RESUMO
Antibiotic resistance in drinking water has received increasing attention in recent years. In this study, the occurrence and abundance of antibiotic resistance genes (ARGs) in a drinking water treatment plant (DWTP) was comprehensively investigated using metagenomics. Bioinformatics analysis showed that 381 ARG subtypes belonging to 15 ARG types were detected, and bacitracin had the highest abundance (from 0.26 × 10-2 to 0.86 copies/cell), followed by multidrug (from 0.57 × 10-1 to 0.47 copies/cell) and sulfonamide (from 0.83 × 10-2 to 0.35 copies/cell). Additionally, 933 ARG-carrying contigs (ACCs) were obtained from the metagenomic data, among which 153 contigs were annotated as pathogens. The most abundant putative ARG host was Staphylococcus (7.9%), which most frequently carried multidrug ARGs (43.2%). Additionally, 38 high-quality metagenome-assembled genomes (MAGs) were recovered, one of which was identified as Staphylococcus aureus (Bin.624) and harboured the largest number of ARGs (n = 16). Using the cultivation technique, 60 isolates were obtained from DWTP samples, and Staphylococcus spp. (n = 11) were found to be dominant in all isolates, followed by Bacillus spp. (n = 17). Antimicrobial susceptibility testing showed that most Staphylococcus spp. were multidrug resistant (MDR). These results deepen our understanding of the distribution profiles of ARGs and antibiotic resistant bacteria (ARB) in DWTPs for potential health risk evaluation. Our study also highlights the need for new and efficient water purification technologies that can be introduced and applied in DWTPs.
Assuntos
Água Potável , Purificação da Água , Antibacterianos/farmacologia , Genes Bacterianos , Farmacorresistência Bacteriana/genética , Prevalência , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Purificação da Água/métodosRESUMO
Trace element analysis of soft materials, to determine the content of low concentration elements, is important in many industries such as food quality control and medical biopsy analysis. Many of these applications would benefit from faster analysis with smaller sample requirements. Further, some natural samples are soft and have high water content, which brings challenges to element analysis. Here, we develop a cryogenic pelletization pretreatment to address those challenges. The soft samples are cryogenically milled, freeze-dried, and pelletized before elemental analysis. Analysis is performed by laser ablation spectroscopy, the combination of laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS), to rapidly analyze light and heavy analytes. For this initial study, aluminum (Al) content in soft samples is determined by LIBS and lead (Pb) content by LA-ICP-MS. The standard addition method is performed to build calibration curves for element quantification. The measurements are compared with a Hong Kong government certified acid digestion and ICP-MS procedure. The experiment is performed on standard reference materials and selected food samples. The relative errors compared with certified measurements are less than 10% for all samples, with Al content ranging from 63-1466 µg/g and Pb content from 0.37-2.35 µg/g (dry mass). Microscopy of pellets shows that laser ablation spectroscopy can be performed with 100 µg of sample (dry mass). Total analysis time from raw sample to final measurement, including preparation, is under 1 h. The results indicate that the laser ablation spectroscopy with cryogenic pelletization is a promising technique for many applications such as screening of small food samples for toxic metals and trace element analysis of millimeter biopsies.
Assuntos
Contaminação de Alimentos , Espectrometria de Massas/métodos , Análise Espectral/métodos , Oligoelementos/análise , Compostos de Alumínio/análise , Terapia a Laser , Chumbo/análise , Padrões de Referência , Manejo de EspécimesRESUMO
Associating MnO2 with carbonaceous supports profoundly enhances capacitive deionization (CDI) efficiency. A fundamental question of how the surface chemistry of MnO2 itself influences CDI efficiency is not yet fully understood. In this study, the effect of surface ionization on the CDI efficiencies of Fe-, Co-, and Ni-doped α-MnO2 (<0.1 mol %) as a model cathode material was studied. A pattern that CDI efficiency decreased with increasing negative surface charge density resulting from surface deprotonation was noted. This is likely attributed to the appreciable co-ion expulsion occurring at a highly ionized surface in the mesopores of MnO2. It is thus concluded that the combination of surface charge modification and a microporous environment would be important for CDI efficiency enhancement by minimizing co-ion exclusion effect. In the former case, structural stress adjustment by doping elements would be a practical route to regulate the p Ka1 and p Ka2 values and consequently the degree of surface ionization of MnO2.
RESUMO
Silver nanoparticles (AgNPs) are commonly used nanomaterials in consumer products. Previous studies focused on its effects on neurons; however, little is known about their effects and uptake mechanisms on glial cells under normal or activated states. Here, ALT astrocyte-like, BV-2 microglia and differentiated N2a neuroblastoma cells were directly or indirectly exposed to 10 nm AgNPs using mono- and co-culture system. A lipopolysaccharide (LPS) was pretreated to activate glial cells before AgNP treatment for mimicking NP exposure under brain inflammation. From mono-culture, ALT took up the most AgNPs and had the lowest cell viability within three cells. Moreover, AgNPs induced H2 O2 and NO from ALT/activated ALT and BV-2, respectively. However, AgNPs did not induce cytokines release (IL-6, TNF-α, MCP-1). LPS-activated BV-2 took up more AgNPs than normal BV-2, while the induction of ROS and cytokines from activated cells were diminished. Ca2+ -regulated clathrin- and caveolae-independent endocytosis and phagocytosis were involved in the AgNP uptake in ALT, which caused more rapid NP translocation to lysosome than in macropinocytosis and clathrin-dependent endocytosis-involved BV-2. AgNPs directly caused apoptosis and necrosis in N2a cells, while by indirect NP exposure to bottom chamber ALT or BV-2 in Transwell, more apoptotic upper chamber N2a cells were observed. Cell viability of BV-2 also decreased in an ALT-BV-2 co-culturing study. The damaged cells correlated to NP-mediated H2 O2 release from ALT or NO from BV-2, which indicates that toxic response of AgNPs to neurons is not direct, but indirectly arises from AgNP-induced soluble factors from other glial cells.
Assuntos
Astrócitos/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Lisossomos/metabolismo , Nanopartículas Metálicas/toxicidade , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Prata/toxicidade , Animais , Apoptose/efeitos dos fármacos , Astrócitos/imunologia , Astrócitos/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/imunologia , Microglia/metabolismo , Necrose , Neurônios/imunologia , Neurônios/metabolismo , Fagocitose/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Passivation of surface states is known to reduce the onset photocurrent potential by removing the Fermi level pinning effect at the Helmholtz layer and enhance the photocurrent plateau by suppressing recombination loss in the space charge region. We report for the first time that metal ions can effectively passivate surface states in situ that improves the photoelectrochemical (PEC) performance of hematite electrodes. Among metal ions studied, Cr(iii), Mn(ii), Fe(ii), Co(ii), Cu(ii) and Zn(ii) were found to enhance the photocurrent by 30-300%; whereas photocurrent density significantly dropped by 90% in Ni(ii) solution after 90 min of illumination. We further hypothesized that the surface states might be the high affinity adsorption sites on hematite surfaces. Once the surface states are occupied by metal ions, along with the Schottky barrier effect at the hematite/electrolyte interface formed by adsorbed metal ions, the PEC performance is enhanced. Our results also enable the design of a potential PEC based water treatment method to extract additional energy, for example, in the brines (containing concentrated metal ions and electrolyte) of membrane processed wastewater.
RESUMO
The elemental content of fish scales is known to be a reliable biogeochemical tag for tracing the origin of fishes. In this study, this correlation is further confirmed to exist on the surface of fish scales using a novel environmental analytical method, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), which bypasses several complicated sample preparation procedures such as acid digestion and pre-concentration. The results suggest that the elemental ratios of Sr/Ca, Ba/Ca, and Mn/Ca on the surface of fish scales are strongly correlated with the geochemical environment of their original habitat. This correlation is further demonstrated to be sensitive to variation of water in the habitat due to the adsorbed inorganic ions. In this sense, the limitation of fish scales as a biogeochemical tag is the sensitivity of LA-ICP-MS toward the studied elements. Graphical abstract Illustration of the connection between element distribution pattern over the surface of fish scales and biogeochemical environment of its habitat.
Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Peixes/metabolismo , Oligoelementos/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Meio Ambiente , Espectrometria de Massas , Oligoelementos/análise , Poluentes Químicos da Água/análiseRESUMO
The so-called "Trojan-horse" mechanism, in which nanoparticles are internalized within cells and then release high levels of toxic ions, has been proposed as a behavior in the cellular uptake of Ag nanoparticles (AgNPs). While several reports claim to have proved this mechanism by measuring AgNPs and Ag ions (I) in cells, it cannot be fully proven without examining those two components in both intra- and extracellular media. In our study, we found that even though cells take up AgNPs similarly to (microglia (BV-2)) or more rapidly than (astrocyte (ALT)) Ag (I), the ratio of AgNPs to total Ag (AgNPs+Ag (I)) in both cells was lower than that in outside media. It could be explained that H2O2, a major intracellular reactive oxygen species (ROS), reacts with AgNPs to form more Ag (I). Moreover, the major speciation of Ag (I) in cells was Ag(cysteine) and Ag(cysteine)2, indicating the possible binding of monomer cysteine or vital thiol proteins/peptides to Ag ions. Evidence we found indicates that the Trojan-horse mechanism really exists.
Assuntos
Endocitose , Espaço Extracelular/química , Espaço Intracelular/química , Nanopartículas Metálicas/química , Prata/metabolismo , Animais , Ácido Ascórbico/química , Morte Celular/efeitos dos fármacos , Linhagem Celular , Meios de Cultura , Endocitose/efeitos dos fármacos , Peróxido de Hidrogênio/química , Íons , Lipopolissacarídeos/química , Camundongos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Prata/toxicidadeRESUMO
Silver nanoparticles (AgNPs) have antibacterial characteristics, and currently are applied in Ag-containing products. This study found neural cells can uptake 3-5 nm AgNPs, and investigated the potential effects of AgNPs on gene expression of inflammation and neurodegenerative disorder in murine brain ALT astrocytes, microglial BV-2 cells and neuron N2a cells. After AgNPs (5, 10, 12.5 µg/ml) exposure, these neural cells had obviously increased IL-1ß secretion, and induced gene expression of C-X-C motif chemokine 13 (CXCL13), macrophage receptor with collagenous structure (MARCO) and glutathione synthetase (GSS) for inflammatory response and oxidative stress neutralization. Additionally, this study found amyloid-ß (Aß) plaques for pathological feature of Alzheimer's disease (AD) deposited in neural cells after AgNPs treatment. After AgNPs exposure, the gene expression of amyloid precursor protein (APP) was induced, and otherwise, neprilysin (NEP) and low-density lipoprotein receptor (LDLR) were reduced in neural cells as well as protein level. These results suggested AgNPs could alter gene and protein expressions of Aß deposition potentially to induce AD progress in neural cells. It's necessary to take notice of AgNPs distribution in the environment.
Assuntos
Encéfalo/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Nanopartículas Metálicas , Prata/química , Animais , Encéfalo/citologia , CamundongosRESUMO
Understanding the cytotoxicity of quantum dots strongly relies upon the development of new analytical techniques to gather information about various aspects of the system. In this study, we demonstrate the in vivo biodistribution and fate of CdSe quantum dots in the murine model by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). By comparing the hot zones of each element acquired from LA-ICP-MS with those in fluorescence images, together with hematoxylin and eosin-stained images, we are able to perceive the fate and in vivo interactions between quantum dots and rat tissues. One hour after intravenous injection, we found that all of the quantum dots had been concentrated inside the spleen, liver and kidneys, while no quantum dots were found in other tissues (i.e., muscle, brain, lung, etc.). In the spleen, cadmium-114 signals always appeared in conjunction with iron signals, indicating that the quantum dots had been filtered from main vessels and then accumulated inside splenic red pulp. In the liver, the overlapped hot zones of quantum dots and those of phosphorus, copper, and zinc showed that these quantum dots have been retained inside hepatic cells. Importantly, it was noted that in the kidneys, quantum dots went into the cortical areas of adrenal glands. At the same time, hot zones of copper appeared in proximal tubules of the cortex. This could be a sign that the uptake of quantum dots initiates certain immune responses. Interestingly, the intensity of the selenium signals was not proportional to that of cadmium in all tissues. This could be the result of the decomposition of the quantum dots or matrix interference. In conclusion, the advantage in spatial resolution of LA-ICP-MS is one of the most powerful tools to probe the fate, interactions and biodistribution of quantum dots in vivo.
Assuntos
Compostos de Cádmio/farmacocinética , Terapia a Laser , Espectrometria de Massas , Pontos Quânticos , Compostos de Selênio/farmacocinética , Animais , Rim/ultraestrutura , Terapia a Laser/métodos , Fígado/ultraestrutura , Espectrometria de Massas/métodos , Camundongos , Microscopia de Fluorescência , Baço/ultraestrutura , Distribuição TecidualRESUMO
Accurate serotyping is essential for effective infection control. Pseudomonas aeruginosa serogroup G is one of the most common serogroups found in water. Conventional serotyping methods are not standardized and have several shortcomings. Therefore, a robust method for rapidly identifying P. aeruginosa serotypes is required. This study established a real-time PCR method for identifying P. aeruginosa serogroup G strains using novel target gene primers based on comparative genomic analysis. A total of 343 genome sequences, including 16 P. aeruginosa serogroups and 67 other species, were analyzed. Target genes identified were amplified using real-time PCR for detecting P. aeruginosa serogroup G strains. Eight serogroup G genes, PA59_01276, PA59_01887, PA59_01888, PA59_01891, PA59_01894, PA59_04268, PA59_01892, and PA59_01896, were analyzed to determine specific targets. A real-time fluorescence quantitative PCR method, based on the novel target PA59_01276, was established to detect and identify serogroup G strains. The specificity of this method was confirmed using P. aeruginosa serogroups and non-P. aeruginosa species. The sensitivity of this real-time PCR method was 4 × 102 CFU/mL, and it could differentiate and detect P. aeruginosa serogroup G in the range of 4.0 × 103-4.0 × 108 CFU/mL in artificially contaminated drinking water samples without enrichment. The sensitivity of these detection limits was higher by 1-3 folds compared to that of the previously reported PCR methods. In addition, the G serum group was accurately detected using this real-time PCR method without interference by high concentrations of artificially contaminated serum groups F and D. These results indicate that this method has high sensitivity and accuracy and is promising for identifying and rapidly detecting P. aeruginosa serogroup G in water samples. Moreover, this research will contribute to the development of effective vaccines and therapies for infections caused by multidrug-resistant P. aeruginosa.
RESUMO
Mining novel specific molecular targets and establishing efficient identification methods are significant for detecting Pseudomonas aeruginosa, which can enable P. aeruginosa tracing in food and water. Pangenome analysis was used to analyze the whole genomic sequences of 2017 strains (including 1,000 P. aeruginosa strains and 1,017 other common foodborne pathogen strains) downloaded from gene databases to obtain novel species-specific genes, yielding a total of 11 such genes. Four novel target genes, UCBPP-PA14_00095, UCBPP-PA14_03237, UCBPP-PA14_04976, and UCBPP-PA14_03627, were selected for use, which had 100% coverage in the target strain and were not present in nontarget bacteria. PCR primers (PA1, PA2, PA3, and PA4) and qPCR primers (PA12, PA13, PA14, and PA15) were designed based on these target genes to establish detection methods. For the PCR primer set, the minimum detection limit for DNA was 65.4 fg/µl, which was observed for primer set PA2 of the UCBPP-PA14_03237 gene. The detection limit in pure culture without pre-enrichment was 105 colony-forming units (CFU)/ml for primer set PA1, 103 CFU/ml for primer set PA2, and 104 CFU/ml for primer set PA3 and primer set PA4. Then, qPCR standard curves were established based on the novel species-specific targets. The standard curves showed perfect linear correlations, with R 2 values of 0.9901 for primer set PA12, 0.9915 for primer set PA13, 0.9924 for primer set PA14, and 0.9935 for primer set PA15. The minimum detection limit of the real-time PCR (qPCR) assay was 102 CFU/ml for pure cultures of P. aeruginosa. Compared with the endpoint PCR and traditional culture methods, the qPCR assay was more sensitive by one or two orders of magnitude. The feasibility of these methods was satisfactory in terms of sensitivity, specificity, and efficiency after evaluating 29 ready-to-eat vegetable samples and was almost consistent with that of the national standard detection method. The developed assays can be applied for rapid screening and detection of pathogenic P. aeruginosa, providing accurate results to inform effective monitoring measures in order to improve microbiological safety.
RESUMO
In this study, we employed laser ablation/inductively coupled plasma mass spectrometry (LA-ICP-MS) to map the spatial distribution of Gd-doped iron oxide nanoparticles (IONPs) in one tumor slice that had been subjected to magnetic fluid hyperthermia (MFH). The mapping results revealed the high resolution of the elemental analysis, with the distribution of Gd atoms highly correlated with that of the Fe atoms. The spatial distributions of C, P, S, and Zn atoms revealed that the effect of MFH treatment was significantly dependent on the diffusion of the magnetic fluid in the tissue. An observed enrichment of Cu atoms after MFH treatment was probably due to inflammation in the tumor. The abnormal distribution of Ni atoms suggests a probable biochemical reaction in the tumor. Therefore, this LA-ICP-MS mapping technique can provide novel information regarding the spatial distribution of elements in tumors after cancer therapy.
Assuntos
Elementos Químicos , Terapia a Laser , Espectrometria de Massas , Metais Pesados/química , Neoplasias/química , Neoplasias da Próstata/química , Animais , Linhagem Celular Tumoral , Compostos Férricos/química , Gadolínio/química , Temperatura Alta , Humanos , Masculino , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/diagnóstico por imagem , Neoplasias/ultraestrutura , Neoplasias da Próstata/diagnóstico por imagem , Radiografia , Coloração e RotulagemRESUMO
To achieve rapid and sensitive detection of aflatoxin B1 (AFB1), we developed a polydimethylsiloxane gravity-driven cyclic microfluidic chip using the two-signal mode strategy. The structural design of the chip, together with the two-wavelength quantum dot ratio fluorescence, effectively eliminates the influence of environmental factors, improves the signal stability, and ensures that the final detection result positively correlates with the target concentration. Moreover, the theoretical analysis performed for the established physical model of the three-dimensional reaction interface inside the chip confirmed the improved reaction rate of immune adsorption in the microfluidic strategy. Overall, the method exhibited a wide analytic range (0.2-500 ng mL-1), low detection limit (0.06 ng mL-1), high specificity, good precision (coefficient of variation < 5%), excellent reusability (20 times, 89.1%) and satisfactory practical sample analysis capacity. Furthermore, the reusability and designability of this chip provide a reliable scheme for field detection of AFB1, analysis of other small molecules, and establishment of high-throughput detection systems under different conditions.
Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Aflatoxina B1/análise , Imunoensaio , Limite de Detecção , MicrofluídicaRESUMO
The accurate and rapid classification of Salmonella serovars is an essential focus for the identification of isolates involved in disease in humans and animals. The purpose of current research was to identify novel sensitive and reliable serovar-specific targets and to develop PCR method for Salmonella C2 serogroups (O:8 epitopes) in food samples to facilitate timely treatment. A total of 575 genomic sequences of 16 target serovars belonging to serogroup C2 and 150 genomic sequences of non-target serovars were analysed by pan-genome analysis. As a result, four and three specific genes were found for serovars Albany and Hadar, respectively. Primer sets for PCR targeting these serovar-specific genes were designed and evaluated based on their specificity; the results showed high specificity (100%). The sensitivity of the specific PCR was 2.8 × 101-103 CFU/mL and 2.3 × 103-104 CFU/mL for serovars Albany and Hadar, respectively, and the detection limits were 1.04 × 103-104 CFU/g and 1.16 × 104-105 CFU/g in artificially contaminated raw pork samples. Furthermore, the potential functions of these serovar-specific genes were analysed; all of the genes were functionally unknown, except for one specific serovar Albany gene known to be a encoded secreted protein and one specific gene for serovars Hadar and Albany that is a encoded membrane protein. Thus, these findings demonstrate that pan-genome analysis is a precious method for mining new high-quality serovar-targets for PCR assays or other molecular methods that are highly sensitive and can be used for rapid detection of Salmonella serovars.
RESUMO
The abundant information provided by the pan-genome analysis approach reveals the diversity among Listeria monocytogenes serotypes. The objective of this study was to mine novel target genes using pan-genome analysis for multiplex PCR detection and differentiation of the major L. monocytogenes serotypes present in food. Pan-genome analysis and PCR validation revealed a total of 10 specific targets: one for lineage I, two for serogroup I.1, one for serogroup I.2, two for lineage II, one for serogroup II.1, three for lineage III. Primers for the novel targets were highly specific in individual reactions. The detection limits were 103-104 colony-forming units (CFU)/mL in pure bacterial cultures, meeting the requirements of molecular detection. Based on these novel targets, two new "lineage" multiplex PCR assays were developed to simultaneously distinguish between three lineages (I, II, and III) and five major serotypes (1/2a, 1/2b, 1/2c, 4b, and 4c) of L. monocytogenes. The detection limits of lineage I and lineage II&III mPCRs were 0.771 pg/µL and 1.76 pg/µL genomic DNA, respectively. The specificity of the mPCRs was robustly verified using other L. monocytogenes and non-L. monocytogenes serotypes. These results suggest that the two "lineage" multiplex PCRs based on novel targets offer a promising approach for accurate, sensitive, and rapid identification of L. monocytogenes serotypes.
Assuntos
Listeria monocytogenes/genética , Reação em Cadeia da Polimerase Multiplex , Sorotipagem/métodos , Primers do DNA/genética , Microbiologia de Alimentos , Genoma Bacteriano/genética , Listeriose/microbiologia , SorogrupoRESUMO
MnO2 is a common material for the fabrication and design of capacitive deionization (CDI) devices but there is little information on the role of MnO2 crystal phase on CDI performance. A series of MnO2 (α, ß, γ, and δ phase) were synthesized and fabricated as cathodes for studying the CDI performance as affected by pH in simple batch mode experiments. Our results revealed that the deionization efficiency decreased with increased negative surface charge as a result of the deprotonated surface. Importantly, this correlation was pH independent and the surface heterogeneity due to different MnO2 phase was likely responsible for the different degree of surface ionization and consequently the CDI efficiency. Results of electrochemical impedance spectroscopy analyses further implicated that a highly ionized surface would result in a diffusion layer with a great resistance that conversely inhibited the access of co-ions in the CDI process. This indicated the applied potential was mainly responsible for driving ions transporting through the double layer resistance instead of accommodating them (electrosorption). Based on our results, the surface heterogeneity as a result of different spatially distributed MnO6 octahedral would be accounted for the varying degree of surface ionization and consequently the discrepancy in CDI efficiency among different MnO2 phases.
RESUMO
Boron neutron capture therapy (BNCT) is a promising radiotherapy for treating glioblastoma multiforme (GBM). However, the penetration of drugs (e.g., sodium borocaptate and BSH) for BNCT into brain tumors is limited by cerebral vesicular protective structures, the blood-brain barrier, and the blood-brain tumor barrier (BTB). Although BSH has been reported to be selectively taken up by tumors, it is rapidly excreted from the body and cannot achieve a high tumor-to-normal brain ratio (T/N ratio) and tumor-to-blood ratio (T/B ratio). Despite the development of large-molecular weight boron compounds, such as polymers and nanoparticles, to enhance the permeation and retention effect, their effects remain insufficient for clinical use. To improve the efficiency of boron delivery to the tumor site, we propose combinations of self-assembled boron-containing polyanion [polyethylene glycol- b-poly(( closo-dodecaboranyl)thiomethylstyrene) (PEG- b-PMBSH)] nanoparticles (295 ± 2.3 nm in aqueous media) coupled with cationic microbubble (B-MB)-assisted focused ultrasound (FUS) treatment. Upon FUS sonication (frequency = 1 MHz, pressure = 0.3-0.7 MPa, duty cycle = 0.5%, sonication = 1 min), B-MBs can simultaneously achieve safe BTB opening and boron drug delivery into tumor tissue. Compared with the MBs of the PEG- b-PMBSH mixture group (B + MBs), B-MBs showed 3- and 2.3-fold improvements in the T/N (4.4 ± 1.4 vs 1.3 ± 0.1) and T/B ratios (1.4 ± 0.6 vs 0.1 ± 0.1), respectively, after 4 min of FUS sonication. The spatial distribution of PEG- b-PMBSH was also improved by the complex of PEG- b-PMBSH with MBs. The findings presented herein, in combination with the expanding clinical application of FUS, may improve BNCT and treatment of GBM.
Assuntos
Terapia por Captura de Nêutron de Boro , Boro/química , Microbolhas , Polímeros/química , Animais , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glioma/patologia , Glioma/radioterapia , Humanos , Bicamadas Lipídicas/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Sonicação , Distribuição TecidualRESUMO
The aerosol in the Taipei basin is difficult to transport outward under specific weather patterns owing to complex terrain blocking. In this study, seven weather patterns are identified from synoptic weather maps for aerosol events, which occurred from March 2002 to February 2005. Among the identified weather patterns, High Pressure Peripheral Circulation (HPPC), Warm area Ahead of a cold Front (WAF), TYPhoon (TYP), Pacific High Pressure system stretching westerly (PHP), Weak High Pressure system (WHP), and Weak Southern Wind (WSW) are related to terrain blocking. The remaining pattern is High Pressure system Pushing (HPP). The classification of the pollution origin of the air masses shows that 15% of event days were contributed by long-range transport (LRT), 20% by local pollution (LP), and 65% by LRT/LP mix. Terrain blocking causes aerosol accumulation from high atmospheric stability and weak winds occurring under HPPC, TYP, and PHP weather patterns when the Taipei basin is situated on the lee side of the Snow Mountains Chain (SMC). Terrain blocking also occurs when the Taipei basin is situated on the upwind of SMC and Mt. Da-Twen under WAF and WSW patterns. To study the variation of aerosol properties under the mixed influence of terrain and pollution origin, we conducted a field observation simultaneously at the urban, suburban, and background sites in the Greater Taipei area from April 14 to 23, 2004. Terrain blocking plays an important role in aerosol accumulation in the stagnant environment when the Taipei basin is on the lee side of SMC. On the other hand, the PM(2.5) sulfate level is stable with a fraction of 30% in PM(2.5) during the observation period at the urban (25%-33%) and background (25%-41%) sites. It indicates that background PM(2.5) sulfate is high on the West Pacific in winter.
Assuntos
Aerossóis/análise , Movimentos do Ar , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Aerossóis/química , Poluentes Atmosféricos/química , Desastres , Geografia , Tamanho da Partícula , Material Particulado , Estações do Ano , Taiwan , Fatores de Tempo , Tempo (Meteorologia)RESUMO
The two-dimensional extrapolation technique and dead time extrapolation technique of 4pibeta-gamma-coincidence counting were used to standardize the activity of (67)Ga. The counting results of the two absolute counting techniques showed good agreement while the two-dimensional extrapolation technique could save about 50% of the total counting time in this study. The accuracy of the Capintec CRC-15R radionuclide calibrator used by the radiopharmacy of INER was studied in this research. A new calibration setting number, 99, was recommended to the radiopharmacy of INER in the Bayer 10mL sterile empty vial geometry.
Assuntos
Radioisótopos de Gálio/normas , Compostos Radiofarmacêuticos/normas , Padrões de ReferênciaRESUMO
Energy consumption is always a major issue hindering the universal application of membrane-based filtration system. We herein demonstrated a low-energy-consumption microfiltration system that can be operated under ambient pressure while a great metal ion rejection rate (>95%) accompanied by a high permeate flux (100 L/m2h) was concurrently reached. This achievement was closely correlated to the enhanced metal ion adsorption by grafted carboxyl groups at the cellulose filter paper through esterification. Adsorbed metal ions consequently enhanced Donnan exclusion effect and therefore high rejection rate was achieved. Rejection rate of modified membrane was strongly correlated to the formation constant of associated carboxyl group to metal ions. Our results would be important for developing low-energy-consumption filtration systems for water and wastewater treatment application.