Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Plant Biotechnol J ; 22(7): 1989-2006, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38412139

RESUMO

Regulation of grain size is a crucial strategy for improving the crop yield and is also a fundamental aspect of developmental biology. However, the underlying molecular mechanisms governing grain development in wheat remain largely unknown. In this study, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor, TabHLH489, which is tightly associated with grain length through genome-wide association study and map-based cloning. Knockout of TabHLH489 and its homologous genes resulted in increased grain length and weight, whereas the overexpression led to decreased grain length and weight. TaSnRK1α1, the α-catalytic subunit of plant energy sensor SnRK1, interacted with and phosphorylated TabHLH489 to induce its degradation, thereby promoting wheat grain development. Sugar treatment induced TaSnRK1α1 protein accumulation while reducing TabHLH489 protein levels. Moreover, brassinosteroid (BR) promotes grain development by decreasing TabHLH489 expression through the transcription factor BRASSINAZOLE RESISTANT1 (BZR1). Importantly, natural variations in the promoter region of TabHLH489 affect the TaBZR1 binding ability, thereby influencing TabHLH489 expression. Taken together, our findings reveal that the TaSnRK1α1-TabHLH489 regulatory module integrates BR and sugar signalling to regulate grain length, presenting potential targets for enhancing grain size in wheat.


Assuntos
Brassinosteroides , Grão Comestível , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Brassinosteroides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Açúcares/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Estudo de Associação Genômica Ampla
2.
Luminescence ; 39(1): e4608, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918949

RESUMO

Developing novel waste recycling strategies has become a feasible solution to overcome environmental pollution. In this work, a method of using waste wind turbine blade (WTB) as a carbon source to synthesize blue fluorescent carbon dots (B-CDs) by hydrothermal treatment is proposed. B-CDs are spherical and have an average particle size of 5.2 nm. The surface is rich in C-O, C=O, -CH3 , and N-H bond functional groups, containing five elements: C, O, N, Si, and Ca. The optimal emission wavelength of B-CDs is 463 nm, corresponding to an excitation wavelength of 380 nm. Notably, a relatively high quantum yield of 29.9% and a utilization rate of 40% were obtained. In addition, B-CDs can serve as a photocatalyst to degrade methylene blue dye, with a degradation efficiency of 64% under 40-min irradiation conditions. The presence of holes has a significant influence on the degradation process.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Corantes , Azul de Metileno , Pontos Quânticos/química
3.
J Integr Plant Biol ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695649

RESUMO

Cultivating high-yield wheat under limited water resources is crucial for sustainable agriculture in semiarid regions. Amid water scarcity, plants activate drought response signaling, yet the delicate balance between drought tolerance and development remains unclear. Through genome-wide association studies and transcriptome profiling, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor (TF), TabHLH27-A1, as a promising quantitative trait locus candidate for both relative root dry weight and spikelet number per spike in wheat. TabHLH27-A1/B1/D1 knock-out reduced wheat drought tolerance, yield, and water use efficiency (WUE). TabHLH27-A1 exhibited rapid induction with polyethylene glycol (PEG) treatment, gradually declining over days. It activated stress response genes such as TaCBL8-B1 and TaCPI2-A1 while inhibiting root growth genes like TaSH15-B1 and TaWRKY70-B1 under short-term PEG stimulus. The distinct transcriptional regulation of TabHLH27-A1 involved diverse interacting factors such as TaABI3-D1 and TabZIP62-D1. Natural variations of TabHLH27-A1 influence its transcriptional responses to drought stress, with TabHLH27-A1Hap-II associated with stronger drought tolerance, larger root system, more spikelets, and higher WUE in wheat. Significantly, the excellent TabHLH27-A1Hap-II was selected during the breeding process in China, and introgression of TabHLH27-A1Hap-II allele improved drought tolerance and grain yield, especially under water-limited conditions. Our study highlights TabHLH27-A1's role in balancing root growth and drought tolerance, providing a genetic manipulation locus for enhancing WUE in wheat.

4.
Opt Express ; 31(16): 26014-26026, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710472

RESUMO

Underwater optical communication and low-light detection are usually realized via blue-green laser sources and blue-green light-sensitive detectors. Negative-electron-affinity AlGaAs photocathode is an ideal photosensitive material for ocean exploration due to its adjustable spectrum range, long working lifetime, and easy epitaxy of materials. However, compared with other photocathodes, the main problem of AlGaAs photocathode is its low quantum efficiency. Based on Spicer's three-step photoemission model, nanoarray structures are designed on the surface of AlGaAs photocathode to improve its quantum efficiency from two aspects of optical absorption and photoelectron transport. Through simulation, it is concluded that the cylinder with diameter of 120 nm and height of 600 nm is the best nanoarray structure, and its absorptance is always greater than 90% in the 445∼532 nm range. Moreover, the absorptance and quantum efficiency of the cylinder nanoarray AlGaAs photocathode are less affected by the incident angle. When the angle of incident light reaches 70°, the minimum absorptance and quantum efficiency are still 64.6% and 24.9%. In addition, the square or hexagonal arrangement pattern of the nanoarray has little effect on the absorptance, however, a reduction in the overall emission layer thickness will decrease the absorptance near 532 nm.

5.
Nanotechnology ; 35(1)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37783207

RESUMO

In order to reduce the etching effect of the catalysts to carbon fibers caused by high temperature during the chemical vapor deposition (CVD) process, four multi-element catalysts, Fe-Co, Fe-Ni, Co-Ni and Fe-Co-Ni, were used to realize the low temperature growth of carbon nanotubes (CNTs) on carbon fibers at 350 °C-400 °C. The results show that the growth state of CNTs has a great relationship with the type of catalysts. The catalytic efficiency of Fe-Co catalysts is low, but the graphitization degree of CNTs is relatively high. The Fe-Co-Ni catalysts has high catalytic efficiency but low graphitization degree of CNTs. The tensile strength of carbon fiber/CNTs reinforcements prepared by Fe-Ni catalysts at 400 °C is the highest, reaching 3.99 GPa, which is 11.14% higher than that of desized fiber. The melt drop phenomenon of the catalysts was found by TEM, indicating the formation of the liquid phase catalysts during the growth of CNTs. This phenomenon can change the diffusion mode of carbon atoms in the catalyst and significantly reduce the growth activation energy of CNTs, so that CNTs can grow at lower temperatures. Based on the detailed analysis of the CVD process, a low temperature growth model of CNTs on carbon fibers was proposed.

6.
Cell Commun Signal ; 20(1): 160, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253854

RESUMO

BACKGROUND: High-altitude cerebral edema (HACE) is a serious and potentially fatal brain injury that is caused by acute hypobaric hypoxia (HH) exposure. Vasogenic edema is the main pathological factor of this condition. Hypoxia-induced disruptions of tight junctions in the endothelium trigger blood‒brain barrier (BBB) damage and induce vasogenic edema. Nuclear respiratory factor 1 (NRF1) acts as a major regulator of hypoxia-induced endothelial cell injury, and caveolin-1 (CAV-1) is upregulated as its downstream gene in hypoxic endothelial cells. This study aimed to investigate whether CAV-1 is involved in HACE progression and the underlying mechanism. METHODS: C57BL/6 mice were exposed to HH (7600 m above sea level) for 24 h, and BBB injury was assessed by brain water content, Evans blue staining and FITC-dextran leakage. Immunofluorescence, transmission electron microscope, transendothelial electrical resistance (TEER), transcytosis assays, and western blotting were performed to confirm the role and underlying mechanism of CAV-1 in the disruption of tight junctions and BBB permeability. Mice or bEnd.3 cells were pretreated with MßCD, a specific blocker of CAV-1, and the effect of CAV-1 on claudin-5 internalization under hypoxic conditions was detected by immunofluorescence, western blotting, and TEER. The expression of NRF1 was knocked down, and the regulation of CAV-1 by NRF1 under hypoxic conditions was examined by qPCR, western blotting, and immunofluorescence. RESULTS: The BBB was severely damaged and was accompanied by a significant loss of vascular tight junction proteins in HACE mice. CAV-1 was significantly upregulated in endothelial cells, and claudin-5 explicitly colocalized with CAV-1. During the in vitro experiments, hypoxia increased cell permeability, CAV-1 expression, and claudin-5 internalization and downregulated tight junction proteins. Simultaneously, hypoxia induced the upregulation of CAV-1 by activating NRF1. Blocking CAV-1-mediated intracellular transport improved the integrity of TJs in hypoxic endothelial cells and effectively inhibited the increase in BBB permeability and brain water content in HH animals. CONCLUSIONS: Hypoxia upregulated CAV-1 transcription via the activation of NRF1 in endothelial cells, thus inducing the internalization and autophagic degradation of claudin-5. These effects lead to the destruction of the BBB and trigger HACE. Therefore, CAV-1 may be a potential therapeutic target for HACE. Video abstract.


Assuntos
Edema Encefálico , Caveolina 1 , Hipóxia , Animais , Camundongos , Altitude , Barreira Hematoencefálica , Edema Encefálico/complicações , Edema Encefálico/metabolismo , Caveolina 1/metabolismo , Claudina-5/metabolismo , Células Endoteliais/metabolismo , Hipóxia/complicações , Hipóxia/metabolismo , Camundongos Endogâmicos C57BL , Fator 1 Nuclear Respiratório/metabolismo , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/metabolismo
7.
Molecules ; 27(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36557802

RESUMO

An attempt at the treatment of the waste fiber (WF) from the wind turbine blade (WTB) was made through the modifier of dopamine hydrochloride and the compound modifier of dopamine hydrochloride and 2,5-dihydroxy terephthalic acid or 3,4-dihydroxy cinnamic acid or 3,4-dihydroxy benzonitrile, corresponding to obtain four modified waste fibers (MWF1, MWF2, MWF3, and MWF4). The MWFs samples' microstructure properties were characterized using SEM, EDS, XPS, FTIR analyses, and water contact angle tests. The results revealed that all the MWF surfaces were wrapped by a distinct coating layer and had different elemental compositions and chemical groups, demonstrating the significant effect of the four modifications on the WF surfaces. The hydroxyl, amino, or nitrile groups were grafted onto the WF surfaces causing improvement of the hydrophilicity and reactivity. Furthermore, all the MWFs as the reinforced materials were incorporated into the industrial waste phosphogypsum (PG) to manufacture the phosphorous-building gypsum composites (PBGC). The effects on the micro-morphology and mechanical properties of the PBGC were evaluated. The results also show the improvement in flexural and compressive strength with the addition of MWFs into the PBGC, due to the enhancement of the compactness between the MWF and phosphogypsum matrix. In particular, the effects of three compound modifiers on the flexural and compressive strength are more significant. The highest flexural and compressive strength was contributed by the PBGC-MWF4 with 2% dosage using a compound modifier of dopamine hydrochloride and 3,4-dihydroxy benzonitrile, which were enhanced 61.04% and 25.97% compared with the PBG.


Assuntos
Sulfato de Cálcio , Dopamina , Nitrilas
8.
Plant J ; 101(5): 1075-1090, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31628879

RESUMO

Wheat awn plays a vital role in photosynthesis, grain production, and drought tolerance. However, the systematic identification or cloning of genes controlling wheat awn development is seldom reported. Here, we conducted a genome-wide association study (GWAS) with 364 wheat accessions and identified 26 loci involved in awn length development, including previously characterized B1, B2, Hd, and several rice homologs. The dominant awn suppressor B1 was fine mapped to a 125-kb physical interval, and a C2 H2 zinc finger protein Awn Length Inhibitor 1 (ALI-1) was confirmed to be the underlying gene of the B1 locus through the functional complimentary test with native awnless allele. ALI-1 expresses predominantly in the developing spike of awnless individuals, transcriptionally suppressing downstream genes. ALI-1 reduces cytokinin content and simultaneously restrains cytokinin signal transduction, leading to a stagnation of cell proliferation and reduction of cell numbers during awn development. Polymorphisms of four single nucleotide polymorphisms (SNPs) located in ALI-1 promoter region are diagnostic for the B1/b1 genotypes, and these SNPs are associated with awn length (AL), grain length (GL) and thousand-grain weight (TGW). More importantly, ali-1 was observed to increase grain length in wheat, which is a valuable attribute of awn on grain weight, aside from photosynthesis. Therefore, ALI-1 pleiotropically regulates awn and grain development, providing an alternative for grain yield improvement and addressing future climate changes.


Assuntos
Variação Genética , Proteínas de Plantas/genética , Triticum/genética , Alelos , Dedos de Zinco CYS2-HIS2/genética , Citocininas/análise , Grão Comestível , Estudo de Associação Genômica Ampla , Genótipo , Regiões Promotoras Genéticas/genética , Triticum/crescimento & desenvolvimento
9.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445247

RESUMO

The utilization of heterosis is an important way to improve wheat yield, and the production of wheat hybrid seeds mainly relies on male-sterile lines. Male sterility in line 15 Fan 03 derived from a cross of 72,180 and Xiaoyan 6 is controlled by a single recessive gene. The gene was mapped to the distal region of chromosome 4BS in a genetic interval of 1.4 cM and physical distance of 6.57 Mb between SSR markers Ms4BS42 and Ms4BS199 using an F2 population with 1205 individuals. Sterile individuals had a deletion of 4.57 Mb in the region presumed to carry the Ms1 locus. The allele for sterility was therefore named ms1s. Three CAPS markers were developed and verified from the region upstream of the deleted fragment and can be used for ms1s marker-assisted selection in wheat hybrid breeding. This work will enrich the utilization of male sterility genetic resources.


Assuntos
Mapeamento Cromossômico , Genes de Plantas , Genes Recessivos , Loci Gênicos , Infertilidade das Plantas/genética , Triticum/genética , Melhoramento Vegetal
10.
J Mol Cell Cardiol ; 146: 84-94, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32712269

RESUMO

Chronic heart failure is associated with increased interleukin-1ß (IL-1ß), leukocyte infiltration, and fibrosis in the heart and lungs. Here we further studied the role of IL-1ß in the transition from left heart failure to pulmonary hypertension and right ventricular hypertrophy in mice with existing left heart failure produced by transverse aortic constriction. We demonstrated that transverse aortic constriction-induced heart failure was associated with increased lung inflammation and cleaved IL-1ß, and inhibition of IL-1ß signaling using blocking antibodies of clone B122 effectively attenuated further decrease of left ventricular systolic function in mice with existing heart failure. We found that inhibition of IL-1ß attenuated lung inflammation, inflammasome activation, fibrosis, oxidative stress, and right ventricular hypertrophy. IL-1ß blocking antibodies of clone B122 also significantly attenuated lung T cell activation. Together, these data indicate that IL-1ß signaling exerts a causal role for heart failure progression, or the transition from left heart failure to lung remodeling and right heart hypertrophy.


Assuntos
Progressão da Doença , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Interleucina-1beta/metabolismo , Estresse Oxidativo , Pneumonia/patologia , Pneumonia/fisiopatologia , Sístole , Animais , Anticorpos/farmacologia , Constrição Patológica , Eletrocardiografia , Fibrose , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/diagnóstico por imagem , Inflamassomos/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Testes de Neutralização , Tamanho do Órgão/efeitos dos fármacos , Pneumonia/complicações , Pneumonia/diagnóstico por imagem , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
11.
Plant J ; 97(5): 887-900, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30466195

RESUMO

Dwarfing and semi-dwarfing are important agronomic traits that have great potential for the improvement of wheat yields. Rht12, a dominant gibberellic acid (GA)-responsive dwarfing gene from the gamma-ray-induced wheat mutant Karcagi 522M7K, is located in the long arm of chromosome 5A, which is closely linked with the locus Xwmc410. Rht12 is likely an ideal gene for GA biosynthesis and deactivation research in common wheat. However, information on the Rht12 locus and sequence is lacking. In this study, Rht12 significantly shortened stem cell length and decreased GA biosynthetic components. Using bulked segregant RNA-Seq, wheat 660k single nucleotide polymorphism chip detection, and newly developed simple sequence repeat markers, Rht12 was mapped to a 11.21-Mb region at the terminal end of chromosome 5AL, and was found to be closely linked with the Xw5ac207SSR marker with a 10.73-Mb fragment deletion in all of the homologous dwarfing plants. Transcriptome analyses of the remaining 483-kb region showed significantly higher expression of the TraesCS5A01G543100 gene encoding the GA metabolic enzyme GA 2-ß-dioxygenase in dwarfing plants than in high stalk plants, suggesting that Rht12 reduces plant height by activating TaGA2ox-A14. Taken together, our findings will promote cloning and functional studies of Rht12 in common wheat.


Assuntos
Cromossomos de Plantas/genética , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma , Triticum/genética , Mapeamento Cromossômico , Genes Dominantes , Fenótipo , Proteínas de Plantas/genética , Caules de Planta/enzimologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Deleção de Sequência , Triticum/enzimologia , Triticum/crescimento & desenvolvimento , Triticum/fisiologia
12.
Theor Appl Genet ; 133(11): 3151-3163, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32852585

RESUMO

KEY MESSAGE: We used SMRT sequencing and explored the haplotypes of TaCKX genes, linked with thousand-grain weight and plant height, and developed the functionally validated markers, which can be used in the marker-assisted breeding program. Cytokinin oxidase/dehydrogenase (CKX) enzymes catalyze the permanent degradation of cytokinins. Identification of the TaCKX alleles associated with yield traits and the development of functional markers is the first step in using these alleles in marker-assisted breeding program. To identify the alleles, we sequenced the genome fragments, containing TaCKX genes from 48 wheat genotypes, by PacBio® sequencing. Six out of 22 TaCKX genes were found polymorphic, forming 14 distinct haplotypes. Functional markers were developed and validated for all the polymorphic TaCKX genes. Four specific haplotypes, i.e., TaCKX2A_2, TaCKX4A_2, TaCKX5A_3, and TaCKX9A_2, were found significantly associated with high thousand-grain weight (TGW) and short plant height (PH) in Chinese wheat micro-core collection (MCC) and GWAS open population (GWAS-OP), whereas TaCKX1B_2 in GWAS-OP and TaCKX11A_3 in MCC were significantly associated with high TGW and short PH. The mean values of TGW and PH for cumulative favorable haplotypes from chromosome 3A, i.e., TaCKX2A_2, TaCKX4A_2, and TaCKX5A_3, were significantly higher as compared to the cumulative unfavored haplotypes, and the change was additive in manner. Frequency distribution analysis revealed that since the 1960s, the frequency of the favorable haplotypes and TGW has gradually increased in Chinese wheat cultivars. Expression profiling in the seed tissue excised at 2, 4, 6, and 8 days after anthesis depicted that the favorable haplotypes are significantly less expressive as compared to the unfavored haplotypes. We conclude that the functional markers developed in this study can be used to select the favorable haplotypes of TaCKX genes in wheat marker-assisted breeding programs.


Assuntos
Família Multigênica , Oxirredutases/genética , Sementes/crescimento & desenvolvimento , Triticum/genética , Alelos , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Genes de Plantas , Marcadores Genéticos , Haplótipos , Mutação INDEL , Polimorfismo de Nucleotídeo Único , Triticum/crescimento & desenvolvimento
13.
Artif Organs ; 44(12): e532-e551, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32671848

RESUMO

The development of pancreatic extracellular matrices enriched with insulin-secreting ß-cells is a promising tissue engineering approach to treat type 1 diabetes. However, its long-term therapeutic efficacy is restricted by the defensive mechanism of host immune response and the lack of developed vascularization as appropriate after transplantation. Platelet-rich plasma (PRP), as an autologous platelet concentrate, contains a large number of active factors that are essential for the cell viability, vascularization, and immune regulation. In this study, we have incorporated pancreatic extracellular matrix (PEM) with PRP to develop a three-dimensional (3D) injectable PEM-PRP hydrogel to coculture and transplant rat insulinoma cells (INS-1) and human umbilical vein endothelial cells (HUVECs). Results from this study demonstrated that PEM-PRP hydrogel mimicked the biochemical compositions of native extracellular matrices, and possessed the enhanced elastic modulus and resistance to enzymatic degradation that enabled biomaterials to maintain its volume and slowly degrade. Additionally, PEM-PRP hydrogel could release growth factors in a sustained manner. In vitro, PEM-PRP hydrogel significantly promoted the viability, insulin-secreting function, and insulin gene expression of gel encapsulated INS-1 cells. Moreover, HUVECs encapsulated in PEM-PRP hydrogel were found to constitute many lumen-like structures and exhibited high expression of proangiogenic genes. In vivo transplantation of PEM-PRP hydrogel encapsulated with INS-1 cells and HUVECs improved the viability of INS-1 cells, promoted vascularization, inhibited the host inflammatory response, and reversed hyperglycemia of diabetic rats. Our study suggests that the PEM-PRP hydrogel offers excellent biocompatibility and proangiogenic property, and may serve as an effective biomaterial platform to maintain the long-term survival and function of insulin-secreting ß cells.


Assuntos
Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/terapia , Matriz Extracelular/transplante , Hidrogéis/administração & dosagem , Plasma Rico em Plaquetas , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Sobrevivência Celular , Técnicas de Cocultura , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Teste de Materiais , Pâncreas/citologia , Pâncreas/metabolismo , Pâncreas/patologia , Ratos , Estreptozocina/administração & dosagem , Estreptozocina/toxicidade
14.
J Exp Bot ; 70(18): 4671-4688, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31226200

RESUMO

Understanding the genetic architecture of grain size is a prerequisite to manipulating grain development and improving the potential crop yield. In this study, we conducted a whole genome-wide quantitative trait locus (QTL) mapping of grain-size-related traits by constructing a high-density genetic map using 109 recombinant inbred lines of einkorn wheat. We explored the candidate genes underlying QTLs through homologous analysis and RNA sequencing. The high-density genetic map spanned 1873 cM and contained 9937 single nucleotide polymorphism markers assigned to 1551 bins on seven chromosomes. Strong collinearity and high genome coverage of this map were revealed by comparison with physical maps of wheat and barley. Six grain size-related traits were surveyed in five environments. In total, 42 QTLs were identified; these were assigned to 17 genomic regions on six chromosomes and accounted for 52.3-66.7% of the phenotypic variation. Thirty homologous genes involved in grain development were located in 12 regions. RNA sequencing identified 4959 genes differentially expressed between the two parental lines. Twenty differentially expressed genes involved in grain size development and starch biosynthesis were mapped to nine regions that contained 26 QTLs, indicating that the starch biosynthesis pathway plays a vital role in grain development in einkorn wheat. This study provides new insights into the genetic architecture of grain size in einkorn wheat; identification of the underlying genes enables understanding of grain development and wheat genetic improvement. Furthermore, the map facilitates quantitative trait mapping, map-based cloning, genome assembly, and comparative genomics in wheat taxa.


Assuntos
Grão Comestível/genética , Ligação Genética , Proteínas de Plantas/genética , Transcriptoma , Triticum/genética , Mapeamento Cromossômico , Grão Comestível/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Proteínas de Plantas/metabolismo , Triticum/crescimento & desenvolvimento
15.
J Mater Sci Mater Med ; 30(7): 85, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31292746

RESUMO

Pancreatic transplantation remains the only cure for diabetes, but the shortage of donors limits its clinical application. Whole organ decellularized scaffolds offer a new opportunity for pancreatic organ regeneration; however inadequate endothelialization and vascularization can prevent sufficient transport of oxygen and nutrient supplies to the transplanted organ, as well as leading unwanted thrombotic events. In the present study, we explored the re-endothelialization of rat pancreatic acellular scaffolds via circulation perfusion using human skin fibroblasts (FBs) and human umbilical vein endothelial cells (HUVECs). Our results revealed that the cell adhesion rate when these cells were co-cultured was higher than under control conditions, and this increase was associated with increased release of growth factors including VEGF, FGFb, EGF, and IGF-1 as measured by ELISA. When these recellularized organs were implanted in vivo for 28 days in rat dorsal subcutaneous pockets, we found that de novo vasculature formation in the co-culture samples was superior to the control samples. Together these results suggest that endothelial cell and FB co-culture enhances the re-endothelialization and vascularization of pancreatic acellular scaffolds.


Assuntos
Técnicas de Cultura de Células , Células Endoteliais/citologia , Fibroblastos/citologia , Pâncreas/fisiologia , Alicerces Teciduais , Animais , Adesão Celular , Técnicas de Cocultura , Fator de Crescimento Epidérmico/metabolismo , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Oxigênio/química , Perfusão , Proteômica , Ratos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Zhongguo Zhong Yao Za Zhi ; 42(10): 1979-1983, 2017 May.
Artigo em Chinês | MEDLINE | ID: mdl-29090560

RESUMO

To find the relationship between traditional efficacy of Chinese medicine and modern pharmacological action by using data mining, and provide information and reference for further research and development for the pharmacology research of traditional Chinese medicine.The information of 547 kinds of traditional Chinese medicines, 335 kinds of Chinese medicine effects and 86 kinds of pharmacological actions were collected and processed in Clinical Guide to the Chinese Pharmacopoeia published in 2010; Access and Excel software were used to analyze the frequence and frequency of single effect, pharmacological action, and both. In addition, the relationship between efficacy and pharmacology was analyzed with the clearing heat and antibacterial effects as the example. The analysis results showed that 547 kinds of Chinese medicines involved 335 kinds of Chinese medicine effects and 86 kinds of pharmacological actions. Among them, the most frequent Chinese medicine effect was"clearing heat", whose frequence was 130 and the frequency was 0.24; the most frequent pharmacological action was "anti-inflammatory action" whose frequence was 191 and the frequency was 0.35. The most common efficacy-pharmacological action group was "clearing heat" and "anti-bacterial action", whose frequence was 75 and the frequency was 0.26. The couple of "purgation" and "cathartic effect" had the largest frequency of 0.30, but they just appeared together for 3 times. There were 52 kinds of pharmacological actions that occurred together with clearing heat, of which, the top 10 were anti-bacterial action, anti-inflammatory action, antineoplastic action, anti-hepatic injury action, immunoregulation action, antipyretic action, antiviralaction, hypoglycemic action, antioxidant action and analgesic action. There were 161 kinds of Chinese medicine effects that occurred together with anti-bacterial action, of which, the top 10 were clearing heat, detoxification, detumescence, analgesia, resolving dampness, pesticide, cooling blood, expelling wind, eliminating dampness and hemostasis. These results suggested that there was a certain relationship between traditional Chinese medicine effects and modern pharmacological actions.


Assuntos
Mineração de Dados , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa , Software
17.
Int J Biol Macromol ; 269(Pt 1): 131826, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679256

RESUMO

The tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) is characterized by deposition of desmoplastic matrix (including collagen and hyaluronic acid). And the interactions between tumor-associated macrophages (TAMs) and tumor cells play a crucial role in progression of PDAC. Hence, the appropriate model of tumor cell-macrophage interaction within the unique PDAC TME is of significantly important. To this end, a 3D tumor niche based on dual-crosslinking gelatin methacrylate and hyaluronic acid methacrylate hydrogels was constructed to simulate the desmoplastic tumor matrix with matching compressive modulus and composition. The bionic 3D tumor niche creates an immunosuppressive microenvironment characterized by the downregulation of M1 markers and upregulation of M2 markers in TAMs. Mechanistically, RNA-seq analysis revealed that the PI3K-AKT signaling pathway might modulate the phenotypic balance and recruitment of macrophages through regulating SELE and VCAM-1. Furthermore, GO and GSEA revealed the biological process of leukocyte migration and the activation of cytokine-associated signaling were involved. Finally, the 3D tumor-macrophage niches with three different ratios were fabricated which displayed increased M2-like polarization and stemness. The utilization of the 3D tumor niche has the potential to provide a more accurate investigation of the interplay between PDAC tumor cells and macrophages within an in vivo setting.


Assuntos
Carcinoma Ductal Pancreático , Gelatina , Ácido Hialurônico , Metacrilatos , Microambiente Tumoral , Macrófagos Associados a Tumor , Gelatina/química , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Humanos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Metacrilatos/química , Metacrilatos/farmacologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Hidrogéis/química , Linhagem Celular Tumoral , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Transdução de Sinais/efeitos dos fármacos
18.
Ann Biomed Eng ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829457

RESUMO

Interactions between cells are of fundamental importance in affecting cell function. In vivo, endothelial cells and islet cells are close to each other, which makes endothelial cells essential for islet cell development and maintenance of islet cell function. We used endothelial cells to construct 3D pseudo-islets, which demonstrated better glucose regulation and greater insulin secretion compared to conventional pseudo-islets in both in vivo and in vitro trials. However, the underlying mechanism of how endothelial cells promote beta cell function localized within islets is still unknown. We performed transcriptomic sequencing, differential gene analysis, and enrichment analysis on two types of pseudo-islets to show that endothelial cells can promote the function of internal beta cells in pseudo-islets through the BTC-EGFR-JAK/STAT signaling pathway. Min6 cells secreted additional BTC after co-culture of endothelial cells with MIN6 cells outside the body. After BTC knockout in vitro, we found that beta cells functioned differently: insulin secretion levels decreased significantly, while the expression of key proteins in the EGFR-mediated JAK/STAT signaling pathway simultaneously decreased, further confirming our results. Through our experiments, we elucidate the molecular mechanisms by which endothelial cells maintain islet function in vitro, which provides a theoretical basis for the construction of pseudo-islets and islet cell transplants for the treatment of diabetes mellitus.

19.
Sci Total Environ ; 916: 170300, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38272090

RESUMO

Reservoirs are regarded as potential collection sites for microplastics (MPs), and ample water resources in plateau regions provide favorable natural conditions for hydroelectric power generation. However, research on the impact of cascade reservoir construction in the plateau region on the fate of MPs within the watershed is limited. In this study, the Yalong River, an alpine canyon river in the eastern Qinghai-Tibet Plateau, was selected as the research area. This study explored the distribution of MPs at various depths in water, sediment, and riverbank soil as well as the formation of "MP communities" within the river-cascade reservoir system. Furthermore, the effects of dam construction on MPs' migration in different environments were analyzed. The results revealed that the abundance of MPs in the water and sediment within the cascade reservoir area (CRA) was significantly higher than that in the river area (RA) (P < 0.001). Additionally, the trend of increasing MPs in water with decreasing altitude was notably slower in CRA. Regarding shape, the proportion of fibers in the water within the CRA was significantly lower than that in the RA, with a smaller vertical migration rate in the water than in the sediment. The proportion of MPs < 500 µm in the water within the CRA was significantly higher than that in the RA. High-density MPs were notably deposited in the reservoir sediments. The analysis of the MP communities revealed that the construction of cascade dams led to relative geographical isolation between different sampling sites, reducing the similarity of MP communities in the CRA. This study established a theoretical foundation for understanding the impact of cascade dam construction on the fate characteristics of MPs and their potential risks in plateau areas.

20.
Adv Sci (Weinh) ; : e2401383, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943260

RESUMO

Starch and seed storage protein (SSP) composition profoundly impact wheat grain yield and quality. To unveil regulatory mechanisms governing their biosynthesis, transcriptome, and epigenome profiling is conducted across key endosperm developmental stages, revealing that chromatin accessibility, H3K27ac, and H3K27me3 collectively regulate SSP and starch genes with varying impact. Population transcriptome and phenotype analyses highlight accessible promoter regions' crucial role as a genetic variation resource, influencing grain yield and quality in a core collection of wheat accessions. Integration of time-serial RNA-seq and ATAC-seq enables the construction of a hierarchical transcriptional regulatory network governing starch and SSP biosynthesis, identifying 42 high-confidence novel candidates. These candidates exhibit overlap with genetic regions associated with grain size and quality traits, and their functional significance is validated through expression-phenotype association analysis among wheat accessions and loss-of-function mutants. Functional analysis of wheat abscisic acid insensitive 3-A1 (TaABI3-A1) with genome editing knock-out lines demonstrates its role in promoting SSP accumulation while repressing starch biosynthesis through transcriptional regulation. Excellent TaABI3-A1Hap1 with enhanced grain weight is selected during the breeding process in China, linked to altered expression levels. This study unveils key regulators, advancing understanding of SSP and starch biosynthesis regulation and contributing to breeding enhancement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA