RESUMO
The seeds of Moringa oleifera (horseradish tree) contain about 40% of one of the most stable vegetable oils (Moringa seed oil). Therefore, the effects of Moringa seed oil on human SZ95 sebocytes were investigated and were compared with other vegetable oils. Immortalized human SZ95 sebocytes were treated with Moringa seed oil, olive oil, sunflower oil, linoleic acid and oleic acid. Lipid droplets were visualized by Nile Red fluorescence, cytokine secretion via cytokine antibody array, cell viability with calcein-AM fluorescence, cell proliferation by real-time cell analysis, and fatty acids were determined by gas chromatography. Statistical analysis was performed by the Wilcoxon matched-pairs signed-rank test, the Kruskal-Wallis test and Dunn's multiple comparison test. The vegetable oils tested stimulated sebaceous lipogenesis in a concentration-dependent manner. The pattern of lipogenesis induced by Moringa seed oil and olive oil was comparable to lipogenesis stimulated by oleic acid with also similar fatty acid secretion and cell proliferation patterns. Sunflower oil induced the strongest lipogenesis among the tested oils and fatty acids. There were also differences in cytokine secretion, induced by treatment with different oils. Moringa seed oil and olive oil, but not sunflower oil, reduced the secretion of pro-inflammatory cytokines, in comparison to untreated cells, and exhibited a low n-6/n-3 index. The anti-inflammatory oleic acid detected in Moringa seed oil probably contributed to its low levels of pro-inflammatory cytokine secretion and induction of cell death. In conclusion, Moringa seed oil seems to concentrate several desired oil properties on sebocytes, such as high content level of the anti-inflammatory fatty acid oleic acid, induction of similar cell proliferation and lipogenesis patterns compared with oleic acid, lipogenesis with a low n-6/n-3 index and inhibition of secretion of pro-inflammatory cytokines. These properties characterize Moringa seed oil as an interesting nutrient and a promising ingredient in skin care products.
Assuntos
Moringa oleifera , Moringa , Humanos , Moringa oleifera/química , Azeite de Oliva/farmacologia , Azeite de Oliva/análise , Sementes/química , Ácidos Graxos/análise , Óleos de Plantas/química , Ácido Oleico/farmacologia , Ácido Oleico/análise , Citocinas/análiseRESUMO
In this work, we studied the formation and properties of composite films coassembled by cellulose nanocrystals (CNCs) and bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs). The influences of the BSA-AuNC concentration on the structure and optical properties of CNC-based composite films were further studied. It was found that the composite film retained the chiral nematic structure and optical activity. The self-assembled CNC and BSA-AuNC helical superstructures can produce strong, left-handed, circularly polarized luminescence with dissymmetry factors up to 0.287. Meanwhile, the third component, polyethylene glycol, was introduced without affecting the structural color and fluorescence characteristics of the composite film to enhance the flexibility of the film. The simplicity of the film preparation, the abundance of CNCs, and the flexibility and stability of the composite films pave the way for the production of functional materials with integrated functions.
Assuntos
Celulose , Nanopartículas , Celulose/química , Ouro/química , Luminescência , Nanopartículas/química , Óptica e FotônicaRESUMO
In this study, we construct a green and high-performance platform using Pickering emulsions for biphasic catalysis. The oil-in-water Pickering emulsions stabilized by the lignin/chitosan nanoparticles (Lig/Chi NPs) have great stability and alkali resistance, showing pH-responsive reversible emulsification and demulsification which can be recycled at least three times. The Pickering emulsion also has fluorescence and wide availability to different oil-to-water volume ratios, types of oil, storage times, temperatures, and ion concentrations. When this system is applied to the lipase-catalyzed reaction for the hydrolysis of p-nitrophenol palmitate, it will provide stable and large oil-water reaction interface areas, and the negatively charged lipase will enrich at the emulsion interface by electrostatic adsorption of the positively charged Lig/Chi NPs to achieve immobilization (lipase-Lig/Chi NPs). The reaction conversion rate can reach nearly 100% in 30 min, which is nearly three times higher than that of the conventional two-phase system. Moreover, the lipases in Pickering emulsion stabilized by Lig/Chi NPs exhibit great recyclability because of the protection of Lig/Chi NPs.
Assuntos
Quitosana , Nanopartículas , Emulsões , Lignina , Catálise , Lipase , Água , Álcalis , Palmitatos , Tamanho da PartículaRESUMO
Coronary artery disease (CAD) is the leading cause of death worldwide. Statins reduce morbidity and mortality of CAD. Intake of n-3 polyunsaturated fatty acid (n-3 PUFAs), particularly eicosapentaenoic acid (EPA), is associated with reduced morbidity and mortality in patients with CAD. Previous data indicate that a higher conversion of precursor fatty acids (FAs) to arachidonic acid (AA) is associated with increased CAD prevalence. Our study explored the FA composition in blood to assess n-3 PUFA levels from patients with and without CAD. We analyzed blood samples from 273 patients undergoing cardiac catheterization. Patients were stratified according to clinically relevant CAD (n = 192) and those without (n = 81). FA analysis in full blood was performed by gas chromatography. Indicating increased formation of AA from precursors, the ratio of dihomo-gamma-linolenic acid (DGLA) to AA, the delta-5 desaturase index (D5D index) was higher in CAD patients. CAD patients had significantly lower levels of omega-6 polyunsaturated FAs (n-6 PUFA) and n-3 PUFA, particularly EPA, in the blood. Thus, our study supports a role of increased EPA levels for cardioprotection.
Assuntos
Biomarcadores , Doença da Artéria Coronariana/sangue , Ácidos Graxos Insaturados/sangue , Estudos de Casos e Controles , Catéteres , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/terapia , Suscetibilidade a Doenças , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Metabolismo dos Lipídeos , Masculino , Modelos BiológicosRESUMO
Rapamycin (Rapa) is an inhibitor of mTOR complex, and its therapeutic effect on liver function was examined in non-alcoholic fatty liver disease (NAFLD) rats here. And the possible mechanism of Rapa in NAFLD was preliminarily elucidated based on the non-targeted metabolomics analysis. Adult male SD rats were fed with a high-fat and high-cholesterol diet (HFD) to establish NAFLD model. For Rapa group, 0.8â¯mg/(kg.d) Rapa was given to the HFD rats. Ultra-performance liquid chromatography and Q-Tof-mass spectrometry (UPLC and Q-TOF/MS) analysis were applied for the identification of metabolites in the serum of rats, which were annotated using Kyoto Encyclopedia of Genes and Genomes (KEGG). NAFLD rats presented with disturbed liver function, lipid metabolism and oxidative stress, but Rapa exerted a mitigating influence on the disorders. The metabolite profile data identified 579 metabolites that varied remarkably between the Rapa and HFD groups, with the main classes of amino acids and peptides, benzene, lipids and fatty acids. The differential metabolites were mainly involved in biosynthesis of cofactors, bile secretion, and glycerophospholipid metabolism were mainly enriched. In conclusion, Rapa has a potential protective effect against HFD-induced NAFLD, its hepatoprotective effect may achieved through mediating bile secretion and glycerophospholipid metabolism.
RESUMO
Background and aims: Previous studies have shown that lipoprotein apheresis can modify the plasma lipidome and pro-inflammatory and pro-thrombotic lipid mediators. This has not been examined for treatment with protein convertase subtilisin/kexin type 9 inhibitors such as evolocumab, which are increasingly used instead of lipoprotein apheresis in treatment-resistant familial hypercholesterolemia. The aim of this study was to compare the effects of evolocumab treatment and lipoprotein apheresis on the fatty acid profile and on formation of lipid mediators in blood samples. Methods: We analyzed blood samples from 37 patients receiving either lipoprotein apheresis or evolocumab treatment as part of a previous study. Patients were stratified according to receiving lipoprotein apheresis (n = 19) and evolocumab treatment (n = 18). Serum fatty acid analysis was performed using gas chromatography flame ionization detection and plasma oxylipin analysis was done using liquid chromatography tandem mass spectrometry. Results: Changing from lipoprotein apheresis to evolocumab treatment led to lower levels of omega-6 polyunsaturated fatty acid (n-6 PUFA) including arachidonic acid, dihomo-γ-linolenic acid and linoleic acid. Moreover, several n-6 PUFA-derived oxylipins were reduced after evolocumab treatment. Conclusions: Given that arachidonic acid, either directly or as a precursor, is associated with the development of inflammation and atherosclerosis, evolocumab-mediated reductions of arachidonic acid and its metabolites might have an additional beneficial effect to lower cardiovascular risk.
RESUMO
Inspired by ordered photonic crystals and structural color materials in nature, we successfully prepared hydroxypropyl cellulose (HPC) photonic films with ordered surface arrays by double-imprint soft lithography. Then we introduced another important material of the cellulose family, cellulose nanocrystals (CNC), which has liquid crystal nature and birefringent properties of the particles, into the system to realize the single-point shrinkage of the film array and the control of structural color. Through multi-component doping and concentration control, we further optimized the multi-scale structure of the materials, and obtained HPC/CNCs composite photonic films with excellent properties in color, stability and flexibility, whose elastic modulus and tensile properties are significantly higher than those of single-component. Further loading of SiO2@PDA enhances the color saturation and realizes the in-situ reduction of metal ions on the film surface. This plasma film can track a variety of substances with high sensitivity and long-term stability, showing potential application prospects in the field of surface-enhanced Raman scattering (SERS), which provides a potential possibility for chiral structures to be used in the field of biosensor detection and circularly polarized luminescence.
RESUMO
Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome. Vitamin E (VE) has antioxidant properties and can mediate lipid metabolism. Non-targeted metabolomics technology was employed to uncover comprehensively the metabolome of VE in NAFLD rats. NAFLD model was created with a high-fat and high-cholesterol diet (HFD) in rats. NAFLD rats in the VE group were given 75 mg/(kg day) VE. The metabolites in the serum of rats were identified via UPLC and Q-TOF/MS analysis. KEGG was applied for the pathway enrichment. VE improved the liver function, lipid metabolism, and oxidative stress in NAFLD rats induced by HFD. Based on the metabolite profile data, 132 differential metabolites were identified between VE group and the HFD group, mainly including pyridoxamine, betaine, and bretylium. According to the KEGG results, biosynthesis of cofactors was a key metabolic pathway of VE in NAFLD rats. VE can alleviate NAFLD induced by HFD, and the underlying mechanism is associated with the biosynthesis of cofactors, mainly including pyridoxine and betaine.
RESUMO
Inflammatory bowel disease (IBD) is an immune-mediated gut dysfunction, which might also be associated with an inflammatory phenotype in the liver. It is known that the nutritional intake of omega-3 polyunsaturated fatty acids (n-3 PUFA) is inversely correlated to the severity and occurrence of IBD. In order to investigate whether n-3 PUFA can also reduce liver inflammation and oxidative liver damage due to colon inflammation, we explored the dextran sulfate sodium (DSS)-induced colitis model in wild-type and fat-1 mice with endogenously increased n-3 PUFA tissue content. Besides confirming previous data of alleviated DSS-induced colitis in the fat-1 mouse model, the increase of n-3 PUFA also resulted in a significant reduction of liver inflammation and oxidative damage in colitis-affected fat-1 mice as compared to wild-type littermates. This was accompanied by a remarkable increase of established inflammation-dampening n-3 PUFA oxylipins, namely docosahexaenoic acid-derived 19,20-epoxydocosapentaenoic acid and eicosapentaenoic acid-derived 15-hydroxyeicosapentaenoic acid and 17,18-epoxyeicosatetraenoic acid. Taken together, these observations demonstrate a strong inverse correlation between the anti-inflammatory lipidome derived from n-3 PUFA and the colitis-triggered inflammatory changes in the liver by reducing oxidative liver stress.
Assuntos
Colite , Ácidos Graxos Ômega-3 , Doenças Inflamatórias Intestinais , Camundongos , Animais , Camundongos Transgênicos , Ácidos Graxos Ômega-3/efeitos adversos , Colite/induzido quimicamente , Colite/genética , Inflamação/genética , Fígado , Estresse OxidativoRESUMO
The establishment and development of gene knockout mice have provided powerful support for the study of gene function and the treatment of human diseases. Gene targeting and gene trap are two techniques for generating gene knockout mice from embryonic stem cells. Gene targeting replaces endogenous knockout gene by homologous recombination. There are two ways to knock out target genes: promoter trap and polyA trap. In recent years, many new gene knockout techniques have been developed, including Cre/loxP system, CRISP/Cas9 system, latest ZFN technology and TALEN technology. This article focuses on the several new knockout mouse techniques.