Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 351
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(19): e2402550121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38691590

RESUMO

Earlier sum frequency generation (SFG) experiments involve one infrared and one visible laser, and a measurement of the intensity of the response, yielding data on the surface sensitive properties of the sample. Recently, both the real and imaginary components of the susceptibility were measured in two different sets of experiments. In one set, a broadband infrared laser was used, permitting observations at very short times, while in another set the infrared laser was narrowband, permitting higher spectral resolution. The differences in the spectrum obtained by the two will be most evident in studying narrow absorption bands, e.g., the band due to dangling OH bonds at a water interface. The direct comparisons in the integrated amplitude (sum rule) of the imaginary part of the dangling OH bond region differ by a factor of 3. Due to variations in experimental setup and data processing, corrections were made for the quartz reference, Fresnel factors, and the incident visible laser wavelength. After the corrections, the agreement differs now by the factors of 1.1 within broadband and narrowband groups and the two groups now differ by a factor of 1.5. The 1.5 factor may arise from the extra heating of the more powerful broadband laser system on the water surface. The convolution from the narrowband SFG spectrum to the broadband SFG spectrum is also investigated and it does not affect the sum rule. Theory and narrowband experiments are compared using the sum rule and agree to a factor of 1.3 with no adjustable parameters.

2.
J Virol ; 98(1): e0143723, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38084957

RESUMO

SARS-CoV-2 belongs to the subgenus Sarbecovirus, which universally encodes the accessory protein ORF6. SARS-CoV-2 ORF6 is an antagonist of the interferon (IFN)-mediated antiviral response and plays an important role in viral infections. However, the mechanism by which the host counteracts the function of ORF6 to restrict viral replication remains unclear. In this study, we found that most ORF6 proteins encoded by sarbecoviruses could be ubiquitinated and subsequently degraded via the proteasome pathway. Through extensive screening, we identified that the deubiquitinase USP1, which effectively and broadly deubiquitinates sarbecovirus ORF6 proteins, stabilizes ORF6 proteins, resulting in enhanced viral replication. Therefore, ubiquitination and deubiquitination of ORF6 are important for antagonizing IFN-mediated antiviral signaling and influencing the virulence of SARS-CoV-2. These findings highlight an essential molecular mechanism and may provide a novel target for therapeutic interventions against viral infections.IMPORTANCEThe ORF6 proteins encoded by sarbecoviruses are essential for effective viral replication and infection and are important targets for developing effective intervention strategies. In this study, we confirmed that sarbecovirus ORF6 proteins are important antagonists of the host immune response and identified the regulatory mechanisms of ubiquitination and deubiquitination of most sarbecovirus ORF6 proteins. Moreover, we revealed that DUB USP1 prevents the proteasomal degradation of all ORF6 proteins, thereby promoting the virulence of SARS-CoV-2. Thus, impeding ORF6 function is helpful for attenuating the virulence of sarbecoviruses. Therefore, our findings provide a deeper understanding of the molecular mechanisms underlying sarbecovirus infections and offer potential new therapeutic targets for the prevention and treatment of these infections.


Assuntos
SARS-CoV-2 , Proteínas Virais , Viroses , Humanos , Enzimas Desubiquitinantes , Interferons/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
3.
J Am Chem Soc ; 146(17): 11657-11668, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38641862

RESUMO

All protein-directed syntheses of metal nanoclusters (NCs) and nanoparticles (NPs) have attracted considerable attention because protein scaffolds provide a unique metal coordination environment and can adjust the shape and morphology of NCs and NPs. However, the detailed formation mechanisms of NCs or NPs directed by protein templates remain unclear. In this study, by taking advantage of the ferritin nanocage as a biotemplate to monitor the growth of Fe-O NCs as a function of time, we synthesized a series of iron NCs with different sizes and shapes and subsequently solved their corresponding three-dimensional atomic-scale structures by X-ray protein crystallography and cryo-electron microscopy. The time-dependent structure analyses revealed the growth process of these Fe-O NCs with the 4-fold channel of ferritin as nucleation sites. To our knowledge, the newly biosynthesized Fe35O23Glu12 represents the largest Fe-O NCs with a definite atomic structure. This study contributes to our understanding of the formation mechanism of iron NCs and provides an effective method for metal NC synthesis.


Assuntos
Ferritinas , Tamanho da Partícula , Ferritinas/química , Nanopartículas Metálicas/química , Ferro/química , Modelos Moleculares , Cristalografia por Raios X , Compostos Férricos/química
4.
BMC Cancer ; 24(1): 496, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637761

RESUMO

Ferroptosis has important value in cancer treatment. It is significant to explore the new ferroptosis-related lncRNAs prediction model in Hepatocellular carcinoma (HCC) and the potential molecular mechanism of ferroptosis-related lncRNAs. We constructed a prognostic multi-lncRNA signature based on ferroptosis-related differentially expressed lncRNAs in HCC. qRT-PCR was applied to determine the expression of lncRNA in HCC cells. The biological roles of NRAV in vitro and in vivo were determined by performing a series of functional experiments. Furthermore, dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to confirm the interaction of NRAV with miR-375-3P. We identified 6 differently expressed lncRNAs associated with the prognosis of HCC. Kaplan-Meier analyses revealed the high-risk lncRNAs signature associated with poor prognosis of HCC. Moreover, the AUC of the lncRNAs signature showed utility in predicting HCC prognosis. Further functional experiments show that the high expression of NRAV can strengthen the viciousness of HCC. Interestingly, we found that NRAV can enhance iron export and ferroptosis resistance. Further study showed that NRAV competitively binds to miR-375-3P and attenuates the inhibitory effect of miR-375-3P on SLC7A11, affecting the prognosis of patients with HCC. In conclusion, We developed a novel ferroptosis-related lncRNAs prognostic model with important predictive value for the prognosis of HCC. NRAV is important in ferroptosis induction through the miR-375-3P/SLC7A11 axis.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/genética , RNA Longo não Codificante/genética , Ferroptose/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , Prognóstico , Sistema y+ de Transporte de Aminoácidos/genética
5.
Cell Commun Signal ; 22(1): 173, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462636

RESUMO

BACKGROUND: Targeting the tumor microenvironment (TME) has emerged as a promising strategy in cancer treatment, particularly through the utilization of immune checkpoint blockade (ICB) agents such as PD-1/PD-L1 inhibitors. Despite partial success, the presence of tumor-associated macrophages (TAMs) contributes to an immunosuppressive TME that fosters tumor progression, and diminishes the therapeutic efficacy of ICB. Blockade of the CD47/SIRPα pathway has proven to be an effective intervention, that restores macrophage phagocytosis and yields substantial antitumor effects, especially when combined with PD-1/PD-L1 blockade. Therefore, the identification of small molecules capable of simultaneously blocking CD47/SIRPα and PD-1/PD-L1 interactions has remained imperative. METHODS: SMC18, a small molecule with the capacity of targeting both SIRPα and PD-L1 was obtained using MST. The efficiency of SMC18 in interrupting CD47/SIRPα and PD-1/PD-L1 interactions was tested by the blocking assay. The function of SMC18 in enhancing the activity of macrophages and T cells was tested using phagocytosis assay and co-culture assay. The antitumor effects and mechanisms of SMC18 were investigated in the MC38-bearing mouse model. RESULTS: SMC18, a small molecule that dual-targets both SIRPα and PD-L1 protein, was identified. SMC18 effectively blocked CD47/SIRPα interaction, thereby restoring macrophage phagocytosis, and disrupted PD-1/PD-L1 interactions, thus activating Jurkat cells, as evidenced by increased secretion of IL-2. SMC18 demonstrated substantial inhibition of MC38 tumor growths through promoting the infiltration of CD8+ T and M1-type macrophages into tumor sites, while also priming the function of CD8+ T cells and macrophages. Moreover, SMC18 in combination with radiotherapy (RT) further improved the therapeutic efficacy. CONCLUSION: Our findings suggested that the small molecule compound SMC18, which dual-targets the CD47/SIRPα and PD-1/PD-L1 pathways, could be a candidate for promoting macrophage- and T-cell-mediated phagocytosis and immune responses in cancer immunotherapy.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Animais , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1 , Linfócitos T CD8-Positivos , Antígeno CD47/metabolismo , Antígeno B7-H1 , Fagocitose , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Microambiente Tumoral
6.
Langmuir ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320153

RESUMO

The sorbent concentration (Cs) effect and sorbate initial concentration (C0) effect are common phenomena observed in the study of adsorption kinetics at solid-liquid interfaces. That is, adsorption rate constants simulated with classical kinetic equations, such as the pseudo-second-order (PSO) model, for a given system vary with Cs and C0. The classical kinetic equations cannot predict or describe the "Cs-effect" and "C0-effect" (called "C-effects" here). In the current work, the dynamic partition coefficient of sorbate between solid and liquid phases (Kt) was used to describe the adsorption kinetic processes. Based on the surface component activity (SCA) model, which assumes the activity coefficients of the surface components (fs) are not equal to unity but rather a function of Cs and the adsorption capacity (or C0) and referring to the classical PSO model, a new kinetic equation was established, called the "SCA-PSO kinetic model", and its two parameters, the intrinsic equilibrium partition coefficient (Ke0) and the intrinsic rate constant (k20), are independent of Cs and C0. In addition, the new model relates Kt and the rate constant (k2) to Cs and C0 via fs, and can thus describe the C-effects. The fs can be estimated from the change of equilibrium partition coefficient (Ke) with Cs and C0. The new model predicts that with the increase of Cs and C0, Ke decreases while k2 increases. Its rationality was confirmed by the literature-reported adsorption kinetic data of heavy metals on inorganic and biomass sorbents with the C-effects.

7.
Cell Mol Biol Lett ; 29(1): 77, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769475

RESUMO

BACKGROUND: Tumor-associated macrophages (TAMs) significantly influence the progression, metastasis, and recurrence of esophageal squamous cell carcinoma (ESCC). The aberrant expression of long noncoding RNAs (lncRNAs) in ESCC has been established, yet the role of lncRNAs in TAM reprogramming during ESCC progression remains largely unexplored. METHODS: ESCC TAM-related lncRNAs were identified by intersecting differentially expressed lncRNAs with immune-related lncRNAs and performing immune cell infiltration analysis. The expression profile and clinical relevance of LINC00330 were examined using the TCGA database and clinical samples. The LINC00330 overexpression and interference sequences were constructed to evaluate the effect of LINC00330 on ESCC progression. Single-cell sequencing data, CIBERSORTx, and GEPIA were utilized to analyze immune cell infiltration within the ESCC tumor microenvironment and to assess the correlation between LINC00330 and TAM infiltration. ESCC-macrophage coculture experiments were conducted to investigate the influence of LINC00330 on TAM reprogramming and its subsequent effect on ESCC progression. The interaction between LINC00330 and C-C motif ligand 2 (CCL2) was confirmed through transcriptomic sequencing, subcellular localization analysis, RNA pulldown, silver staining, RNA immunoprecipitation, and other experiments. RESULTS: LINC00330 is significantly downregulated in ESCC tissues and strongly associated with poor patient outcomes. Overexpression of LINC00330 inhibits ESCC progression, including proliferation, invasion, epithelial-mesenchymal transition, and tumorigenicity in vivo. LINC00330 promotes TAM reprogramming, and LINC00330-mediated TAM reprogramming inhibits ESCC progression. LINC00330 binds to the CCL2 protein and inhibits the expression of CCL2 and downstream signaling pathways. CCL2 is critical for LINC00330-mediated TAM reprogramming and ESCC progression. CONCLUSIONS: LINC00330 inhibited ESCC progression by disrupting the CCL2/CCR2 axis and its downstream signaling pathways in an autocrine fashion; and by impeding CCL2-mediated TAM reprogramming in a paracrine manner. The new mechanism of TAM reprogramming mediated by the LINC00330/CCL2 axis may provide potential strategies for targeted and immunocombination therapies for patients with ESCC.


Assuntos
Quimiocina CCL2 , Progressão da Doença , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante , Microambiente Tumoral , Macrófagos Associados a Tumor , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral/genética , Macrófagos Associados a Tumor/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Animais , Camundongos , Feminino , Proliferação de Células/genética
8.
Ecotoxicol Environ Saf ; 269: 115810, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100849

RESUMO

BACKGROUND: Jujuboside B (JuB) is the main bioactive saponin component of Chinese anti-insomnia herbal medicine Ziziphi Spinosae Semen, which has been reported to possess varied pharmacological functions. Even though it has been traditionally used to treat inflammation- and toxicity-related diseases, the effects of JuB on acetaminophen (APAP) overdose-induced hepatotoxicity have not been determined yet. METHODS: C57BL/6 J mice were pre-treated with JuB (20 or 40 mg/kg) for seven days before APAP (400 mg/kg) injection. After 24 h of APAP treatment, serum, and liver tissues were collected to evaluate the therapeutic effects. To investigate whether the Nrf2-STING signaling pathway is involved in the protective effects of JuB against APAP-induced hepatotoxicity, the mice received the DMXAA (the specific STING agonist) or ML385 (the specific Nrf2 inhibitor) during the administration of JuB, and Hematoxylin-eosin staining, Real-time PCR, immunohistochemical, and western blot were performed. RESULTS: JuB pretreatment reversed APAP-induced CYP2E1 accumulations and alleviated APAP-induced acute liver injury. Furthermore, JuB treatment significantly inhibited oxidative stress and the pro-inflammatory cytokines, as well as alleviated hepatocyte apoptosis induced by APAP. Besides, our result also demonstrated that JuB treatment upregulated the levels of total Nrf2, facilitated its nuclear translocation, upregulated the expression of HO-1 and NQO-1, and inhibited the APAP-induced STING pathway activation. Finally, we verified that the beneficial effects of JuB were weakened by DMXAA and ML385. CONCLUSION: Our study suggested that JuB could ameliorate APAP-induced hepatic damage and verified a previously unrecognized mechanism by which JuB prevented APAP-induced hepatotoxicity through adjusting the Nrf2-STING pathway.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Saponinas , Animais , Camundongos , Acetaminofen/toxicidade , Acetaminofen/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Substâncias Protetoras/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Camundongos Endogâmicos C57BL , Transdução de Sinais , Estresse Oxidativo , Fígado , Saponinas/farmacologia , Saponinas/uso terapêutico
9.
Pestic Biochem Physiol ; 202: 105932, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879298

RESUMO

The marine antifungal peptide epinecidin-1 (EPI) have been shown to inhibit Botrytis cinerea growth, while the molecular mechanism have not been explored based on omics technology. This study aimed to investigate the molecular mechanism of EPI against B. cinerea by transcriptome technology. Our findings indicated that a total of 1671 differentially expressed genes (DEGs) were detected in the mycelium of B. cinerea treated with 12.5 µmol/L EPI for 3 h, including 773 up-regulated genes and 898 down-regulated genes. Cluster analysis showed that DEGs (including steroid biosynthesis, (unsaturated) fatty acid biosynthesis) related to cell membrane metabolism were significantly down-regulated, and almost all DEGs involved in DNA replication were significantly inhibited. In addition, it also induced the activation of stress-related pathways, such as the antioxidant system, ATP-binding cassette transporter (ABC) and MAPK signaling pathways, and interfered with the tricarboxylic acid (TCA) cycle and oxidative phosphorylation pathways related to mitochondrial function. The decrease of mitochondrial related enzyme activities (succinate dehydrogenase, malate dehydrogenase and adenosine triphosphatase), the decrease of mitochondrial membrane potential and the increase content of hydrogen peroxide further confirmed that EPI treatment may lead to mitochondrial dysfunction and oxidative stress. Based on this, we speculated that EPI may impede the growth of B. cinerea through its influence on gene expression, and may lead to mitochondrial dysfunction and oxidative stress.


Assuntos
Antifúngicos , Peptídeos Catiônicos Antimicrobianos , Botrytis , Transcriptoma , Transcriptoma/fisiologia , Antifúngicos/metabolismo , Peptídeos Catiônicos Antimicrobianos/toxicidade , Botrytis/efeitos dos fármacos , Botrytis/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Peróxido de Hidrogênio , Expressão Gênica , Transportadores de Cassetes de Ligação de ATP/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno , Mitocôndrias , Estresse Oxidativo
10.
World J Microbiol Biotechnol ; 40(5): 161, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613738

RESUMO

Rhizopus nigricans (R. nigricans), one of the fungi that grows the fastest, is frequently discovered in postharvest fruits, it's the main pathogen of strawberry root rot. Flavonoids in Sedum aizoon L. (FSAL) is a kind of green and safe natural substance extracted from Sedum aizoon L. which has antifungal activity. In this study, the minimum inhibitory concentration (MIC) of FSAL on R. nigricans and cell apoptosis tests were studied to explore the inhibitory effect of FSAL on R. nigricans. The effects of FSAL on mitochondria of R. nigricans were investigated through the changes of mitochondrial permeability transition pore(mPTP), mitochondrial membrane potential(MMP), Ca2+ content, H2O2 content, cytochrome c (Cyt c) content, the related enzyme activity and related genes of mitochondria. The results showed that the MIC of FSAL on R. nigricans was 1.800 mg/mL, with the addition of FSAL (1.800 mg/mL), the mPTP openness of R. nigricans increased and the MMP reduced. Resulting in an increase in Ca2+ content, accumulation of H2O2 content and decrease of Cyt c content, the activity of related enzymes was inhibited and related genes were up-regulated (VDAC1, ANT) or down-regulated (SDHA, NOX2). This suggests that FSAL may achieve the inhibitory effect of fungi by damaging mitochondria, thereby realizing the postharvest freshness preservation of strawberries. This lays the foundation for the development of a new plant-derived antimicrobial agent.


Assuntos
Fragaria , Rhizopus , Sedum , Flavonoides/farmacologia , Peróxido de Hidrogênio , Citocromos c , Mitocôndrias
11.
J Am Chem Soc ; 145(36): 20109-20120, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37656940

RESUMO

Zn-Mn batteries with two-electron conversion reactions simultaneously on the cathode and anode harvest a high voltage plateau and high energy density. However, the zinc anode faces dendrite growth and parasitic side reactions while the Mn2+/MnO2 reaction on the cathode involves oxygen evolution and possesses poor reversibility. Herein, a novel nanomicellar electrolyte using methylurea (Mu) has been developed that can encapsulate ions in the nanodomain structure to guide the homogeneous deposition of Zn2+/Mn2+ in the form of controlled release under an external electric field. Consecutive hydrogen bonding network is broken and a favorable local hydrogen bonding system is established, thus inhibiting the water-splitting-derived side reactions. Concomitantly, the solid-electrolyte interface protective layer is in situ generated on the Zn anode, further circumventing the corrosion issue resulting from the penetration of water molecules. The reversibility of the Mn2+/MnO2 conversion reaction is also significantly enhanced by regulating interfacial wettability and improving nucleation kinetics. Accordingly, the modified electrolyte endows the symmetric Zn∥Zn cell with extended cyclic stability of 800 h with suppressed dendrites growth at an areal capacity of 1 mAh cm-2. The assembled Zn-Mn electrolytic battery also demonstrates an exceptional capacity retention of nearly 100% after 800 cycles and a superior energy density of 800 Wh kg-1 at an areal capacity of 0.5 mAh cm-2.

12.
Respir Res ; 24(1): 204, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598171

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a lethal vascular disease with limited therapeutic options. The mechanistic connections between alveolar hypoxia and PH are not well understood. The aim of this study was to investigate the role of mitotic regulator Polo-like kinase 1 (PLK1) in PH development. METHODS: Mouse lungs along with human pulmonary arterial smooth muscle cells and endothelial cells were used to investigate the effects of hypoxia on PLK1. Hypoxia- or Sugen5416/hypoxia was applied to induce PH in mice. Plk1 heterozygous knockout mice and PLK1 inhibitors (BI 2536 and BI 6727)-treated mice were checked for the significance of PLK1 in the development of PH. RESULTS: Hypoxia stimulated PLK1 expression through induction of HIF1α and RELA. Mice with heterozygous deletion of Plk1 were partially resistant to hypoxia-induced PH. PLK1 inhibitors ameliorated PH in mice. CONCLUSIONS: Augmented PLK1 is essential for the development of PH and is a druggable target for PH.


Assuntos
Hipertensão Pulmonar , Humanos , Animais , Camundongos , Hipertensão Pulmonar/genética , Células Endoteliais , Proteínas de Ciclo Celular/genética , Hipóxia , Camundongos Knockout , Quinase 1 Polo-Like
13.
Langmuir ; 39(40): 14404-14411, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37766451

RESUMO

There should be some intrinsic correlations between the surface free energy (γ) and solubility (δ) parameters, called characteristic parameters here, of substances with their basic physical properties such as the relative dielectric constant (εr) and density (ρ), because they are all related to intermolecular interactions. Several correlations have been proposed empirically (or semiempirically) for liquids, but not for solids. It is essential to establish such correlations for solids because the estimation of γ and δ for solids is difficult and/or time-consuming. In the current work, the γ, δ, εr, and ρ data of 34 inorganic solids were chosen, and possible relationships between the characteristic parameters (γ and δ) and the physical quantities (εr and ρ) were explored by a trial-and-error fitting method based on the data of the solids. Six equations relating γ and δ to εr and δ were established. The γ parameters include total (γt), dispersive (γd), and polar (γp) ones, and the δ parameters include the Hildebrand parameter (δt) and the Hansen-dispersive (δd), polar (δp), and hydrogen-bonding (δh) ones. The empirical equations can be used to estimate the characteristic parameters of inorganic solids from their easily measurable physical quantities.

14.
Langmuir ; 39(42): 15095-15106, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37812738

RESUMO

The detrimental impact of organic contaminants on optical components poses a significant obstacle to high-energy laser systems. However, irregularities or defects on the surface of optical components during manufacturing can affect the process of organic contaminant removal. Thus, a comprehensive understanding of the intricate interplay among surface roughness, contaminant absorption, and ablation is essential to effectively address the challenges of laser-induced damage. In this study, a molecular dynamics approach was employed to investigate the interaction between laser-fused silica and contaminants and to analyze the influence of surface roughness on the removal of contaminants from fused silica. Research findings demonstrate that during laser irradiation, organic contaminants on the surface of mechanical components diffuse into the optical elements. As the laser flux increases, the contaminants gradually decompose into smaller molecular clusters. Additionally, the phenomenon of contaminant ablation is observed to consist of two distinct phases: the "Thermal expansion phase" and the "Thermal ablation phase." The study examines the impact of substrate roughness on the contaminant removal in these two phases. It is found that a higher surface roughness leads to stronger thermal expansion and vaporization of contaminants. With increasing roughness of the fused silica substrate, the corresponding van der Waals energy and pressure decrease under the same laser fluence, making the removal of contaminants easier. These results provide valuable insights into the interaction between laser irradiation and organic contaminants.

15.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37831063

RESUMO

Light yellowish-white colonies of a bacterial strain, designated LNNU 24178T, were isolated from the rhizosphere soil of halophyte Suaeda aralocaspica (Bunge) Freitag and Schütze grown at Shihezi district, Xinjiang, PR China. Cells were Gram-stain-negative, non-flagellum-forming, rod-shaped and non-motile. The results of phylogenetic analysis based on the 16S rRNA gene sequence indicated that LNNU 24178T represented a member of the genus Luteimonas and shared the highest sequence similarity with Luteimonas yindakuii CGMCC 1.13927T (97.1 %) and lower sequence similarity (< 97.0 %) to other known species. The genomic DNA G+C content of LNNU 24178T was 68.8 %. The average nucleotide identity (ANI) values between LNNU 24178T and Luteimonas yindakuii CGMCC 1.13927T, Luteimonas mephitis DSM 12574T, Luteimonas arsenica 26-35T and Luteimonas huabeiensis HB2T were 78.7, 78.6, 78.4 and 80.0 %, respectively. The digital DNA-DNA hybridisation (dDDH) values between LNNU 24178T and L. yindakuii CGMCC 1.13927T, L. mephitis DSM 12574T, L. arsenica 26-35T and L. huabeiensis HB2T were 22.0, 22.3, 22.2 and 23.5 %, respectively. The respiratory quinone detected in LNNU 24178T was ubiquinone-8 (Q-8). The major fatty acids (> 5.0 %) of LNNU 24178T were identified as iso-C15 : 0 (33.9 %), iso-C17 : 0 (8.7 %), iso-C11 : 0 (6.2 %), iso-C16 : 0 (5.7 %), C16 : 0 (5.3 %) and summed feature 9 (iso-C17 : 1ω9c/10-methyl C16 : 0) (21.1 %). The major polar lipids of LNNU 24178T were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), one unidentified phospholipid (PL), one unidentified glycolipid (GL) and three unidentified lipids. According to the data obtained from phenotypic, chemotaxonomic and phylogenetic analyses, strain LNNU 24178T represents a novel species of the genus Luteimonas, for which the name Luteimonas suaedae sp. nov. is proposed, with LNNU 24178T (= CGMCC 1.17331T= KCTC 62251T) as the type strain.


Assuntos
Ácidos Graxos , Rizosfera , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Fosfolipídeos
16.
J Endovasc Ther ; : 15266028231205718, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37882181

RESUMO

PURPOSE: Up to now, the indications of inferior vena cava filter placement still remain controversial in the academic field. The aim of this study was to determine the risk factors of detachment of thrombus and to evaluate the necessity of inferior vena cava filter placement to prevent fatal pulmonary embolism. MATERIALS AND METHODS: A total of 2892 patients participated in the multicenter prospective observational study from January 1, 2018, to December 31, 2018, and underwent retrievable inferior vena cava filter (RIVCF) placement in 103 centers in China. The primary endpoint of the study was RIVCF trapped embolus detected by inferior vena cava venography/ultrasound/computed tomography scanning or visible macroscopic thrombus before or during RIVCF retrieval. The relative factors of RIVCF trapped embolus were analyzed accordingly. RESULTS: The average age of the patients was 61.0 (50.0-71.0) years. Retrievable inferior vena cava filter trapped embolus occurred in 308 patients (10.65%). The fracture location, surgery location, and endovascular intervention differed between RIVCF trapped embolus and non-RIVCF trapped embolus groups (p<0.001, respectively). By multivariate analysis, RIVCF trapped embolus were less common in older patients (odds ratio [OR]=0.998; p<0.001) and more common in patients with below-the-knee fracture (OR=1.093, p=0.038), thigh fracture (OR=1.118, p=0.007), and pelvis surgery (OR=1.067, p=0.016). In addition, compared with patients without endovascular intervention, patients with percutaneous mechanical thrombectomy (PMT) + catheter-directed thrombolysis (CDT) were more prone to develop RIVCF trapped embolus (OR=1.060, p=0.010). However, RIVCF trapped embolus was less common in patients with CDT (OR=0.961, p=0.004). CONCLUSIONS: Lower limb fracture, pelvis surgery, and PMT + CDT are prone to cause trapped embolus. As a trapped embolus often represents the possibility of severe pulmonary embolism, lower limb fracture, pelvis surgery, and PMT + CDT could be risk factors of fatal pulmonary embolism. Due to the low incidence of trapped embolus, it is not necessary to place filters in elderly patients and CDT-only patients. CLINICAL IMPACT: The purpose of this paper is to standardize the use of inferior vena cava filter and avoid unnecessary filter implantation through the summary and analysis of a large number of clinical data. At the same time, more attention should be paid to and active treatment should be given to high-risk groups of pulmonary embolism.

17.
Appl Microbiol Biotechnol ; 107(11): 3687-3697, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37079063

RESUMO

Pseudomonas fragi (P. fragi) is one of the main categories of bacteria responsible for the spoilage of chilled meat. In the processing and preservation of chilled meat, it is easy to form biofilms on the meat, leading to the development of slime on the meat, which becomes a major quality defect. Flavonoids, as one of the critical components of secondary plant metabolites, are receiving increasing attention for their antibacterial activity. Flavonoids in Sedum aizoon L. (FSAL), relying on its prominent antibacterial activity, are of research importance in food preservation and other applications. This article aims to investigate the effect of FSAL on the biofilm formation of P. fragi, to better apply FSAL to the processing and preservation of meat products. The disruption of cellular structure and aggregation properties by FSAL was demonstrated by the observation of the cellular state within the biofilm. The amount of biofilm formation was determined by crystal violet staining, and the content of polysaccharides and proteins in the extracellular wrapped material was determined. It was shown that the experimental concentrations of FSAL (1.0 MIC) was able to inhibit biofilm formation and reduce the main components in the extracellular secretion. The swimming motility assay and the downregulation of flagellin-related genes confirmed that FSAL reduced cell motility and adhesion. The downregulation of cell division genes and the lowering of bacterial metabolic activity suggested that FSAL could hinder bacterial growth and reproduction within P. fragi biofilms. KEY POINTS: • FSAL inhibited the activity of Pseudomonas fragi in the dominant meat strain • The absence of EPS components affected the formation of P. fragi biofilms • P. fragi has reduced adhesion capacity due to impaired flagellin function.


Assuntos
Pseudomonas fragi , Sedum , Pseudomonas fragi/genética , Pseudomonas fragi/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo , Flagelina , Biofilmes
18.
J Plant Res ; 136(5): 631-641, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37202494

RESUMO

Environmental conditions during seed development and maturation can affect seed traits and germination behavior, yet systematic research on the effects of seed maturation time on seed traits, germination behavior and seedling emergence of cleistogamy plants is lacking. Here, we determined the difference in phenotypic characteristics of CH and CL (namely CL1, CL2 and CL3 based on maturation time, respectively) fruits/seeds that were collected from Viola prionantha Bunge, a cleistogamous perennial plant, and evaluated the effects of various environmental factors on seed germination and seedling emergence. The fruit mass, width, seed number per fruit and mean seed mass of CL1 and CL3 were greater than that of CH and CL2, while seed setting of CH was lower than that of CL1, CL2 and CL3. Germination of CH, CL1, CL2, and CL3 seeds was < 10% in the dark at 15/5 and 20/10 â„ƒ, whereas germination (0%-99.2%) of CH, CL1, CL2, and CL3 seeds changed significantly under light conditions. In contrast, more than 71% (from 71.7 to 94.2%) germination of both CH, CL1, CL2 and CL3 seeds occurred under both light/dark conditions and continuous darkness at 30/20 â„ƒ. Germination of CH, CL1, CL2 and CL3 seeds was sensitive to osmotic potential, but CL1 seeds were more resistant to osmotic stress, compared with CH, CL2 and CL3. Seedling emergence of CH seeds was more than 67% (from 67.8 to 73.3%) at a burial depth of 0 cm-2 cm, while all types of CL seeds were below 15% at a burial depth of 2 cm. Information gathered from this study indicates that CH and CL seeds of V. prionantha were different in fruit size, seed mass, thermoperiod and photoperiod sensitivity, osmotic potential tolerance and seedling emergence, especially, maturation time significantly affect phenotypic characteristics and germination behavior of CL seeds matured at different periods. These results indicate that V. prionantha adapts to unpredictable environmental conditions by developing a variety of adaptation strategies, and ensures the survival and reproduction of the populations.


Assuntos
Plântula , Viola , Germinação , Sementes , Reprodução
19.
Proc Natl Acad Sci U S A ; 117(52): 32902-32909, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318168

RESUMO

Biomolecular hydration is fundamental to biological functions. Using phase-resolved chiral sum-frequency generation spectroscopy (SFG), we probe molecular architectures and interactions of water molecules around a self-assembling antiparallel ß-sheet protein. We find that the phase of the chiroptical response from the O-H stretching vibrational modes of water flips with the absolute chirality of the (l-) or (d-) antiparallel ß-sheet. Therefore, we can conclude that the (d-) antiparallel ß-sheet organizes water solvent into a chiral supermolecular structure with opposite handedness relative to that of the (l-) antiparallel ß-sheet. We use molecular dynamics to characterize the chiral water superstructure at atomic resolution. The results show that the macroscopic chirality of antiparallel ß-sheets breaks the symmetry of assemblies of surrounding water molecules. We also calculate the chiral SFG response of water surrounding (l-) and (d-) LK7ß to confirm the presence of chiral water structures. Our results offer a different perspective as well as introduce experimental and computational methodologies for elucidating hydration of biomacromolecules. The findings imply potentially important but largely unexplored roles of water solvent in chiral selectivity of biomolecular interactions and the molecular origins of homochirality in the biological world.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Oligopeptídeos/química , Isomerismo , Leucina/química , Lisina/química , Conformação Proteica em Folha beta , Dobramento de Proteína , Multimerização Proteica , Água/química
20.
Foodborne Pathog Dis ; 20(5): 197-208, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37172299

RESUMO

Rhizopus nigricans is a widespread phytopathogen in fruits and vegetables that can cause considerable economic effects and resource waste. Flavonoids from Sedum aizoon L. (FSAL) have specific antifungal activities. This study selected FSAL as an antifungal to prolong the preservation of fruits and vegetables. The results showed that the mycelial morphology and ultrastructure were damaged by the FSAL treatment (1.0 minimum inhibitory concentration), led to the increase of reactive oxygen species and malondialdehyde, and affected the activity of key enzymes in the glycolytic pathway, such as lactic dehydrogenase, pyruvate kinase, and hexokinase of R. nigricans. Key genes in glycolysis were upregulated or downregulated. In addition, in the treatment and control groups, 221 differentially expressed genes were found, including 89 that were upregulated and 32 that were downregulated, according to the transcriptome results. The differential genes were mainly enriched in glycolysis, pyruvate metabolism, and citrate cycle pathways. The results revealed some insights into the antifungal mechanism of FSAL against R. nigricans and offered a theoretical foundation for its advancement as a novel plant-derived antifungal agent.


Assuntos
Flavonoides , Sedum , Flavonoides/farmacologia , Flavonoides/química , Sedum/química , Antifúngicos/farmacologia , Rhizopus , Verduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA