Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Inorg Chem ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950326

RESUMO

Inorganic materials doped with chromium (Cr) ions generate remarkable and adjustable broadband near-infrared (NIR) light, offering promising applications in the fields of imaging and night vision technology. However, achieving high efficiency and thermal stability in these broadband NIR phosphors poses a significant challenge for their practical application. Here, we employ crystal field engineering to modulate the NIR characteristics of Cr3+-doped Gd3Ga5O12 (GGG). The Gd3MgxGa5-2xGexO12 (GMGG):7.5% Cr3+ (x = 0, 0.05, 0.15, 0.20, and 0.40) phosphors with NIR emission are developed through the cosubstitution of Mg2+ and Ge4+ for Ga3+ sites. This cosubstitution strategy also effectively reduces the crystal field strength around Cr3+ ions, which results in a significant enhancement of the photoluminescence (PL) full width at half-maximum (fwhm) from 97 to 165 nm, alongside a red shift in the PL peak and an enhancement of the PL intensity up to 2.3 times. Notably, the thermal stability of the PL behaviors is also improved. The developed phosphors demonstrate significant potential in biological tissue penetration and night vision, as well as an exceptional scintillation performance for NIR scintillator imaging. This research paves a new perspective on the development of high-performance NIR technology in light-emitting diodes (LEDs) and X-ray imaging applications.

2.
Inorg Chem ; 62(47): 19350-19357, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37960854

RESUMO

The visualized dual-modal stress-temperature sensing refers to the ability of a sensor to provide real-time and visible information about both stress and temperature and has indeed attracted significant interest in various fields. However, the development of convenient methods for achieving this capability remains a challenge. In this work, a dual-modal stress-temperature sensor is successfully fabricated using a ZnS/Cu@CsPbBr1.2I1.8 glass ceramics (GCs)/polydimethylsiloxane (PDMS) (ZCP) composite film. The tunable ML color is achieved by modulating the concentration of CsPbBr1.2I1.8 GCs in the ZCP composite films based on the light conversion process from ZnS/Cu to CsPbBr1.2I1.8 GCs. Additionally, the stress and temperature can be visualized simultaneously by integrating the ML intensity and ML color of the ZCP composite film. This feature allows for the real-time monitoring of automotive tire temperature by embedding the ZCP composite film on the tire surface, enabling a strong and stable response to both stress and temperature changes. Overall, this work offers a convenient, efficient, and repeatable approach for achieving visualized dual-modal stress-temperature sensing in the fields of mechanical engineering, structural health monitoring, and intelligent devices.

3.
Inorg Chem ; 62(40): 16485-16492, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37738045

RESUMO

The current optical anticounterfeit strategies that rely on multimode luminescence in response to the photon or thermal stimuli have significant importance in the field of anticounterfeiting and information encryption. However, the dependence on light and heat sources might limit their flexibility in practical applications. In this work, Er3+ single-doped CaF2 phosphors that show multistimuli-responsive luminescence have been successfully prepared. The as-obtained CaF2:Er3+ phosphor exhibits green photoluminescence (PL) and color-tunable up-conversation (UC) luminescence from red to green due to the cross-relaxation of Er3+ ions. Additionally, as-obtained CaF2:Er3+ phosphors also display green mechano-luminescence behavior, which is induced by the contact electrification between the CaF2 particles and PDMS polymers, enabling the phosphor to flexibly respond to mechanical stimuli. Moreover, feasible anticounterfeiting schemes with the capability of multistimuli-responsive and flexible decryption have been constructed, further expanding the application of optical materials in the field of advanced anticounterfeiting and information encryption.

4.
J Am Chem Soc ; 144(2): 787-797, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34985903

RESUMO

Tumor-derived exosome can suppress dendritic cells (DCs) and T cells functions. Excessive secretion of exosomal programmed death-ligand 1 (PD-L1) results in therapeutic resistance to PD-1/PD-L1 immunotherapy and clinical failure. Restored T cells by antiexosomal PD-L1 tactic can intensify ferroptosis of tumor cells and vice versa. Diminishing exosomal suppression and establishing a nexus of antiexosomal PD-L1 and ferroptosis may rescue the discouraging antitumor immunity. Here, we engineered phototheranostic metal-phenolic networks (PFG MPNs) by an assembly of semiconductor polymers encapsulating ferroptosis inducer (Fe3+) and exosome inhibitor (GW4869). The PFG MPNs elicited superior near-infrared II fluorescence/photoacoustic imaging tracking performance for a precise photothermal therapy (PTT). PTT-augmented immunogenic cell death relieved exosomal silencing on DC maturation. GW4869 mediated PD-L1 based exosomal inhibition revitalized T cells and enhanced the ferroptosis. This novel synergy of PTT with antiexosomal PD-L1 enhanced ferroptosis evoked potent antitumor immunity in B16F10 tumors and immunological memory against metastatic tumors in lymph nodes.


Assuntos
Compostos de Anilina/química , Antígeno B7-H1/metabolismo , Compostos de Benzilideno/química , Compostos Férricos/química , Ferroptose , Estruturas Metalorgânicas/química , Animais , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Exossomos/metabolismo , Ferroptose/efeitos dos fármacos , Morte Celular Imunogênica/efeitos dos fármacos , Imunoterapia , Interferon gama/metabolismo , Melanoma Experimental/diagnóstico por imagem , Melanoma Experimental/terapia , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/uso terapêutico , Camundongos , Fenol/química , Técnicas Fotoacústicas , Polietilenoglicóis/química , Polímeros/química , Receptor de Morte Celular Programada 1/metabolismo , Nanomedicina Teranóstica
5.
Angew Chem Int Ed Engl ; 61(18): e202200830, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35174599

RESUMO

Radiotherapy (RT) is hampered by the limited oxygen in tumors, which could be potentiated via reprogramming the oxygen metabolism and increasing the oxygen utilization efficiency. Herein, a metal-phenolic nanosensitizer (Hf-PSP-DTC@PLX) was integrated via an acid-sensitive hydrogen sulfide (H2 S) donor (polyethylene glycol-co-polydithiocarbamates, PEG-DTC) and a hafnium-chelated polyphenolic semiconducting polymer (Hf-PSP) in an amphiphilic polymer (poloxamer F127, PLX). Hf-PSP-DTC@PLX elicited a high imaging performance for precise RT and generated H2 S to reduce the cellular oxygen consumption rate via mitochondrial respiration inhibition, which reprogrammed the oxygen metabolism for improvement of the tumor oxygenation. Then, Hf-sensitization could fully utilize the well-preserved oxygen to intensify RT efficacy and activate immunogenicity. Such a synergistic strategy for improvement of oxygenation and oxygen utilization would have great potential in optimizing oxygen-dependent therapeutics.


Assuntos
Sulfeto de Hidrogênio , Neoplasias , Háfnio , Humanos , Neoplasias/radioterapia , Oxigênio , Polímeros
6.
Proc Natl Acad Sci U S A ; 113(12): 3359-64, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26951659

RESUMO

The Huntington's disease (HD) protein, huntingtin (HTT), is essential for early development. Because suppressing the expression of mutant HTT is an important approach to treat the disease, we must first understand the normal function of Htt in adults versus younger animals. Using inducible Htt knockout mice, we found that Htt depletion does not lead to adult neurodegeneration or animal death at >4 mo of age, which was also verified by selectively depleting Htt in neurons. On the other hand, young Htt KO mice die at 2 mo of age of acute pancreatitis due to the degeneration of pancreatic acinar cells. Importantly, Htt interacts with the trypsin inhibitor, serine protease inhibitor Kazal-type 3 (Spink3), to inhibit activation of digestive enzymes in acinar cells in young mice, and transgenic HTT can rescue the early death of Htt KO mice. These findings point out age- and cell type-dependent vital functions of Htt and the safety of knocking down neuronal Htt expression in adult brains as a treatment.


Assuntos
Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteínas Nucleares/genética , Pancreatite/genética , Doença Aguda , Animais , Proteína Huntingtina , Camundongos , Camundongos Knockout
7.
PLoS Genet ; 12(5): e1006083, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27203582

RESUMO

The Huntington's disease (HD) protein, huntingtin (HTT), is a large protein consisting of 3144 amino acids and has conserved N-terminal sequences that are followed by a polyglutamine (polyQ) repeat. Loss of Htt is known to cause embryonic lethality in mice, whereas polyQ expansion leads to adult neuronal degeneration. Whether N-terminal HTT is essential for neuronal development or contributes only to late-onset neurodegeneration remains unknown. We established HTT knock-in mice (N160Q-KI) expressing the first 208 amino acids of HTT with 160Q, and they show age-dependent HTT aggregates in the brain and neurological phenotypes. Importantly, the N-terminal mutant HTT also preferentially accumulates in the striatum, the brain region most affected in HD, indicating the importance of N-terminal HTT in selective neuropathology. That said, homozygous N160Q-KI mice are also embryonic lethal, suggesting that N-terminal HTT alone is unable to support embryonic development. Using Htt knockout neurons, we found that loss of Htt selectively affects the survival of developing neuronal cells, but not astrocytes, in culture. This neuronal degeneration could be rescued by a truncated HTT lacking the first 237 amino acids, but not by N-terminal HTT (1-208 amino acids). Also, the rescue effect depends on the region in HTT known to be involved in intracellular trafficking. Thus, the N-terminal HTT region may not be essential for the survival of developing neurons, but when carrying a large polyQ repeat, can cause selective neuropathology. These findings imply a possible therapeutic benefit of removing the N-terminal region of HTT containing the polyQ repeat to treat the neurodegeneration in HD.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/genética , Degeneração Neural/genética , Proteínas do Tecido Nervoso/genética , Peptídeos/genética , Animais , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Técnicas de Introdução de Genes , Humanos , Proteína Huntingtina/metabolismo , Proteína Huntingtina/uso terapêutico , Doença de Huntington/patologia , Doença de Huntington/terapia , Camundongos , Mutação , Degeneração Neural/patologia , Degeneração Neural/terapia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/uso terapêutico , Neurônios/metabolismo , Neurônios/patologia , Peptídeos/metabolismo , Peptídeos/uso terapêutico , Fenótipo
8.
Acta Pharmacol Sin ; 39(5): 875-884, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29595193

RESUMO

Xyloketal B (Xyl-B) is a novel marine compound isolated from mangrove fungus Xylaria sp. (No 2508). We previously showed that Xyl-B promoted endothelial NO release and protected against atherosclerosis through the Akt/eNOS pathway. Vascular NO production regulates vasoconstriction in central and peripheral arteries and plays an important role in blood pressure control. In this study, we examined whether Xyl-B exerted an antihypertensive effect in a hypertensive rat model, and further explored the possible mechanisms underlying its antihypertensive action. Administration of Xyl-B (20 mg·kg-1·d-1, ip, for 12 weeks) significantly decreased the systolic and diastolic blood pressure in a two-kidney, two-clip (2K2C) renovascular hypertensive rats. In endothelium-intact and endothelium-denuded thoracic aortic rings, pretreatment with Xyl-B (20 µmol/L) significantly suppressed phenylephrine (Phe)-induced contractions, suggesting that its vasorelaxant effect was attributed to both endothelial-dependent and endothelial-independent mechanisms. We used SNP, methylene blue (MB, guanylate cyclase inhibitor) and indomethacin (IMC, cyclooxygenase inhibitor) to examine which endothelial pathway was involved, and found that MB, but not IMC, reversed the inhibitory effects of Xyl-B on Phe-induced vasocontraction. Moreover, Xyl-B increased the endothelial NO bioactivity and smooth muscle cGMP level, revealing that the NO-sGC-cGMP pathway, rather than PGI2, mediated the anti-hypertensive effect of Xyl-B. We further showed that Xyl-B significantly attenuated KCl-induced Ca2+ entry in smooth muscle cells in vitro, which was supposed to be mediated by voltage-dependent Ca2+ channels (VDCCs), and reduced ryanodine-induced aortic contractions, which may be associated with store-operated Ca2+ entry (SOCE). Taken together, these findings demonstrate that Xyl-B exerts significant antihypertensive effects not only through the endothelial NO-sGC-cGMP pathway but also through smooth muscle calcium signaling, including VDCCs and SOCE.


Assuntos
Anti-Hipertensivos/uso terapêutico , Sinalização do Cálcio/efeitos dos fármacos , Hipertensão Renovascular/tratamento farmacológico , Piranos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Cálcio/metabolismo , GMP Cíclico/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Azul de Metileno/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos Sprague-Dawley , Guanilil Ciclase Solúvel/metabolismo , Vasodilatadores/uso terapêutico
9.
Biochem Biophys Res Commun ; 490(2): 91-97, 2017 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-28526415

RESUMO

LNK (SH2B3) is an intracellular adaptor protein that negatively regulates cellular proliferation or self-renewal of hematopoietic stem cells and some other progenitor cells. LNK is also recognized as a key regulator of insulin resistance and inflammatory responses in several tissues and organs. The function of LNK in adipose tissue is unknown. We previously demonstrated that type 2 diabetes mellitus (T2DM) mouse model had elevated serum free fatty acids (FFAs) levels and increased preadipocyte apoptosis in visceral fat tissue, showing the occurrence of lipotoxicity. Herein, when compared to control mice, the protein expression of LNK decreased in epididymal fat tissue from the high-sucrose/fat diet, low-dose streptozotocin induced T2DM mouse model. We thus investigated whether LNK could regulate palmitate-induced preadipocyte apoptosis in an in vitro apoptotic model in 3T3-L1 preadipocytes. LNK specific siRNA exacerbated palmitate-induced apoptosis and increased pro-apoptotic protein levels of cleaved caspase-3, Bax and cytochrome C; while overexpression of LNK cDNA exhibited significant anti-apoptotic effects. Consistently, LNK specific siRNA further decreased the Akt Ser-473 phosphorylation reduced by palmitate and located on upstream of Bax and cytochrome C. The siRNA-mediated LNK knockdown exacerbated mitochondrial membrane depolarization and mitochondrial-derived reactive oxygen species production induced by palmitate, whereas overexpression of LNK attenuated that. These results indicated that LNK plays a regulatory role in the palmitate-related preadipocyte apoptosis and might be involved in adipose tissue dysfunction.


Assuntos
Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Palmitatos/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Adipócitos/metabolismo , Animais , Diabetes Mellitus Tipo 2/induzido quimicamente , Dieta Hiperlipídica , Sacarose Alimentar , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Estreptozocina
10.
Acta Pharmacol Sin ; 38(9): 1236-1247, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28552908

RESUMO

Xyloketal B (Xyl-B) is a novel marine compound isolated from mangrove fungus Xylaria sp. We previously demonstrated that pretreatment with Xyl-B exerted neuroprotective effects and attenuated hypoxic-ischemic brain injury in neonatal mice. In the present study we investigated the neuroprotective effects of pre- and post-treatment with Xyl-B in adult mice using a transient middle cerebral artery occlusion (tMCAO) model, and explored the underlying mechanisms. Adult male C57 mice were subjected to tMCAO surgery. For the pre-treatment, Xyl-B was given via multiple injections (12.5, 25, and 50 mg·kg-1·d-1, ip) 48 h, 24 h and 30 min before ischemia. For the post-treatment, a single dose of Xyl-B (50 mg/kg, ip) was injected at 0, 1 or 2 h after the onset of ischemia. The regional cerebral perfusion was monitored using a laser-Doppler flowmeter. TTC staining was performed to determine the brain infarction volume. We found that both pre-treatment with Xyl-B (50 mg/kg) and post-treatment with Xyl-B (50 mg/kg) significantly reduced the infarct volume, but had no significant hemodynamic effects. Treatment with Xyl-B also significantly alleviated the neurological deficits in tMCAO mice. Furthermore, treatment with Xyl-B significantly attenuated ROS overproduction in brain tissues; increased the MnSOD protein levels, suppressed TLR4, NF-κB and iNOS protein levels; and downregulated the mRNA levels of proinflammatory cytokines, including IL-1ß, TNF-α, IL-6 and IFN-γ. Moreover, Xyl-B also protected blood-brain barrier integrity in tMCAO mice. In conclusion, Xyl-B administered within 2 h after the onset of stroke effectively protects against focal cerebral ischemia; the underlying mechanism may be related to suppressing the ROS/TLR4/NF-κB inflammatory signaling pathway.


Assuntos
Infarto Cerebral/tratamento farmacológico , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/tratamento farmacológico , Inflamação/tratamento farmacológico , Piranos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Infarto Cerebral/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Piranos/administração & dosagem , Piranos/química , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/metabolismo
11.
J Neurosci ; 35(21): 8345-58, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26019347

RESUMO

Parkinson's disease (PD) is an age-dependent neurodegenerative disease that often occurs in those over age 60. Although rodents and small animals have been used widely to model PD and investigate its pathology, their short life span makes it difficult to assess the aging-related pathology that is likely to occur in PD patient brains. Here, we used brain tissues from rhesus monkeys at 2-3, 7-8, and >15 years of age to examine the expression of Parkin, PINK1, and α-synuclein, which are known to cause PD via loss- or gain-of-function mechanisms. We found that α-synuclein is increased in the older monkey brains, whereas Parkin and PINK1 are decreased or remain unchanged. Because of the gain of toxicity of α-synuclein, we performed stereotaxic injection of lentiviral vectors expressing mutant α-synuclein (A53T) into the substantia nigra of monkeys and found that aging also increases the accumulation of A53T in neurites and its associated neuropathology. A53T also causes more extensive reactive astrocytes and axonal degeneration in monkey brain than in mouse brain. Using monkey brain tissues, we found that A53T interacts with neurofascin, an adhesion molecule involved in axon subcellular targeting and neurite outgrowth. Aged monkey brain tissues show an increased interaction of neurofascin with A53T. Overexpression of A53T causes neuritic toxicity in cultured neuronal cells, which can be attenuated by transfected neurofascin. These findings from nonhuman primate brains reveal age-dependent pathological and molecular changes that could contribute to the age-dependent neuropathology in PD.


Assuntos
Envelhecimento/genética , Envelhecimento/patologia , Encéfalo/patologia , Degeneração Neural/genética , Degeneração Neural/patologia , alfa-Sinucleína/genética , Envelhecimento/metabolismo , Animais , Encéfalo/metabolismo , Haplorrinos , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Degeneração Neural/metabolismo , alfa-Sinucleína/biossíntese
12.
Bioconjug Chem ; 27(1): 54-8, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26641886

RESUMO

In the treatment of type 2 diabetes mellitus, it is very important to develop therapeutics with prolonged circulation half-life. Exendin-4 is a glucagon like peptide-1 receptor (GLP-1R) agonist that has been modified in different ways for imaging insulinoma and for treating type-2 diabetes. In this work, we synthesized a maleimide derivative of truncated Evans blue dye (MEB-C3-Mal) to conjugate with (Cys(40))exendin-4 to obtain a highly stable MEB-C3-(Cys(40))exendin-4 (denoted as Abextide II). Through in situ binding with endogenous albumin, Abextide II lowers blood glucose level and prolongs the hypoglycemic effect in a type 2 diabetes mouse model more than the FDA approved Albiglutide.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Azul Evans/química , Hipoglicemiantes/farmacologia , Naftalenossulfonatos/farmacologia , Peptídeos/farmacologia , Peçonhas/farmacologia , Animais , Cromatografia Líquida de Alta Pressão , Diabetes Mellitus Experimental/tratamento farmacológico , Estabilidade de Medicamentos , Exenatida , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacocinética , Maleimidas/química , Camundongos Endogâmicos C57BL , Naftalenossulfonatos/química , Peptídeos/química , Albumina Sérica/química , Peçonhas/química
13.
Adv Healthc Mater ; 13(6): e2302811, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37909376

RESUMO

Malignant melanoma is an aggressive skin cancer with a high metastatic and mortality rate. Owing to genetic alterations, melanoma cells are resistant to apoptosis induction, which reduces the efficacy of most adjuvant systemic anticancer treatments in clinical. Here, a noninvasive strategy for anti-melanoma immunotherapy based on a manganese-coordinated nanomedicine is provided. Supplemented with photoirradiation, photon-mediated reactive oxygen species generation by photosensitizer chlorin e6 initiates photon-controlled pyroptosis activation (PhotoPyro) and promotes antitumor immunity. Simultaneously, photoirradiation-triggered double-stranded DNA generation in the cytosol would activate the Mn2+ -sensitized cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, which further augment the PhotoPyro-induced immune response. The syngeneic effect of these immunostimulatory pathways significantly benefits dendritic cell maturation by damage-associated molecular patterns and proinflammatory cytokines secretion, thereby activating T cells and remarkably eliciting a systemic antitumor immune response to inhibiting both primary and distant tumor growth. Collaboratively, the photoirradiation-triggered PhotoPyro and cGAS-STING pathway activation by nanomedicine administration could enhance the antitumor capacity of immunotherapy and serve as a promising strategy for melanoma treatment.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/terapia , Manganês/farmacologia , Nanomedicina , Imunoterapia
14.
Animals (Basel) ; 14(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38891648

RESUMO

Acute hepatopancreatic necrosis disease (AHPND) poses a significant threat to shrimp aquaculture worldwide, necessitating the accurate and rapid detection of the pathogens. However, the increasing number of Vibrio species that cause the disease makes diagnosis and control more difficult. This study focuses on developing a monoclonal antibody against the Photorhabdus insect-related (Pir) toxin B (PirB), a pivotal virulence factor in AHPND-causing Vibrio, and establishing a colloidal gold immunochromatographic assay for the enhanced early diagnosis and monitoring of AHPND. Monoclonal antibodies targeting PirB were developed and utilized in the preparation of colloidal-gold-labeled antibodies for the immunochromatographic assay. The specificity and sensitivity of the assay were evaluated through various tests, including antibody subclass detection, affinity detection, and optimal labeling efficiency assessment. The developed PirB immunochromatographic test strips exhibited a good specificity, as demonstrated by the positive detection of AHPND-causing Vibrio and negative results for non-AHPND-causing Vibrio. The study highlights the potential of the developed monoclonal antibody and immunochromatographic assay for the effective detection of AHPND-causing Vibrio. Further optimization is needed to enhance the sensitivity of the test strips for improved practical applications in disease prevention and control in shrimp aquaculture.

15.
Biomaterials ; 307: 122512, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38430646

RESUMO

Proteotoxic stress, caused by the accumulation of abnormal unfolded or misfolded cellular proteins, can efficiently activate inflammatory innate immune response. Initiating the mitochondrial proteotoxic stress might go forward to enable the cytosolic release of intramitochondrial DNA (mtDNA) for the immune-related mtDNA-cGAS-STING activation, which however is easily eliminated by a cell self-protection, i.e., mitophagy. In light of this, a nanoinducer (PCM) is reported to trigger mitophagy-inhibited cuproptotic proteotoxicity. Through a simple metal-phenolic coordination, PCMs reduce the original Cu2+ with the phenolic group of PEG-polyphenol-chlorin e6 (Ce6) into Cu+. Cu+ thereby performs its high binding affinity to dihydrolipoamide S-acetyltransferase (DLAT) and aggregates DLAT for cuproptotic proteotoxic stress and mitochondrial respiratory inhibition. Meanwhile, intracellular oxygen saved from the respiratory failure can be utilized by PCM-conjugated Ce6 to boost the proteotoxic stress. Next, PCM-loaded mitophagy inhibitor (Mdivi-1) protects proteotoxic products from being mitophagy-eliminated, which allows more mtDNA to be released in the cytosol and successfully stimulate the cGAS-STING signaling. In vitro and in vivo studies reveal that PCMs can upregulate the tumor-infiltrated NK cells by 24% and enhance the cytotoxic killing of effector T cells. This study proposes an anti-tumor immunotherapy through mitochondrial proteotoxicity.


Assuntos
DNA Mitocondrial , Neoplasias , Estresse Proteotóxico , Mitocôndrias , Nucleotidiltransferases , Imunoterapia , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase , Neoplasias/terapia
16.
Animals (Basel) ; 14(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396559

RESUMO

Infections with Enterocytozoon hepatopenaei (EHP), infectious hypodermal and hematopoietic necrosis virus (IHHNV), and Decapod iridescent virus 1 (DIV1) pose significant challenges to the shrimp industry. Here, a melting curve-based triple real-time PCR assay based on the fluorescent dye Eva Green was established for the simultaneous detection of EHP, IHHNV, and DIV1. The assay showed high specificity, sensitivity, and reproducibility. A total of 190 clinical samples from Shandong, Jiangsu, Sichuan, Guangdong, and Hainan provinces in China were evaluated by the triple Eva Green real-time PCR assay. The positive rates of EHP, IHHNV, and DIV1 were 10.5%, 18.9%, and 44.2%, respectively. The samples were also evaluated by TaqMan qPCR assays for EHP, DIV1, and IHHNV, and the concordance rate was 100%. This illustrated that the newly developed triple Eva Green real-time PCR assay can provide an accurate method for the simultaneous detection of three shrimp pathogens.

17.
ACS Appl Mater Interfaces ; 16(25): 32402-32410, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38875019

RESUMO

Optical signals with distinctive properties, such as contactless, fast response, and high identification, are harnessed to realize advanced anti-counterfeiting. However, the simultaneous attainment of multi-color, -temporal, and -modal luminescence performance remains a compelling and imperative pursuit. In our work, a temperature/photon-responded dynamic self-activated luminescence originating from nonstoichiometric Zn2GeO4 is developed with the modulation of intrinsic defects. The increased concentration of oxygen vacancies (VO••) contributes to an enhanced recombination of ZnGe″-VO••, ultimately improving the self-activated luminescence performance. Additionally, the photoluminescence (PL) color of the representative Zn2.2GeO4 sample changes from green to blue-white with the increased ultraviolet (UV) irradiation time. Concurrently, the emission color undergoes a variation from blue to green as the ambient temperature raises from 280 to 420 K. Remarkably, green long persistent luminescence (LPL) and photostimulated luminescence (PSL) behaviors are observed. Herein, this study elucidates a sophisticated anti-counterfeiting approach grounded in the dynamic luminescent attributes of nonstoichiometric Zn2GeO4, presenting a promising frontier for the evolution of anti-counterfeiting technologies.

18.
Adv Mater ; 36(19): e2312588, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38316447

RESUMO

Cancer cells can upregulate the MYC expression to repair the radiotherapy-triggered DNA damage, aggravating therapeutic resistance and tumor immunosuppression. Epigenetic treatment targeting the MYC-transcriptional abnormality may intensively solve this clinical problem. Herein, 5-Aza (a DNA methyltransferase inhibitor) and ITF-2357 (a histone deacetylase inhibitor) are engineered into a tungsten-based nano-radiosensitizer (PWAI), to suppress MYC rising and awaken robust radiotherapeutic antitumor immunity. Individual 5-Aza depletes MYC expression but cannot efficiently awaken radiotherapeutic immunity. This drawback can be overcome by the addition of ITF-2357, which triggers cancer cellular type I interferon (IFN-I) signaling. Coupling 5-Aza with ITF-2357 ensures that PWAI does not evoke the treated model with high MYC-related immune resistance while amplifying the radiotherapeutic tumor killing, and more importantly promotes the generation of IFN-I signal-related proteins involving IFN-α and IFN-ß. Unlike the radiation treatment alone, PWAI-triggered immuno-radiotherapy remarkably enhances antitumor immune responses involving the tumor antigen presentation by dendritic cells, and improves intratumoral recruitment of cytotoxic T lymphocytes and their memory-phenotype formation in 4T1 tumor-bearing mice. Downgrading the radiotherapy-induced MYC overexpression via the dual-epigenetic reprogramming strategy may elicit a robust immuno-radiotherapy.


Assuntos
Epigênese Genética , Imunoterapia , Proteínas Proto-Oncogênicas c-myc , Radiossensibilizantes , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Epigênese Genética/efeitos dos fármacos , Terapia de Imunossupressão/métodos , Imunoterapia/métodos , Interferon Tipo I/metabolismo , Nanopartículas/química , Neoplasias/terapia , Neoplasias/imunologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Radiossensibilizantes/farmacologia , Radiossensibilizantes/química , Radiossensibilizantes/uso terapêutico , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Metilases de Modificação do DNA/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico
19.
Vet Sci ; 11(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38922020

RESUMO

Perinereis species are essential benthonic animals in coastal ecosystems and have significant roles as live feed in aquaculture, owing to their high-protein and low-fat nutritional profile. Despite their ecological importance, the viral communities associated with these organisms need to be better understood. In this study, we generated 2.6 × 108 reads using meta-transcriptomic sequencing and de novo assembled 5.3 × 103 virus-associated contigs. We identified 12 novel RNA viruses from two species, Perinereis aibuhitensis and P. wilsoni, which were classified into four major viral groups: Picobirnaviridae, Marnaviridae, unclassified Picornavirales, and unclassified Bunyavirales. Our findings revealed the hidden diversity of viruses and genome structures in Perinereis, enriching the RNA virosphere and expanding the host range of Picobirnaviridae, Marnaviridae, and Bunyavirales. This study also highlighted the potential biosecurity risk of the novel viruses carried by Perinereis to aquaculture.

20.
Sci China Life Sci ; 67(1): 188-203, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37922067

RESUMO

Brine shrimp (Artemia) has existed on Earth for 400 million years and has major ecological importance in hypersaline ecosystems. As a crucial live food in aquaculture, brine shrimp cysts have become one of the most important aquatic products traded worldwide. However, our understanding of the biodiversity, prevalence and global connectedness of viruses in brine shrimp is still very limited. A total of 143 batches of brine shrimp (belonging to seven species) cysts were collected from six continents including 21 countries and more than 100 geographic locations worldwide during 1977-2019. In total, 55 novel RNA viruses were identified, which could be assigned to 18 different viral families and related clades. Eleven viruses were dsRNA viruses, 16 were +ssRNA viruses, and 28 were-ssRNA viruses. Phylogenetic analyses of the RNA-directed RNA polymerase (RdRp) showed that brine shrimp viruses were often grouped with viruses isolated from other invertebrates and fungi. Remarkably, most brine shrimp viruses were related to those from different hosts that might feed on brine shrimp or share the same ecological niche. A notable case was the novel brine shrimp noda-like virus 3, which shared 79.25% (RdRp) and 63.88% (capsid proteins) amino acid identity with covert mortality nodavirus (CMNV) that may cause losses in aquaculture. In addition, both virome composition and phylogenetic analyses revealed global connectedness in certain brine shrimp viruses, particularly among Asia and Northern America. This highlights the incredible species diversity of viruses in these ancient species and provides essential data for the prevalence of RNA viruses in the global aquaculture industry. More broadly, these findings provide novel insights into the previously unrecognized RNA virosphere in hypersaline ecosystems worldwide and demonstrate that human activity might have driven the global connectedness of brine shrimp viruses.


Assuntos
Cistos , Vírus de RNA , Animais , Humanos , Ecossistema , Artemia , Filogenia , Vírus de RNA/genética , RNA Polimerase Dependente de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA