RESUMO
Post-traumatic trigeminal neuropathy (PTTN) is a type of chronic pain caused by damage to the trigeminal nerve. A previous study reported that pretreatment with anti-high mobility group box-1 (HMGB1) neutralizing antibodies (nAb) prevented the onset of PTTN following distal infraorbital nerve chronic constriction injury (dIoN-CCI) in male mice. Clinical evidence indicates a high incidence of PTTN in females. Although our previous study found that perineural HMGB1 is crucial in initiation of PTTN in male mice, it is currently unknown whether HMGB1 is also involved in the pathogenesis of PTTN in female mice. Therefore, in the current study, we examined the effect of anti-HMGB1 nAb on pain-like behavior in female mice following dIoN-CCI surgery. We found that dIoN-CCI surgery enhanced reactivity to mechanical and cold stimuli in female mice, which was suppressed by treatment with anti-HMGB1 nAb. Moreover, the increase in macrophages after dIoN-CCI was significantly attenuated by pretreatment with anti-HMGB1 nAb. Furthermore, anti-HMGB1 nAb treatment inhibited microglial activation in the trigeminal spinal tract nucleus. These data suggest that HMGB1 also plays a crucial role in the onset of PTTN after nerve injury in female mice. Thus, anti-HMGB1 nAb could be a novel therapeutic agent for inhibiting the onset of PTTN in female and male mice.
Assuntos
Dor Crônica , Proteína HMGB1 , Doenças do Nervo Trigêmeo , Feminino , Masculino , Animais , Camundongos , Cognição , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêuticoRESUMO
Epidural and subdural hematomas are commonly associated with traumatic brain injury. While surgical removal is the primary intervention for these hematomas, it is also critical to prevent and reduce complications such as post-traumatic epilepsy, which may result from inflammatory responses in the injured brain areas. In the present study, we observed that high mobility group box-1 (HMGB1) decreased in the injured brain area beneath the epidural hematoma (EDH) in rats, concurrent with elevated plasma levels of HMGB1. Anti-HMGB1 monoclonal antibody therapy strongly inhibited both HMGB1 release and the subsequent increase in plasma levels. Moreover, this treatment suppressed the up-regulation of inflammatory cytokines and related molecules such as interleukin-1-beta (IL-1ß), tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide synthase (iNOS) in the injured areas. Our in vitro experiments using SH-SY5Y demonstrated that hematoma components-thrombin, heme, and ferrous ion- prompted HMGB1 translocation from the nuclei to the cytoplasm, a process inhibited by the addition of the anti-HMGB1 mAb. These findings suggest that anti-HMGB1 mAb treatment not only inhibits HMGB1 translocation but also curtails inflammation in injured areas, thereby protecting the neural tissue. Thus, anti-HMGB1 mAb therapy could serve as a complementary therapy for an EDH before/after surgery.
Assuntos
Anticorpos Monoclonais , Proteína HMGB1 , Hematoma Epidural Craniano , Proteína HMGB1/metabolismo , Animais , Ratos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Hematoma Epidural Craniano/tratamento farmacológico , Masculino , Humanos , Ratos Sprague-Dawley , Interleucina-1beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Citocinas/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Linhagem Celular TumoralRESUMO
Histidine-rich glycoprotein (HRG) is a multifunctional plasma protein and maintains the homeostasis of blood cells and vascular endothelial cells. In the current study, we demonstrate that HRG and recombinant HRG concentration dependently induced the phagocytic activity of isolated human neutrophils against fluorescence-labeled Escherichia coli and Staphylococcus aureus through the stimulation of CLEC1A receptors, maintaining their spherical round shape. The phagocytosis-inducing effects of HRG were inhibited by a specific anti-HRG Ab and enhanced by opsonization of bacteria with diluted serum. HRG and C5a prolonged the survival time of isolated human neutrophils, in association with a reduction in the spontaneous production of extracellular ROS. In contrast, HRG maintained the responsiveness of neutrophils to TNF-α, zymosan, and E. coli with regard to reactive oxygen species production. The blocking Ab for CLEC1A and recombinant CLEC1A-Fc fusion protein significantly inhibited the HRG-induced neutrophil rounding, phagocytic activity, and prolongation of survival time, suggesting the involvement of the CLEC1A receptor in the action of HRG on human neutrophils. These results as a whole indicated that HRG facilitated the clearance of E. coli and S. aureus by maintaining the neutrophil morphology and phagocytosis, contributing to the antiseptic effects of HRG in vivo.
Assuntos
Escherichia coli/imunologia , Lectinas Tipo C/imunologia , Neutrófilos/imunologia , Fagocitose , Proteínas/imunologia , Staphylococcus aureus/imunologia , HumanosRESUMO
We examined the role of ATP and high mobility group box 1 (HMGB1) in paclitaxel-induced peripheral neuropathy (PIPN). PIPN in mice was prevented by HMGB1 neutralization, macrophage depletion, and P2X7 or P2X4 blockade. Paclitaxel and ATP synergistically released HMGB1 from macrophage-like RAW264.7 cells, but not neuron-like NG108-15 cells. The paclitaxel-induced HMGB1 release from RAW264.7 cells was accelerated by co-culture with NG108-15 cells in a manner dependent on P2X7 or P2X4. Paclitaxel released ATP from NG108-15 cells, but not RAW264.7 cells. Thus, PIPN is considered to involve acceleration of HMGB1 release from macrophages through P2X7 and P2X4 activation by neuron-derived ATP.
Assuntos
Trifosfato de Adenosina/fisiologia , Proteína HMGB1/metabolismo , Macrófagos/metabolismo , Neurônios/metabolismo , Paclitaxel/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos , Doenças do Sistema Nervoso Periférico/imunologia , Doenças do Sistema Nervoso Periférico/prevenção & controle , Células RAW 264.7 , Receptor Cross-Talk/imunologia , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X7/metabolismoRESUMO
Oxaliplatin often induces peripheral neuropathy, a dose-limiting adverse reaction, and in rare cases leads to sinusoidal obstruction syndrome. We thus conducted a retrospective cohort study to examine the relationship between oxaliplatin-induced peripheral neuropathy (OIPN) and hepatic impairment, and then perform a fundamental study to analyze the underlying mechanisms. Analysis of medical records in cancer patients treated with oxaliplatin indicated that laboratory test parameters of hepatic impairment including AST, ALT and APRI (AST to platelet ratio index) moderately increased during oxaliplatin treatment, which was positively correlated with the severity of OIPN (grades 1-4), and associated with later incidence of survivors with OIPN grades ≥2. In mice, hepatic injury induced by CCl4 or ethanol accelerated OIPN in mice, an effect prevented by inactivation of high mobility group box 1 (HMGB1), known to participate in OIPN, by the neutralizing antibody or thrombomodulin alfa capable of promoting its thrombin-dependent degradation. Oxaliplatin also aggravated the hepatic injury in mice. CCl4 released HMGB1 from cultured hepatic parenchymal cells, and oxaliplatin at clinically achievable concentrations released HMGB1 from hepatic parenchymal and non-parenchymal cells. Our clinical and preclinical data suggest that the development of mild hepatic impairment during oxaliplatin treatment is associated with later aggravation of OIPN.
Assuntos
Antineoplásicos/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Oxaliplatina/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Células Cultivadas , Progressão da Doença , Feminino , Proteína HMGB1/metabolismo , Humanos , Masculino , Camundongos Endogâmicos , Pessoa de Meia-Idade , Doenças do Sistema Nervoso Periférico/genética , Estudos Retrospectivos , Índice de Gravidade de DoençaRESUMO
Persistent pain following orofacial surgery is not uncommon. High mobility group box 1 (HMGB1), an alarmin, is released by peripheral immune cells following nerve injury and could be related to pain associated with trigeminal nerve injury. Distal infraorbital nerve chronic constriction injury (dIoN-CCI) evokes pain-related behaviors including increased facial grooming and hyper-responsiveness to acetone (cutaneous cooling) after dIoN-CCI surgery in mice. In addition, dIoN-CCI mice developed conditioned place preference to mirogabalin, suggesting increased neuropathic pain-related aversion. Treatment of the infraorbital nerve with neutralizing antibody HMGB1 (anti-HMGB1 nAb) before dIoN-CCI prevented both facial grooming and hyper-responsiveness to cooling. Pretreatment with anti-HMGB1 nAb also blocked immune cell activation associated with trigeminal nerve injury including the accumulation of macrophage around the injured IoN and increased microglia activation in the ipsilateral spinal trigeminal nucleus caudalis. The current findings demonstrated that blocking of HMGB1 prior to nerve injury prevents the onset of pain-related behaviors, possibly through blocking the activation of immune cells associated with the nerve injury, both within the CNS and on peripheral nerves. The current findings further suggest that blocking HMGB1 before tissue injury could be a novel strategy to prevent the induction of chronic pain following orofacial surgeries.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Face/inervação , Proteína HMGB1/imunologia , Doenças do Nervo Trigêmeo/tratamento farmacológico , Doenças do Nervo Trigêmeo/prevenção & controle , Animais , Anticorpos Monoclonais/farmacologia , Comportamento Animal/efeitos dos fármacos , Compostos Bicíclicos com Pontes/farmacologia , Compostos Bicíclicos com Pontes/uso terapêutico , Doença Crônica , Dor Crônica/complicações , Dor Crônica/tratamento farmacológico , Condicionamento Clássico , Constrição , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismoRESUMO
Histidine-rich glycoprotein (HRG) treatment ameliorated the survival rate of septic mice by suppressing excess immunothrombus formation. Although such findings suggested that HRG may be one of the most useful drugs for sepsis, obtaining a stable experimental system to standardize the HRG drug product is difficult to achieve using neutrophils isolated from volunteers. This is due to the short survival time and individual differences of human neutrophils. In the present study, we determined whether the differentiated neutrophil-like cell lines exhibited similar responses to HRG compared with human purified neutrophils. All-trans retinoic acid (ATRA) was employed to induce the differentiation of the human myeloid leukemia cell lines HL-60 and NB-4. Thereafter, the cells were treated with Hank's balanced salt solution, human serum albumin, or HRG. The effects of HRG on these cells were evaluated according to cell shape, microcapillary passage, reactive oxygen species (ROS) production, neutrophil extracellular traps (NETs) formation, the expression of activated CD11b, and cell viability. HRG maintained the round shape of differentiated neutrophil-like cells, decreased the time required by cells to pass through the microcapillaries, and inhibited ROS production, NETs formation, and the expression of activated CD11b on the cell surface. Moreover, the cells could survive longer in the presence of HRG than the control. The ATRA-induced differentiated cell lines could be used as alternatives to neutrophils to investigate the effects of HRG on neutrophils. This method can thus be used as an essential standardization test in pharmaceutical development. SIGNIFICANCE STATEMENT: Human neutrophils exhibit varying responses to histidine-rich glycoprotein (HRG); however, all-trans retinoic acid-induced differentiated neutrophil-like cell lines can be used as reliably proxies to investigate the effects of HRG on neutrophils. Additionally, these cell lines can be employed in the development of therapies for the treatment of sepsis.
Assuntos
Diferenciação Celular/efeitos dos fármacos , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Proteínas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Células HL-60 , HumanosRESUMO
Advanced glycation end-products (AGEs) are produced by non-enzymatic glycation between protein and reducing sugar such as glucose. Although glyceraldehyde-derived AGEs (Glycer-AGEs), one of the AGEs subspecies, have been reported to be involved in the pathogenesis of various age-relating diseases such as diabetes mellitus or arteriosclerosis, little is known about the pathological and physiological mechanism of AGEs in vivo. In present study, we produced 4 kinds of polyclonal antibodies against AGEs subspecies and investigated the localization of AGEs-modified proteins in rat peripheral tissues, making use of these antibodies. We found that Glycer-AGEs and methylglyoxal-derived AGEs (MGO-AGEs) were present in pancreatic islets of healthy rats, distinguished clearly into the pancreatic α and ß cells, respectively. Although streptozotocin-induced diabetic rats suffered from remarkable impairment of pancreatic islets, the localization and deposit levels of the Glycer- and MGO-AGEs were not altered in the remaining α and ß cells. Remarkably, the MGO-AGEs in pancreatic ß cells were localized into the insulin-secretory granules. These results suggest that the cell-specific localization of AGEs-modified proteins are presence generally in healthy peripheral tissues, involved in physiological intracellular roles, such as a post-translational modulator contributing to the secretory and/or maturational functions of insulin.
Assuntos
Células Secretoras de Glucagon/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Diabetes Mellitus Experimental/metabolismo , Masculino , Coelhos , Ratos Wistar , EstreptozocinaRESUMO
Acute respiratory distress syndrome (ARDS) is a severe respiratory failure caused by acute lung inflammation. Recently, the receptor for advanced glycation end-products (RAGE) has attracted attention in the lung inflammatory response. However, the function of soluble form of RAGE (sRAGE), which is composed of an extracellular domain of RAGE, in ARDS remains elusive. Therefore, we investigated the dynamics of pulmonary sRAGE and the effects of exogenous recombinant human sRAGE (rsRAGE) under intratracheal lipopolysaccharide (LPS)-induced lung inflammation. Our result revealed that RAGE was highly expressed on the alveolar type I epithelial cells in the healthy rat lung including sRAGE isoform sized 45 kDa. Under LPS-induced injured lung, the release of sRAGE into the alveolar space was increased, whereas the expression of RAGE was decreased with alveolar disruption. Treatment of the injured lung with rsRAGE significantly suppressed the lung edema, the neutrophils infiltration, the release of high mobility group box-1 (HMGB1), and the expressions of TNF-α, IL-1ß and iNOS. These results suggest that the alveolar release of sRAGE may play a protective role against HMGB1 as well as exogenous pathogen-associated molecular patterns. Supplementary therapy with sRAGE may be an effective therapeutic strategy for ARDS.
Assuntos
Receptor para Produtos Finais de Glicação Avançada/fisiologia , Receptor para Produtos Finais de Glicação Avançada/uso terapêutico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Células Epiteliais Alveolares , Animais , Modelos Animais de Doenças , Proteína HMGB1/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/citologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Síndrome do Desconforto Respiratório/induzido quimicamente , SolubilidadeRESUMO
OBJECTIVE: To identify and characterize an unknown microorganism causing contamination in several mammalian cell cultures. METHODS: This bacterium was identified by 16S rRNA sequencing and studied by DAPI and DiOC6 (3) staining, Gram staining, acid-fast staining, and electron microscopy. The isolated bacterium was also used to infect host cells to observe antibiotic effectiveness and its relationship with host cells. RESULTS: The 16S rRNA sequence analysis shows that this rod-shaped microorganism belongs to the family Caulobacteraceae, class Alphaproteobacteria, and was most closely related to Phenylobacterium zucineum HLK1T strain. The bacterium collected in the "swimming" stage was Gram staining negative, but Gram staining positive in the "sessile" stage. Under the electron microscope both flagellated and non-flagellated types were found. So far, no antibiotics were effective to inhibit this microorganism. The contamination with this bacterium frequently led to failed resuscitation of thawed cells. We found that the cells resuscitated with the used culture supernatants were increased in number by 3-4 folds as compared to those resuscitated with freshly prepared media. CONCLUSION: Phenylobacterium may have a dimorphic life cycle including a swimming stage and a sessile stalked stage.
Assuntos
Caulobacteraceae/isolamento & purificação , Linhagem Celular/microbiologia , Animais , Antibacterianos/farmacologia , Técnicas de Tipagem Bacteriana , Caulobacteraceae/efeitos dos fármacos , Caulobacteraceae/genética , Caulobacteraceae/crescimento & desenvolvimento , Técnicas de Cultura de Células , DNA Bacteriano/genética , Humanos , Camundongos , RNA Ribossômico 16S/genéticaRESUMO
Stress, a risk factor for major depressive disorder and Alzheimer disease, leads to the release of high-mobility group box-1 (HMGB1) protein, which in turn causes neuroinflammation. The mechanism underlying stress-induced HMGB1 release is unknown, but stress-associated glucocorticoids could be involved. Primary cultured rat cortical microglia and neurons were treated with corticosterone, a stress-associated glucocorticoid, and HMGB1 release was measured by ELISA and western blotting to test this hypothesis. With corticosterone treatment, significant HMGB1 was released in microglia but not in neuronal cell cultures. HMGB1 mRNA expression and HMGB1 protein expression in microglia were not affected by corticosterone treatment. Thus, the source of extracellular HMGB1 released into the medium is likely to be existing nuclear HMGB1 rather than newly synthesized HMGB1. Corticosterone-induced HMGB1 release in microglia culture was significantly attenuated by blocking glucocorticoid receptors but not mineralocorticoid receptors. Dexamethasone, a selective glucocorticoid receptor agonist, and dexamethasone-bovine serum albumin (BSA), a membrane-impermeable glucocorticoid receptor agonist used to confirm the membrane receptor-mediated effects of glucocorticoids, increased the release of HMGB1. Immunocytochemistry showed that HMGB1 translocated from the nucleus to the cytoplasm following dexamethasone or dexamethasone-BSA treatment through glucocorticoid receptors. The present findings suggest that glucocorticoids stimulate microglial membrane glucocorticoid receptors and trigger cytoplasmic translocation and extracellular release of nuclear HMGB1. Thus, under stress conditions, glucocorticoids induce microglial HMGB1 release, leading to a neuroinflammatory state that could mediate neurological disorders.
Assuntos
Córtex Cerebral , Corticosterona , Glucocorticoides , Proteína HMGB1 , Microglia , Receptores de Glucocorticoides , Animais , Proteína HMGB1/metabolismo , Microglia/metabolismo , Microglia/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/citologia , Glucocorticoides/farmacologia , Células Cultivadas , Ratos , Corticosterona/farmacologia , Receptores de Glucocorticoides/metabolismo , Dexametasona/farmacologia , Ratos Sprague-Dawley , Neurônios/metabolismo , Neurônios/efeitos dos fármacosRESUMO
4-hydroxy-2-nonenal (4-HNE) is a lipid peroxidation product that is known to be elevated during oxidative stress. During systemic inflammation and endotoxemia, plasma levels of 4-HNE are elevated in response to lipopolysaccharide (LPS) stimulation. 4-HNE is a highly reactive molecule due to its generation of both Schiff bases and Michael adducts with proteins, which may result in modulation of inflammatory signaling pathways. In this study, we report the production of a 4-HNE adduct-specific monoclonal antibody (mAb) and the effectiveness of the intravenous injection of this mAb (1 mg/kg) in ameliorating LPS (10 mg/kg, i.v.)-induced endotoxemia and liver injury in mice. Endotoxic lethality in control mAb-treated group was suppressed by the administration of anti-4-HNE mAb (75 vs. 27%). After LPS injection, we observed a significant increase in the plasma levels of AST, ALT, IL-6, TNF-α and MCP-1, and elevated expressions of IL-6, IL-10 and TNF-α in the liver. All these elevations were inhibited by anti-4-HNE mAb treatment. As to the underlining mechanism, anti-4-HNE mAb inhibited the elevation of plasma high mobility group box-1 (HMGB1) levels, the translocation and release of HMGB1 in the liver and the formation of 4-HNE adducts themselves, suggesting a functional role of extracellular 4-HNE adducts in hypercytokinemia and liver injury associated with HMGB1 mobilization. In summary, this study reveals a novel therapeutic application of anti-4-HNE mAb for endotoxemia.
Assuntos
Endotoxemia , Proteína HMGB1 , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Proteína HMGB1/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Endotoxemia/induzido quimicamente , Fígado , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêuticoRESUMO
Background: Systemic allergic reaction is characterized by vasodilation and vascular leakage, which causes a rapid, precipitous and sustained decrease in arterial blood pressure with a concomitant decrease of cardiac output. Histamine is a major mediator released by mast cells in allergic inflammation and response. It causes a cascade of inflammation and strongly increases vascular permeability within minutes through its four G-protein-coupled receptors (GPCRs) on endothelial cells. High mobility group box-1 (HMGB1), a nonhistone chromatin-binding nuclear protein, can be actively secreted into the extracellular space by endothelial cells. HMGB1 has been reported to exert pro-inflammatory effects on endothelial cells and to increase vascular endothelial permeability. However, the relationship between histamine and HMGB1-mediated signaling in vascular endothelial cells and the role of HMGB1 in anaphylactic-induced hypotension have never been studied. Methods and results: EA.hy 926 cells were treated with different concentrations of histamine for the indicated periods. The results showed that histamine induced HMGB1 translocation and release from the endothelial cells in a concentration- and time-dependent manner. These effects of histamine were concentration-dependently inhibited by d-chlorpheniramine, a specific H1 receptor antagonist, but not by H2 or H3/4 receptor antagonists. Moreover, an H1-specific agonist, 2-pyridylethylamine, mimicked the effects of histamine, whereas an H2-receptor agonist, 4-methylhistamine, did not. Adrenaline and noradrenaline, which are commonly used in the clinical treatment of anaphylactic shock, also inhibited the histamine-induced HMGB1 translocation in endothelial cells. We therefore established a rat model of allergic shock by i.v. injection of compound 48/80, a potent histamine-releasing agent. The plasma HMGB1 levels in compound 48/80-injected rats were higher than those in controls. Moreover, the treatment with anti-HMGB1 antibody successfully facilitated the recovery from compound 48/80-induced hypotension. Conclusion: Histamine induces HMGB1 release from vascular endothelial cells solely through H1 receptor stimulation. Anti-HMGB1 therapy may provide a novel treatment for life-threatening systemic anaphylaxis.
Assuntos
Anafilaxia , Histamina , Animais , Ratos , Anafilaxia/tratamento farmacológico , Clorfeniramina/farmacologia , Cromatina , Células Endoteliais , Epinefrina , Antagonistas dos Receptores Histamínicos H1/farmacologia , Antagonistas dos Receptores Histamínicos H1/uso terapêutico , Inflamação/tratamento farmacológico , Norepinefrina , p-Metoxi-N-metilfenetilamina , Receptores Acoplados a Proteínas G , Receptores Histamínicos H1/metabolismoRESUMO
Parkinson's disease (PD) patients often complain of pain, but this problem has been neglected and is poorly understood. High mobility group box-1 (HMGB1), an alarmin/damage-associated molecular patterns protein, is increased in the cerebrospinal fluid in PD patients. However, little is known of the relationship between HMGB1 and pain associated with PD. Here, we investigated the role of central HMGB1 in the regulation of nociceptive hypersensitivity in a mouse model of PD. Male ddY mice were microinjected unilaterally with 6-hydroxydopamine (6OHDA) into the striatum. These hemi-PD mice were treated with anti-HMGB1 neutralizing antibody (nAb; 10 µg in 10 µL) by intranasal (i.n.) administration. The mechanical hypersensitivity of the hind paws was evaluated with the von Frey test. Spinal microglial activity was analyzed by immunostaining for ionized calcium-binding adapter molecule 1. The 6OHDA-administered mice displayed unilateral loss of dopamine neurons in the substantia nigra and mechanical hypersensitivity in both hind paws. Moreover, spinal microglia were activated in these hemi-PD mice. Twenty-eight days after the 6OHDA injections, repeated i.n., but not systemic, treatment with anti-HMGB1 nAb inhibited the bilateral mechanical hypersensitivity and spinal microglial activation. However, the anti-HMGB1 nAb did not ameliorate the dopamine neuron loss. Moreover, intracerebroventricular injection with recombinant HMGB1 induced mechanical hypersensitivity. These findings indicate that HMGB1 is involved in the maintenance of nociceptive symptoms in hemi-PD mice via spinal microglial activation. Therefore, central HMGB1 may have potential as a therapeutic target for pain associated with PD.
Assuntos
Proteína HMGB1/metabolismo , Microglia/metabolismo , Dor/metabolismo , Doença de Parkinson/metabolismo , Medula Espinal/metabolismo , Alarminas/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Proteína HMGB1/imunologia , Masculino , Camundongos , Degeneração Neural/metabolismo , Oxidopamina/efeitos adversos , Substância Negra/metabolismoRESUMO
Intracerebral hemorrhage (ICH) is recognized as a severe clinical problem lacking effective treatment. High mobility group box-1 (HMGB1) exhibits inflammatory cytokine-like activity once released into the extracellular space from the nuclei. We previously demonstrated that intravenous injection of rat anti-HMGB1 monoclonal antibody (mAb) remarkably ameliorated brain injury in a rat ICH model. Therefore, we developed a humanized anti-HMGB1 mAb (OKY001) for clinical use. The present study examined whether and how the humanized anti-HMGB1 mAb ameliorates ICH injury in common marmosets. The results show that administration of humanized anti-HMGB1 mAb inhibited HMGB1 release from the brain into plasma, in association with a decrease of 4-hydroxynonenal (4-HNE) accumulation and a decrease in cerebral iron deposition. In addition, humanized anti-HMGB1 mAb treatment resulted in a reduction in brain injury volume at 12 d after ICH induction. Our in vitro experiment showed that recombinant HMGB1 inhibited hemoglobin uptake by macrophages through CD163 in the presence of haptoglobin, suggesting that the release of excess HMGB1 from the brain may induce a delay in hemoglobin scavenging, thereby allowing the toxic effects of hemoglobin, heme, and Fe2+ to persist. Finally, humanized anti-HMGB1 mAb reduced body weight loss and improved behavioral performance after ICH. Taken together, these results suggest that intravenous injection of humanized anti-HMGB1 mAb has potential as a novel therapeutic strategy for ICH.
Assuntos
Lesões Encefálicas , Callithrix , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Lesões Encefálicas/tratamento farmacológico , Hemorragia Cerebral/tratamento farmacológico , Citocinas , Proteína HMGB1/imunologia , Haptoglobinas/uso terapêutico , Heme , Ferro , Ratos , Ratos WistarRESUMO
Muscle cell death in polymyositis is induced by CD8+ cytotoxic T lymphocytes. We hypothesized that the injured muscle fibers release pro-inflammatory molecules, which would further accelerate CD8+ cytotoxic T lymphocytes-induced muscle injury, and inhibition of the cell death of muscle fibers could be a novel therapeutic strategy to suppress both muscle injury and inflammation in polymyositis. Here, we show that the pattern of cell death of muscle fibers in polymyositis is FAS ligand-dependent necroptosis, while that of satellite cells and myoblasts is perforin 1/granzyme B-dependent apoptosis, using human muscle biopsy specimens of polymyositis patients and models of polymyositis in vitro and in vivo. Inhibition of necroptosis suppresses not only CD8+ cytotoxic T lymphocytes-induced cell death of myotubes but also the release of inflammatory molecules including HMGB1. Treatment with a necroptosis inhibitor or anti-HMGB1 antibodies ameliorates myositis-induced muscle weakness as well as muscle cell death and inflammation in the muscles. Thus, targeting necroptosis in muscle cells is a promising strategy for treating polymyositis providing an alternative to current therapies directed at leukocytes.
Assuntos
Proteína HMGB1/antagonistas & inibidores , Imidazóis/farmacologia , Indóis/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Miosite/prevenção & controle , Necroptose/efeitos dos fármacos , Polimiosite/genética , Animais , Anticorpos Neutralizantes/farmacologia , Proteína C-Reativa/administração & dosagem , Proteína Ligante Fas/genética , Proteína Ligante Fas/imunologia , Feminino , Regulação da Expressão Gênica , Granzimas/genética , Granzimas/imunologia , Proteína HMGB1/genética , Proteína HMGB1/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Musculares Esqueléticas/imunologia , Fibras Musculares Esqueléticas/patologia , Força Muscular/efeitos dos fármacos , Força Muscular/imunologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Miosite/induzido quimicamente , Miosite/genética , Miosite/imunologia , Necroptose/genética , Necroptose/imunologia , Perforina/genética , Perforina/imunologia , Polimiosite/imunologia , Polimiosite/patologia , Transdução de Sinais , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologiaRESUMO
Clinical evidence indicates that cognitive impairment is a common comorbidity of chronic pain, including neuropathic pain, but the mechanism underlying cognitive impairment remains unclear. Neuroinflammation plays a critical role in the development of both neuropathic pain and cognitive impairment. High-mobility group box 1 (HMGB1) is a proinflammatory molecule and could be involved in neuroinflammation-mediated cognitive impairment in the neuropathic pain state. Hippocampal microglial activation in mice has been associated with cognitive impairment. Thus, the current study examined a potential role of HMGB1 and microglial activation in cognitive impairment in mice with neuropathic pain due to a partial sciatic nerve ligation (PSNL). Mice developed cognitive impairment over two weeks, but not one week, after nerve injury. Nerve-injured mice demonstrated decreased nuclear fraction HMGB1, suggesting increased extracellular release of HMGB1. Furthermore, two weeks after PSNL, significant microglia activation was observed in hippocampus. Inhibition of microglial activation with minocycline, local hippocampal microglia depletion with clodronate liposome, or blockade of HMGB1 with either glycyrrhizic acid (GZA) or anti-HMGB1 antibody in PSNL mice reduced hippocampal microglia activation and ameliorated cognitive impairment. Other changes in the hippocampus of PSNL mice potentially related to cognitive impairment, including decreased hippocampal neuron dendrite length and spine densities and decreased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor (AMPAR) subunits, were prevented with anti-HMGB1 antibody treatment. The current findings suggest that neuro-inflammation involves a number of cellular-level changes and microglial activation. Blocking neuro-inflammation, particularly through blocking HMGB1 could be a novel approach to reducing co-morbidities such as cognitive impairment associated with neuropathic pain.
Assuntos
Disfunção Cognitiva , Proteína HMGB1 , Neuralgia , Animais , Disfunção Cognitiva/etiologia , Proteína HMGB1/metabolismo , Hipocampo/metabolismo , Inflamação , Camundongos , Microglia/metabolismo , Neuralgia/tratamento farmacológicoRESUMO
Spinal cord injury (SCI) causes motor and sensory deficits and is currently considered an incurable disease. We have previously reported that administration of anti-High Mobility Group Box-1 monoclonal antibody (anti-HMGB1 mAb) preserved lesion area and improved locomotion recovery in mouse model of SCI. In order to further enhance the recovery, we here examined combinatorial treatment of anti-HMGB1 mAb and epothilone B (Epo B), which has been reported to promote axon regeneration. This combinatorial treatment significantly increased hindlimb movement compared with anti-HMGB1 mAb alone, although Epo B alone failed to increase functional recovery. These results are in agreement with that anti-HMGB1 mAb alone was able to decrease the lesion area spreading and increase the surviving neuron numbers around the lesion, whereas Epo B facilitated axon outgrowth only in combination with anti-HMGB1 mAb, suggesting that anti-HMGB1 mAb-dependent tissue preservation is necessary for Epo B to exhibit its therapeutic effect. Taken together, the combinatorial treatment can be considered as a novel and clinically applicable strategy for SCI.
Assuntos
Axônios , Traumatismos da Medula Espinal , Animais , Anticorpos Monoclonais , Epotilonas , Camundongos , Regeneração Nervosa , Recuperação de Função Fisiológica , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológicoRESUMO
High mobility group box-1 (HMGB1) is a ubiquitous non-histone nuclear protein that plays a key role as a transcriptional activator, with its extracellular release provoking inflammation. Inflammatory responses are essential in methamphetamine (METH)-induced acute dopaminergic neurotoxicity. In the present study, we examined the effects of neutralizing anti-HMGB1 monoclonal antibody (mAb) on METH-induced dopaminergic neurotoxicity in mice. BALB/c mice received a single intravenous administration of anti-HMGB1 mAb prior to intraperitoneal injections of METH (4 mg/kg × 2, at 2-h intervals). METH injections induced hyperthermia, an increase in plasma HMGB1 concentration, degeneration of dopaminergic nerve terminals, accumulation of microglia, and extracellular release of neuronal HMGB1 in the striatum. These METH-induced changes were significantly inhibited by intravenous administration of anti-HMGB1 mAb. In contrast, blood-brain barrier disruption occurred by METH injections was not suppressed. Our findings demonstrated the neuroprotective effects of anti-HMGB1 mAb against METH-induced dopaminergic neurotoxicity, suggesting that HMGB1 could play an initially important role in METH toxicity.
Assuntos
Anticorpos Monoclonais/farmacologia , Inibidores da Captação de Dopamina/toxicidade , Neurônios Dopaminérgicos/efeitos dos fármacos , Proteína HMGB1/antagonistas & inibidores , Metanfetamina/toxicidade , Fármacos Neuroprotetores/farmacologia , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Proteína HMGB1/sangue , Masculino , Camundongos , Camundongos Endogâmicos BALB CRESUMO
Given the role of macrophage-derived high mobility group box 1 (HMGB1) in chemotherapy-induced peripheral neuropathy (CIPN) caused by paclitaxel, we analyzed the role of HMGB1 and macrophages in the CIPN caused by bortezomib, a proteasome-inhibiting chemotherapeutic agent used for the treatment of multiple myeloma. Repeated administration of bortezomib caused CIPN accompanied by early-stage macrophage accumulation in the dorsal root ganglion. This CIPN was prevented by an anti-HMGB1-neutralizing antibody, thrombomodulin alfa capable of accelerating thrombin-dependent degradation of HMGB1, antagonists of the receptor for advanced glycation end-products (RAGE) and C-X-C motif chemokine receptor 4 (CXCR4), known as HMGB1-targeted membrane receptors, or macrophage depletion with liposomal clodronate, as reported in a CIPN model caused by paclitaxel. In macrophage-like RAW264.7 cells, bortezomib as well as MG132, a well-known proteasome inhibitor, caused HMGB1 release, an effect inhibited by caspase inhibitors but not inhibitors of NF-κB and p38 MAP kinase, known to mediate paclitaxel-induced HMGB1 release from macrophages. Bortezomib increased cleaved products of caspase-8 and caused nuclear fragmentation or condensation in macrophages. Repeated treatment with the caspase inhibitor prevented CIPN caused by bortezomib in mice. Our findings suggest that bortezomib causes caspase-dependent release of HMGB1 from macrophages, leading to the development of CIPN via activation of RAGE and CXCR4.