spin seven silk types that have task-specific properties owing to the higher order structure of spider silk proteins. This gives silks superior potential as novel biomaterials. Nephila pilipes, the giant golden orb-weaver, is one of the largest spiders and spins silk with exceptional torsional deformation, toughness, and other properties to support its mass; further investigation relies on a complete amino acid sequence. However, there are no full-length N. pilipes spidroin sequences; in fact, across species, most sequences remain fragmentary because of repetitive region assembly difficulties in short-read sequencing. Here, we develop a hybrid sequencing method that utilizes short-read sequencing to identify seven spidroin terminals in N. pilipes, and long-read sequencing to confirm the full-length pyriform spidroin 1 (PySp1) gene. PySp1 is 11,181 base pairs, with a single exon encoding a 3,726 amino acid protein, the QQ(x)4Qx motif, and lower repeat homogenization, distinct characteristics of genera Nephilinae PySp1. The full-length N. pilipes PySp1 sequences sheds light on spidroin evolution and demonstrates a helpful strategy to find full-length spidroins.


Assuntos
Fibroínas
17.
Gels ; 9(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36661772

RESUMO

To improve the versatility of the sodium alginate-loaded bio-hydrogels, Antheraea pernyi silk gland protein/sodium alginate drug-loaded hydrogels were prepared by using an eco-friendly multiple network cross-link technology. Fourier transform infrared (FT-IR) spectroscopy and UV-Vis spectrophotometer were used separately to evaluate the chemical structure and drug release behavior of drug-loaded hydrogels. The antibacterial drug carrier gels were evaluated by using inhibition zone test against the S. aureus and E. coli. The CCK-8 assay was used to assess the biocompatibility of drug loaded hydrogels. The FT-IR results showed that there was a strong interaction within the drug loaded hydrogels, and the ASGP was beneficial to enhance the interaction within the drug loaded hydrogels. UV-Vis spectrophotometer results indicated the cumulative release reached 80% within 400 min. Antibacterial bio-hydrogels had a good antibacterial property, especially the antibacterial bio-hydrogels with bacitracin exhibits superior to other antibacterial agents. The drug-loaded bio-hydrogels exhibited the adhesion and proliferation of RSC96 cells and perfected biocompatibility. This provides a new idea for further research and development of tissue-friendly drug-loaded biomaterials.

18.
Front Cardiovasc Med ; 9: 942485, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017092

RESUMO

Background: Base excess (BE) represents an increase or decrease of alkali reserves in plasma to diagnose acid-base disorders, independent of respiratory factors. Current findings about the prognostic value of BE on mortality of patients with acute myocardial infarction (AMI) are still unclear. The purpose of this study was to explore the prognostic significance of BE for short-term all-cause mortality in patients with AMI. Methods: A total of 2,465 patients diagnosed with AMI in the intensive care unit from the Medical Information Mart for Intensive Care III (MIMIC-III) database were included in our study, and we explored the association of BE with 28-day and 90-day all-cause mortality using Cox regression analysis. We also used restricted cubic splines (RCS) to evaluate the relationship between BE and hazard ratio (HR). The primary outcomes were 28-day and 90-day all-cause mortality. Results: When stratified according to quantiles, low BE levels at admission were strongly associated with higher 28-day and 90-day all-cause mortality. Multivariable Cox proportional hazard models revealed that low BE was an independent risk factor of 28-day all-cause mortality [HR 4.158, 95% CI 3.203-5.398 (low vs. normal BE) and HR 1.354, 95% CI 0.896-2.049 (high vs. normal BE)] and 90-day all-cause mortality [HR 4.078, 95% CI 3.160-5.263 (low vs. normal BE) and HR 1.369, 95% CI 0.917-2.045 (high vs. normal BE)], even after adjustment for significant prognostic covariates. The results were also consistent in subgroup analysis. RCS revealed an "L-type" relationship between BE and 28-day and 90-day all-cause mortality, as well as adjusting for confounding variables. Meanwhile, Kaplan-Meier survival curves were stratified by combining BE with carbon dioxide partial pressure (PaCO2), and patients had the highest mortality in the group which had low BE (< 3.5 mEq/L) and high PaCO2 (> 45 mmHg) compared with other groups. Conclusion: Our study revealed that low BE was significantly associated with 28-day and 90-day mortality in patients with AMI and indicated the value of stratifying the mortality risk of patients with AMI by BE.

19.
Nanomaterials (Basel) ; 12(17)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36080108

RESUMO

One-way water transport is a predominant feature of comfortable textiles used in daily life. However, shortcomings related to the textiles include their poor breathability and durability. In this study, low-cost and eco-friendly PLA/low-melt (polylactic acid) LMPLA-thermoplastic polyurethane (TPU) membranes were fabricated through a needle punch/hot press and electrospinning method. The micro-/nano-channels, used for the first time, endowed the composite membranes with robust, breathable, moisture-permeable, and abrasion-resistant performance. By varying the nano- layer thickness, the resulting 16-40 µm membranes exhibited excellent one-way water transport, robust breathability and moisture permeability, and good abrasion resistance. Nano-layer thickness was found to be a critical performance factor, balancing comfort and protection. These results may be useful for developing low-cost, eco-friendly, and versatile protective products for medical application.

20.
RSC Adv ; 11(45): 28401-28409, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35480775

RESUMO

At present, Antheraea pernyi silk fibroin (ASF) based hydrogels have wide potential applications as biomaterials because of their superior cytocompatibility. Herein, ASF is used as a nucleophilic reagent, reacted with allyl glycidyl ether (AGE) for the preparation of allyl silk fibroin (ASF-AGE). The investigation of ASF-AGE structure by 1H NMR and FTIR are revealed that reactive allyl groups were obtained on ASF by nucleophilic substitution. A series of ASF based hydrogels are manufactured by N-isopropylacrylamide (NIPAAm) copolymerization bridged with ASF-AGE. By the silk fibroin self-assembly process, stably physical cross-linked hydrogels are formed without any crosslinking agent. These hydrogels exhibit good thermoresponsive and degradability, for which the LCST was about 32 °C, and these hydrogels can be degraded in protease XIV solution. Excellent cell proliferation, viability and morphology is demonstrated for b End.3 cells on the hydrogels by the characteristic MTT assay, CLSM and SEM. The cytocompatibility of b End.3 cells was demonstrated with excellent cell adhesion and growth on these ASF based hydrogels in vitro. These degradable and thermoresponsive ASF based hydrogels may find potential applications for cells delivery devices and tissue engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA