Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Biochem Biophys Res Commun ; 676: 48-57, 2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37481943

RESUMO

Mitochondria undergo structural changes reflective of functional statuses. Ultrastructural characterizing of mitochondria is valuable for understanding mitochondrial dysfunction in various pathological conditions. PINK1, a Parkinson's disease (PD) associated gene, plays key roles in maintaining mitochondrial function and integrity. In Drosophila melanogaster, deficiency of PINK1 results in PD-like pathologies due to mitochondrial abnormalities. Here, we report the existence of a new type of mitochondrial-membrane deformity, mitochondrial spherical compartmentation (MSC), caused by PINK1 deficiency in Drosophila. The MSC is a three-dimensional spheroid-like mitochondrial membrane structure encompassing nonselective contents. Upregulation of dDrp1, downregulation of dMarf, and upregulation of dArgK1-A-all resulting in mitochondrial fragmentation-were able to suppress the formation of MSC. Furthermore, arginine kinase, only when localizing to the vicinity of mitochondria, induced mitochondrial fragmentation and reversed the MSC phenotype. In summary, this study demonstrates that loss of dPINK1 leads to the formation of mitochondrial-membrane deformity MSC, which responds to mitochondrial dynamics. In addition, our data suggest a new perspective of how phosphagen energy-buffer system might regulate mitochondrial dynamics.

2.
Proc Natl Acad Sci U S A ; 114(18): 4679-4684, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28416697

RESUMO

Fibrosis, a disease in which excessive amounts of connective tissue accumulate in response to physical damage and/or inflammatory insult, affects nearly every tissue in the body and can progress to a state of organ malfunction and death. A hallmark of fibrotic disease is the excessive accumulation of extracellular matrix-secreting activated myofibroblasts (MFBs) in place of functional parenchymal cells. As such, the identification of agents that selectively inhibit the transdifferentiation process leading to the formation of MFBs represents an attractive approach for the treatment of diverse fibrosis-related diseases. Herein we report the development of a high throughput image-based screen using primary hepatic stellate cells that identified the antifungal drug itraconazole (ITA) as an inhibitor of MFB cell fate in resident fibroblasts derived from multiple murine and human tissues (i.e., lung, liver, heart, and skin). Chemical optimization of ITA led to a molecule (CBR-096-4) devoid of antifungal and human cytochrome P450 inhibitory activity with excellent pharmacokinetics, safety, and efficacy in rodent models of lung, liver, and skin fibrosis. These findings may serve to provide a strategy for the safe and effective treatment of a broad range of fibrosis-related diseases.


Assuntos
Transdiferenciação Celular/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Itraconazol , Cirrose Hepática , Miofibroblastos/metabolismo , Fibrose Pulmonar , Dermatopatias , Animais , Fibrose , Células Estreladas do Fígado/patologia , Humanos , Itraconazol/análogos & derivados , Itraconazol/farmacologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos , Miofibroblastos/patologia , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Ratos , Dermatopatias/tratamento farmacológico , Dermatopatias/metabolismo , Dermatopatias/patologia
3.
Bioconjug Chem ; 30(1): 83-89, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30543420

RESUMO

Peptide hormone relaxin-2, a member of the insulin family of peptides, plays a key role in hemodynamics and renal function and has shown preclinical efficacy in multiple disease models, including acute heart failure, fibrosis, preeclampsia, and corneal wound healing. Recently, serelaxin, a recombinant version of relaxin-2, has been studied in a large phase 3 clinical trial (RELAX-AHF-2) for acute decompensated heart failure patients with disappointing outcome. The poor in vivo half-life of relaxin-2 may have limited its therapeutic efficacy and long-term cardiovascular benefit. Herein, we have developed a semisynthetic methodology and generated potent, fatty acid-conjugated relaxin analogs with long-acting pharmacokinetic (PK) profile in rodents. The enhanced PK properties translated into improved and long-lasting pharmacodynamic effect in pubic ligament elongation (PLE) studies. The resultant novel relaxin analog, R9-13, represents the first long-acting relaxin-2 analog and could potentially improve the clinical efficacy and outcome for this important peptide hormone. This semisynthetic methodology could also be applied to other cysteine-rich peptides and proteins for half-life extension.


Assuntos
Desenho de Fármacos , Lipídeos/química , Relaxina/química , Relaxina/uso terapêutico , Sequência de Aminoácidos , Animais , Meia-Vida , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/uso terapêutico , Relaxina/farmacocinética
4.
Proc Natl Acad Sci U S A ; 113(41): 11501-11506, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27663736

RESUMO

A variable region fusion strategy was used to generate an immunosuppressive antibody based on a novel "stalk-knob" structural motif in the ultralong complementary-determining region (CDR) of a bovine antibody. The potent Kv1.3 channel inhibitory peptides Moka1-toxin and Vm24-toxin were grafted into different CDRs of the humanized antibodies BVK and Synagis (Syn) using both ß-sheet and coiled-coil linkers. Structure-activity relationship efforts led to generation of the fusion protein Syn-Vm24-CDR3L, which demonstrated excellent selectivity and potency against effector human memory T cells (subnanomolar to picomolar EC50 values). This fusion antibody also had significantly improved plasma half-life and serum stability in rodents compared with the parent Vm24 peptide. Finally, this fusion protein showed potent in vivo efficacy in the delayed type hypersensitivity in rats. These results illustrate the utility of antibody CDR fusions as a general and effective strategy to generate long-acting functional antibodies, and may lead to a selective immunosuppressive antibody for the treatment of autoimmune diseases.


Assuntos
Anticorpos Bloqueadores/farmacologia , Desenho de Fármacos , Imunossupressores/farmacologia , Canal de Potássio Kv1.3/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Células CHO , Bovinos , Regiões Determinantes de Complementaridade/química , Cricetinae , Cricetulus , Células HEK293 , Humanos , Ativação Linfocitária/efeitos dos fármacos , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia
5.
Proc Natl Acad Sci U S A ; 112(5): 1356-61, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605877

RESUMO

On the basis of the 3D structure of a bovine antibody with a well-folded, ultralong complementarity-determining region (CDR), we have developed a versatile approach for generating human or humanized antibody agonists with excellent pharmacological properties. Using human growth hormone (hGH) and human leptin (hLeptin) as model proteins, we have demonstrated that functional human antibody CDR fusions can be efficiently engineered by grafting the native hormones into different CDRs of the humanized antibody Herceptin. The resulting Herceptin CDR fusion proteins were expressed in good yields in mammalian cells and retain comparable in vitro biological activity to the native hormones. Pharmacological studies in rodents indicated a 20- to 100-fold increase in plasma circulating half-life for these antibody agonists and significantly extended in vivo activities in the GH-deficient rat model and leptin-deficient obese mouse model for the hGH and hLeptin antibody fusions, respectively. These results illustrate the utility of antibody CDR fusions as a general and versatile strategy for generating long-acting protein therapeutics.


Assuntos
Regiões Determinantes de Complementaridade/imunologia , Hormônio do Crescimento/agonistas , Leptina/agonistas , Proteínas Recombinantes de Fusão/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/imunologia , Linhagem Celular , Hormônio do Crescimento/imunologia , Humanos , Leptina/imunologia , Camundongos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Proteínas Recombinantes de Fusão/farmacologia , Trastuzumab
6.
Sensors (Basel) ; 18(11)2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30384465

RESUMO

Diabetes is one of the most rapidly-growing chronic diseases in the world. Acetone, a volatile organic compound in exhaled breath, shows a positive correlation with blood glucose and has proven to be a biomarker for type-1 diabetes. Measuring the level of acetone in exhaled breath can provide a non-invasive, low risk of infection, low cost, and convenient way to monitor the health condition of diabetics. There has been continuous demand for the improvement of this non-invasive, sensitive sensor system to provide a fast and real-time electronic readout of blood glucose levels. A novel nanostructured K2W7O22 has been recently used to test acetone with concentration from 0 parts-per-million (ppm) to 50 ppm at room temperature. The results revealed that a K2W7O22 sensor shows a sensitive response to acetone, but the detection limit is not ideal due to the limitations of the detection system of the device. In this paper, we report a K2W7O22 sensor with an improved sensitivity and detection limit by using an optimized circuit to minimize the electronic noise and increase the signal to noise ratio for the purpose of weak signal detection while the concentration of acetone is very low.


Assuntos
Técnicas Biossensoriais/métodos , Diabetes Mellitus/diagnóstico , Nanoestruturas/química , Temperatura , Acetona/análise , Impedância Elétrica , Eletricidade Estática
7.
Hum Mol Genet ; 24(21): 6054-65, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26251042

RESUMO

Mutations in connexin-31 (Cx31) are associated with multiple human diseases, including familial erythrokeratodermia variabilis (EKV). The pathogenic mechanism of EKV-associated Cx31 mutants remains largely elusive. Here, we show that EKV-pathogenic Cx31 mutants are un/misfolded and temperature sensitive. In Drosophila, expression of pathogenic Cx31, but not wild-type Cx31, causes depigmentation and degeneration of ommatidia that are rescued by expression of either dBip or dHsp70. Ectopic expression of Cx31 in mouse skin results in skin abnormalities resembling human EKV. The affected tissues show remarkable disrupted gap junction formation and significant upregulation of chaperones Bip and Hsp70 as well as AP-1 proteins c-Fos and JunB, in addition to molecular signatures of skin diseases. Consistently, c-Fos, JunB, Bip and Hsp70 are strikingly higher in keratinocytes of EKV patients than their matched control individuals. Furthermore, a druggable AP-1 inhibitory small molecule suppresses skin phenotype and pathological abnormalities of transgenic Cx31 mice. The study suggests that Cx31 mutant proteins are un/misfolded to cause EKV likely via an AP-1-mediated mechanism and identifies a small molecule with therapeutic potential of the disease.


Assuntos
Conexinas/metabolismo , Eritroceratodermia Variável/metabolismo , Dobramento de Proteína , Animais , Animais Geneticamente Modificados , Benzofenonas/farmacologia , Olho Composto de Artrópodes/patologia , Conexinas/antagonistas & inibidores , Conexinas/genética , Drosophila , Proteínas de Drosophila/genética , Eritroceratodermia Variável/tratamento farmacológico , Eritroceratodermia Variável/genética , Eritroceratodermia Variável/patologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Células HeLa , Humanos , Isoxazóis/farmacologia , Camundongos , Mutação , Pigmentação/genética , Desdobramento de Proteína , Deficiências na Proteostase/genética , Deficiências na Proteostase/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Recombinantes de Fusão , Pele/patologia , Estresse Fisiológico , Temperatura , Fator de Transcrição TFIID/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
8.
FASEB J ; 30(7): 2570-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27025962

RESUMO

Liver X receptor (LXR), a nuclear hormone receptor, is an essential regulator of immune responses. Activation of LXR-mediated transcription by synthetic agonists, such as T0901317 and GW3965, attenuates progression of inflammatory disease in animal models. However, the adverse effects of these conventional LXR agonists in elevating liver lipids have impeded exploitation of this intriguing mechanism for chronic therapy. Here, we explore the ability of a series of sterol-based LXR agonists to alleviate inflammatory conditions in mice without hepatotoxicity. We show that oral treatment with sterol-based LXR agonists in mice significantly reduces dextran sulfate sodium colitis-induced body weight loss, which is accompanied by reduced expression of inflammatory markers in the large intestine. The anti-inflammatory property of these agonists is recapitulated in vitro in mouse lamina propria mononuclear cells, human colonic epithelial cells, and human peripheral blood mononuclear cells. In addition, treatment with LXR agonists dramatically suppresses inflammatory cytokine expression in a model of traumatic brain injury. Importantly, in both disease models, the sterol-based agonists do not affect the liver, and the conventional agonist T0901317 results in significant liver lipid accumulation and injury. Overall, these results provide evidence for the development of sterol-based LXR agonists as novel therapeutics for chronic inflammatory diseases.-Yu, S., Li, S., Henke, A., Muse, E. D., Cheng, B., Welzel, G., Chatterjee, A. K., Wang, D., Roland, J., Glass, C. K., Tremblay, M. Dissociated sterol-based liver X receptor agonists as therapeutics for chronic inflammatory diseases.


Assuntos
Colite/induzido quimicamente , Colite/tratamento farmacológico , Receptores X do Fígado/agonistas , Esteróis/farmacologia , Administração Oral , Animais , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas , Colo/citologia , Sulfato de Dextrana/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Hidrocarbonetos Fluorados/efeitos adversos , Hidrocarbonetos Fluorados/farmacologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Esteróis/química , Sulfonamidas/efeitos adversos , Sulfonamidas/farmacologia
9.
Mol Ther ; 24(12): 2078-2089, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27731313

RESUMO

Phosphodiesterase 4 (PDE4) inhibitors are approved for the treatment of some moderate to severe inflammatory conditions. However, dose-limiting side effects in the central nervous system and gastrointestinal tract, including nausea, emesis, headache, and diarrhea, have impeded the broader therapeutic application of PDE4 inhibitors. We sought to exploit the wealth of validation surrounding PDE4 inhibition by improving the therapeutic index through generation of an antibody-drug conjugate (ADC) that selectively targets immune cells through the CD11a antigen. The resulting ADC consisted of a human αCD11a antibody (based on efalizumab clone hu1124) conjugated to an analog of the highly potent PDE4 inhibitor GSK256066. Both the human αCD11a ADC and a mouse surrogate αCD11a ADC (based on the M17 clone) rapidly internalized into immune cells and suppressed lipololysaccharide (LPS)-induced TNFα secretion in primary human monocytes and mouse peritoneal cells, respectively. In a carrageenan-induced air pouch inflammation mouse model, treatment with the ADC significantly reduced inflammatory cytokine production in the air pouch exudate. Overall, these results provide compelling evidence for the feasibility of delivering drugs with anti-inflammatory activity selectively to the immune compartment via CD11a and the development of tissue-targeted PDE4 inhibitors as a promising therapeutic modality for treating inflammatory diseases.


Assuntos
Aminoquinolinas/metabolismo , Antígenos CD11/metabolismo , Imunoconjugados/administração & dosagem , Inflamação/imunologia , Inibidores da Fosfodiesterase 4/metabolismo , Sulfonas/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoconjugados/farmacologia , Lipopolissacarídeos/efeitos adversos , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Peritônio/efeitos dos fármacos , Peritônio/imunologia , Fator de Necrose Tumoral alfa/metabolismo
10.
Angew Chem Int Ed Engl ; 55(40): 12475-8, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27595986

RESUMO

Glucagon-like peptide-1 (GLP-1) receptor (GLP-1R), glucagon (GCG) receptor (GCGR), and glucose-dependent insulinotropic polypeptide (GIP, also known as gastric inhibitory polypeptide) receptor (GIPR), are three metabolically related peptide hormone receptors. A novel approach to the generation of multifunctional antibody agonists that activate these receptors has been developed. Native or engineered peptide agonists for GLP-1R, GCGR, and GIPR were fused to the N-terminus of the heavy chain or light chain of an antibody, either alone or in pairwise combinations. The fusion proteins have similar in vitro biological activities on the cognate receptors as the corresponding peptides, but circa 100-fold longer plasma half-lives. The GLP-1R mono agonist and GLP-1R/GCGR dual agonist antibodies both exhibit potent effects on glucose control and body weight reduction in mice, with the dual agonist antibody showing enhanced activity in the latter.


Assuntos
Anticorpos/imunologia , Peptídeo 1 Semelhante ao Glucagon/agonistas , Glucagon/agonistas , Receptores dos Hormônios Gastrointestinais/agonistas , Animais , Anticorpos/genética , Anticorpos/metabolismo , Peso Corporal/efeitos dos fármacos , Feminino , Glucagon/imunologia , Peptídeo 1 Semelhante ao Glucagon/imunologia , Células HEK293 , Meia-Vida , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/metabolismo , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/imunologia , Cadeias Leves de Imunoglobulina/metabolismo , Camundongos , Camundongos Obesos , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Engenharia de Proteínas , Ratos , Ratos Sprague-Dawley , Receptores dos Hormônios Gastrointestinais/imunologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/farmacologia
11.
J Am Chem Soc ; 137(8): 2832-5, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25692571

RESUMO

Chimeric antigen receptor (CAR)-engineered T cells (CAR-Ts) provide a potent antitumor response and have become a promising treatment option for cancer. However, despite their efficacy, CAR-T cells are associated with significant safety challenges related to the inability to control their activation and expansion and terminate their response. Herein, we demonstrate that a bifunctional small molecule "switch" consisting of folate conjugated to fluorescein isothiocyanate (folate-FITC) can redirect and regulate FITC-specific CAR-T cell activity toward folate receptor (FR)-overexpressing tumor cells. This system was shown to be highly cytotoxic to FR-positive cells with no activity against FR-negative cells, demonstrating the specificity of redirection by folate-FITC. Anti-FITC-CAR-T cell activation and proliferation was strictly dependent on the presence of both folate-FITC and FR-positive cells and was dose titratable with folate-FITC switch. This novel treatment paradigm may ultimately lead to increased safety for CAR-T cell immunotherapy.


Assuntos
Engenharia Celular , Ácido Fólico/química , Ácido Fólico/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/citologia , Fluoresceína-5-Isotiocianato/química , Transportadores de Ácido Fólico/metabolismo , Células HEK293 , Humanos , Células KB , Linfócitos T/metabolismo
12.
Angew Chem Int Ed Engl ; 54(48): 14531-4, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26434555

RESUMO

Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infections in children. We have generated an epitope-specific RSV vaccine by grafting a neutralizing epitope (F-epitope) in its native conformation into an immunoglobulin scaffold. The resulting antibody fusion exhibited strong binding affinity to Motavizumab, an RSV neutralizing antibody, and effectively induced potent neutralizing antibodies in mice. This work illustrates the potential of the immunoglobulin molecule as a scaffold to present conformationally constrained B-cell epitopes.


Assuntos
Anticorpos Antivirais/imunologia , Epitopos/imunologia , Vírus Sinciciais Respiratórios/imunologia , Vacinas Virais/imunologia
13.
Angew Chem Int Ed Engl ; 54(7): 2126-30, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25556336

RESUMO

Bovine antibody BLV1H12 possesses a unique "stalk-knob" architecture in its ultralong heavy chain CDR3, allowing substitutions of the "knob" domain with protein agonists to generate functional antibody chimeras. We have generated a humanized glucagon-like peptide-1 (GLP-1) receptor agonist antibody by first introducing a coiled-coil "stalk" into CDR3H of the antibody herceptin. Exendin-4 (Ex-4), a GLP-1 receptor agonist, was then fused to the engineered stalk with flexible linkers, and a Factor Xa cleavage site was inserted immediately in front of Ex-4 to allow release of the N-terminus of the fused peptide. The resulting clipped herceptin-Ex-4 fusion protein is more potent in vitro in activating GLP-1 receptors than the Ex-4 peptide. The clipped herceptin-Ex-4 has an extended plasma half-life of approximately four days and sustained control of blood glucose levels for more than a week in mice. This work provides a novel approach to the development of human or humanized agonist antibodies as therapeutics.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Peptídeos/imunologia , Receptores de Glucagon/agonistas , Receptores de Glucagon/imunologia , Proteínas Recombinantes de Fusão/imunologia , Peçonhas/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/farmacologia , Bovinos , Exenatida , Receptor do Peptídeo Semelhante ao Glucagon 1 , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Peptídeos/farmacologia , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Trastuzumab , Peçonhas/química , Peçonhas/genética , Peçonhas/farmacologia
14.
Hum Mol Genet ; 21(11): 2514-23, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22388932

RESUMO

Neddylation is a posttranslational modification that plays important roles in regulating protein structure and function by covalently conjugating NEDD8, an ubiquitin-like small molecule, to the substrate. Here, we report that Parkinson's disease (PD)-related parkin and PINK1 are NEDD8 conjugated. Neddylation of parkin and PINK1 results in increased E3 ligase activity of parkin and selective stabilization of the 55 kDa PINK1 fragment. Expression of dAPP-BP1, a NEDD8 activation enzyme subunit, in Drosophila suppresses abnormalities induced by dPINK1 RNAi. PD neurotoxin MPP(+) inhibits neddylation of both parkin and PINK1. NEDD8 immunoreactivity is associated with Lewy bodies in midbrain dopaminergic neurons of PD patients. Together, these results suggest that parkin and PINK1 are regulated by neddylation and that impaired NEDD8 modification of these proteins likely contributes to PD pathogenesis.


Assuntos
Proteínas de Drosophila/genética , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética , Animais , Células Cultivadas , Neurônios Dopaminérgicos/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Humanos , Imuno-Histoquímica , Corpos de Lewy/metabolismo , Mesencéfalo/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Transfecção , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
15.
Angew Chem Int Ed Engl ; 53(1): 132-5, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24254636

RESUMO

The X-ray crystal structure of a bovine antibody (BLV1H12) revealed a unique structure in its ultralong heavy chain complementarity determining region 3 (CDR3H) that folds into a solvent-exposed ß-strand "stalk" fused to a disulfide crosslinked "knob" domain. We have substituted an antiparallel heterodimeric coiled-coil motif for the ß-strand stalk in this antibody. The resulting antibody (Ab-coil) expresses in mammalian cells and has a stability similar to that of the parent bovine antibody. MS analysis of H-D exchange supports the coiled-coil structure of the substituted peptides. Substitution of the knob-domain of Ab-coil with bovine granulocyte colony-stimulating factor (bGCSF) results in a stably expressed chimeric antibody, which proliferates mouse NFS-60 cells with a potency comparable to that of bGCSF. This work demonstrates the utility of this novel coiled-coil CDR3 motif as a means for generating stable, potent antibody fusion proteins with useful pharmacological properties.


Assuntos
Peptídeos/química , Animais , Bovinos , Proliferação de Células , Dicroísmo Circular , Camundongos , Modelos Moleculares , Engenharia de Proteínas , Estrutura Secundária de Proteína
16.
Anal Chim Acta ; 1295: 342322, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38355223

RESUMO

BACKGROUND: The advancement of highly sensitive electrochemiluminescence (ECL) biosensors has garnered escalating interest over time. Owing to the distinctive physicochemical attributes, the signal amplification strategy facilitated by functional nanomaterials has achieved notable milestones. Single-atom catalysts (SACs), featuring atomically dispersed metal active sites, have garnered significant attention. SACs offer unprecedented control over active sites and surface structures at the atomic level. However, to fully harness their potential, ongoing efforts focus on strategies to enhance the catalytic performance of SACs, profoundly influencing both the sensitivity and selectivity of SACs-based sensing platforms. RESULTS: In this study, we focused on the synthesis and application of Fe-Co-PNC dual-atom catalysts (DACs) with the incorporation of phosphorus, aiming to enhance catalytic efficiency, particularly in the context of the oxygen reduction reaction (ORR) correlated cathodic luminol ECL. The synergistic effects arising from the combination of Fe and Co in DACs were explored by ECL emission. Comparative studies with Fe-PNC SACs highlighted the superior catalytic performance of Fe-Co-PNC DACs. The ECL sensing platform exhibited excellent sensitivity, which provided a fast detection of Trolox with a wide linear range (0.1 µM-1.0 mM) and a low detection limit (LOD) of 0.03 µM. The platform demonstrated remarkable reproducibility and long-term stability, showcasing its potential for practical biosensing applications. SIGNIFICANCE: This study introduced the novel concept of Fe-Co-PNC DACs. The demonstrated synergistic effects and enhanced catalytic efficiency of DACs offer new avenues for the rational design of advanced catalysts. The successful application in the sensitive detection of Trolox emphasizes their potential significance in biosensing. It not only expands our understanding of SACs but also opens doors for the development of efficient and stable catalysts with broader applications.

17.
J Am Chem Soc ; 135(37): 13885-91, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-23924037

RESUMO

We describe here the development of site-specific antibody-polymer conjugates (APCs) for the selective delivery of small interference RNAs (siRNAs) to target cells. APCs were synthesized in good yields by conjugating an aminooxy-derivatized cationic block copolymer to an anti-HER2 Fab or full-length IgG by means of genetically encoded p-acetyl phenylalanine (pAcF). The APCs all showed binding affinity comparable to that of HER2 as their native counterparts and no significant cellular cytotoxicity. Mutant S202-pAcF Fab and Q389-pAcF IgG polymer conjugates specifically delivered siRNAs to HER2(+) cells and mediated potent gene silencing at both the mRNA and protein levels. However, a mutant A121-pAcF IgG polymer conjugate, despite its high binding affinity to HER2 antigen, did not induce a significant RNA interference response in HER2(+) cells, presumably due to steric interference with antigen binding and internalization. These results highlight the importance of conjugation site on the activity of antibody-polymer-based therapeutics and suggest that such chemically defined APCs may afford a useful targeted delivery platform for siRNAs or other nucleic acid-based therapies.


Assuntos
Anticorpos/farmacologia , Sistemas de Liberação de Medicamentos , Imunoconjugados/farmacologia , Polímeros/farmacologia , RNA Interferente Pequeno/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Microscopia Confocal , Receptor ErbB-2/química , Trastuzumab
18.
Phys Chem Chem Phys ; 15(14): 5017-21, 2013 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-23443512

RESUMO

Environmental humidity is an important factor that can influence the sensing performance of a metal oxide. TiO2-(B) in the form of nanowires has been demonstrated to be a promising material for the detection of explosive gases such as 2,4,6-trinitrotoluene (TNT). However, the elimination of cross-sensitivity of the explosive detectors based on TiO2-(B) toward environmental humidity is still a major challenge. It was found that the cross-sensitivity could be effectively modulated when the thin film of TiO2-(B) nanowires was exposed to ultraviolet (UV) light during the detection of explosives under operating conditions. Such a modulation of sensing responses of TiO2-(B) nanowires to explosives by UV light was attributed to a photocatalytic effect, with which the water adsorbed on the TiO2-(B) nanowire surface was split and therefore the sensor response performance was less affected. It was revealed that the cross-sensitivity could be suppressed up to 51% when exposed to UV light of 365 nm wavelength with an intensity of 40 mW cm(-2). This finding proves that the reduction of cross-sensitivity to humidity through UV irradiation is an effective approach that can improve the performance of a sensor based on TiO2-(B) nanowires for the detection of explosive gas.


Assuntos
Boro/química , Nanofios/química , Titânio/química , Trinitrotolueno/análise , Raios Ultravioleta , Umidade , Oxirredução
19.
Risk Manag Healthc Policy ; 16: 2151-2162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868022

RESUMO

Introduction: To reduce unhealthy lifestyles in China, it is critical to implement effective strategies. Counseling provided by physicians is important for assisting patients in improving their lifestyles, and general practitioners (GPs) are the main providers of lifestyle counseling to patients. However, few studies have focused on the lifestyle counseling practices by GPs in China, particularly in regard to nutrition and physical activity. Objective: The aims of this study are: (i) to examine the current practice of Chinese GPs in counseling patients regarding nutrition and physical activity; (ii) to understand the common barriers to such counseling by Chinese GPs; and (iii) to study the association between GPs' personal lifestyle choices and their practices in lifestyle counseling. Methods: A cross-sectional, self-reported online questionnaire was conducted among GPs in Hunan province, China. A total of 198 GPs completed the questionnaire. Results: The majority of GPs provide nutrition and physical activity counseling to less than 40% of their patients, spending less than three minutes per counseling session. The main reported barriers to counseling on nutrition and physical activity are inadequate time and a lack of knowledge or experience. GPs primarily acquire knowledge through medical books and journals, followed by science popularization. Furthermore, GPs who maintain healthier lifestyle habits, possess a better understanding of lifestyle guidelines, conduct longer office visits, and exhibit higher self-efficacy are more likely to provide counseling to patients. Conclusion: This study highlights the need for improvement in nutrition and physical activity counseling among Chinese GPs. GPs' personal nutrition and physical activity habits may measurably influence their counseling practice. We recommend that GPs themselves adopt healthier lifestyle habits to potentially improve their counseling practice. Moreover, proactive measures should be taken to assist GPs in overcoming barriers encountered with lifestyle counseling.

20.
Front Mol Neurosci ; 16: 1329554, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38273938

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease with currently no cure. Most PD cases are sporadic, and about 5-10% of PD cases present a monogenic inheritance pattern. Mutations in more than 20 genes are associated with genetic forms of PD. Mitochondrial dysfunction is considered a prominent player in PD pathogenesis. Post-translational modifications (PTMs) allow rapid switching of protein functions and therefore impact various cellular functions including those related to mitochondria. Among the PD-associated genes, Parkin, PINK1, and LRRK2 encode enzymes that directly involved in catalyzing PTM modifications of target proteins, while others like α-synuclein, FBXO7, HTRA2, VPS35, CHCHD2, and DJ-1, undergo substantial PTM modification, subsequently altering mitochondrial functions. Here, we summarize recent findings on major PTMs associated with PD-related proteins, as enzymes or substrates, that are shown to regulate important mitochondrial functions and discuss their involvement in PD pathogenesis. We will further highlight the significance of PTM-regulated mitochondrial functions in understanding PD etiology. Furthermore, we emphasize the potential for developing important biomarkers for PD through extensive research into PTMs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA