Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 138: 112588, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38955031

RESUMO

Dexmedetomidine (Dex) is widely used in the sedation in intensive care units and as an anesthetic adjunct. Considering the anti-inflammatory and antioxidant properties of Dex, we applied in vivo rat model as well as in vitro cardiomyocyte models (embryonic rat cardiomyocytes H9c2 cells and neonatal rat cardiomyocytes, NRCMs) to evaluate the effects of Dex against myocardial ischemia reperfusion (I/R) injury. Transcriptomic sequencing for gene expression in heart tissues from control rats and Dex-treated rats identified that genes related to fatty acid metabolism were significantly regulated by Dex. Among these genes, the elongation of long-chain fatty acids (ELOVL) family member 6 (Elovl6) was most increased upon Dex-treatment. By comparing the effects of Dex on both wild type and Elovl6-knockdown H9c2 cells and NRCMs under oxygen-glucose deprivation/reoxygenation (OGD/R) challenge, we found that Elovl6 knockdown attenuated the protection efficiency of Dex, which was supported by the cytotoxicity endpoints (cell viability and lactate dehydrogenase release) and apoptosis as well as key gene expressions. These results indicate that Dex exhibited the protective function against myocardial I/R injury via fatty acid metabolism pathways and Elovl6 plays a key role in the process, which was further confirmed using palmitate exposure in both cells, as well as in an in vivo rat model. Overall, this study systematically evaluates the protective effects of Dex on the myocardial I/R injury and provides better understanding on the fatty acid metabolism underlying the beneficial effects of Dex.


Assuntos
Apoptose , Dexmedetomidina , Elongases de Ácidos Graxos , Ácidos Graxos , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Animais , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Ratos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ácidos Graxos/metabolismo , Masculino , Linhagem Celular , Apoptose/efeitos dos fármacos , Ratos Sprague-Dawley , Acetiltransferases/metabolismo , Acetiltransferases/genética , Sobrevivência Celular/efeitos dos fármacos
2.
Front Endocrinol (Lausanne) ; 15: 1387272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686205

RESUMO

Objective: Obesity, hypertension and diabetes are high prevalent that are often associated with poor outcomes. They have become major global health concern. Little research has been done on the impact of lymphocyte-to-monocyte ratio (LMR) on outcomes in these patients. Thus, we aimed to explore the association between LMR and all-cause mortality in obese hypertensive patients with diabetes and without diabetes. Methods: The researchers analyzed data from the National Health and Nutrition Examination Survey (2001-2018), which included 4,706 participants. Kaplan-Meier analysis was employed to compare survival rate between different groups. Multivariate Cox proportional hazards regression models with trend tests and restricted cubic splines (RCS) analysis and were used to investigate the relationship between the LMR and all-cause mortality. Subgroup analysis was performed to assess whether there was an interaction between the variables. Results: The study included a total of 4706 participants with obese hypertension (48.78% male), of whom 960 cases (20.40%) died during follow-up (median follow-up of 90 months). Kaplan-Meier curves suggested a remarkable decrease in all-cause mortality with increasing LMR value in patients with diabetes and non-diabetes (P for log-rank test < 0.001). Moreover, multivariable Cox models demonstrated that the risk of mortality was considerably higher in the lowest quartile of the LMR and no linear trend was observed (P > 0.05). Furthermore, the RCS analysis indicated a non-linear decline in the risk of death as LMR values increased (P for nonlinearity < 0.001). Conclusions: Increased LMR is independently related with reduced all-cause mortality in patients with obese hypertension, regardless of whether they have combined diabetes.


Assuntos
Diabetes Mellitus , Hipertensão , Linfócitos , Monócitos , Inquéritos Nutricionais , Obesidade , Humanos , Masculino , Feminino , Hipertensão/complicações , Hipertensão/mortalidade , Hipertensão/epidemiologia , Obesidade/complicações , Obesidade/mortalidade , Obesidade/sangue , Pessoa de Meia-Idade , Diabetes Mellitus/mortalidade , Diabetes Mellitus/epidemiologia , Adulto , Estudos de Coortes , Idoso , Seguimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA