Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007348

RESUMO

Incipient ferroelectrics have emerged as an attractive class of functional materials owing to their potential to be engineered for exotic ferroelectric behavior, holding great promise for expanding the ferroelectric family. However, thus far, their artificially engineered ferroelectricity has fallen far short of rivaling classic ferroelectrics. In this study, we address this challenge by developing a superfine nanodomain engineering strategy. By applying this approach to representative incipient ferroelectric of SrTiO3-based films, we achieve unprecedentedly strong ferroelectricity, not only surpassing previous records for incipient ferroelectrics but also being comparable to classic ferroelectrics. The remanent polarization of the thin film reaches up to 17.0 µC cm-2 with an ultrahigh Curie temperature of 973 K. Atomic-scale investigations elucidate the origin of this robust ferroelectricity in the emergent high-density superfine nanodomains spanning merely 3-10 unit cells. Combining experimental results with theoretical assessments, we unveil the underlying mechanism, where the intentionally introduced diluted foreign Fe element creates a deeper Landau energy well and promotes a short-range ordering of polarization. Our developed strategy significantly streamlines the design of unconventional ferroelectrics, providing a versatile pathway for exploring new and superior ferroelectric materials.

2.
Nano Lett ; 23(4): 1273-1279, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36729943

RESUMO

Regulating the magnetic properties of multiferroics lays the foundation for their prospective application in spintronic devices. Single-phase multiferroics, such as rare-earth ferrites, are promising candidates; however, they typically exhibit weak magnetism at room temperature (RT). Here, we significantly boosted the RT ferromagnetism of a representative ferrite, EuFeO3, by oxygen defect engineering. Polarized neutron reflectometry and magnetometry measurements reveal that saturation magnetization reaches 0.04 µB/Fe, which is approximately 5 times higher than its bulk phase. Combining the annular bright-field images with theoretical assessment, we unravel the underlying mechanism for magnetic enhancement, in which the decrease in Fe-O-Fe bond angles caused by oxygen vacancies (VO) strengthens magnetic interactions and tilts Fe spins. Furthermore, the internal relationship between magnetism and VO was established by illustrating how the magnetic structure and magnitude change with VO configuration and concentration. Our strategy for regulating magnetic properties can be applied to numerous functional oxide materials.

3.
Phys Rev Lett ; 131(24): 246801, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181148

RESUMO

Disordered ferroics hold great promise for next-generation magnetoelectric devices because their lack of symmetry constraints implies negligible hysteresis with low energy costs. However, the transition temperature and the magnitude of polarization and magnetization are still too low to meet application requirements. Here, taking the prototype perovskite of SrTiO_{3} as an instance, we realize a coexisting spin and dipole reentrant glass states in SrTiO_{3} homoepitaxial films via manipulation of local symmetry. Room-temperature saturation magnetization and spontaneous polarization reach ∼ 10 emu/cm^{3} and ∼ 25 µC/cm^{2}, respectively, with high transition temperatures (101 K and 236 K for spin and dipole glass temperatures and 556 K and 1100 K for Curie temperatures, respectively). Our atomic-scale investigation points out an underlying mechanism, where the Ti/O-defective unit cells break the local translational and orbital symmetry to drive the formation of unusual slush states. This study advances our understanding of the nature of the intricate couplings of ferroic glasses. Our approach could be applied to numerous perovskite oxides for the simultaneous control of the local magnetic and polar orderings and for the exploration of the underlying physics.

4.
J Am Chem Soc ; 143(17): 6491-6497, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33900066

RESUMO

Although BaTiO3 is one of the most famous lead-free piezomaterials, it suffers from small spontaneous and low Curie temperature. Chemical pressure, as a mild way to modulate the structures and properties of materials by element doping, has been utilized to enhance the ferroelectricity of BaTiO3 but is not efficient enough. Here, we report a promoted chemical pressure route to prepare high-performance BaTiO3 films, achieving the highest remanent polarization, Pr (100 µC/cm2), to date and high Curie temperature, Tc (above 1000 °C). The negative chemical pressure (∼-5.7 GPa) was imposed by the coherent lattice strain from large cubic BaO to small tetragonal BaTiO3, generating high tetragonality (c/a = 1.12) and facilitating large displacements of Ti. Such negative pressure is especially significant to the bonding states, i.e., hybridization of Ba 5p-O 2p, whereas ionic bonding in bulk and strong bonding of Ti eg and O 2p, which contribute to the tremendously enhanced polarization. The promoted chemical pressure method shows general potential in improving ferroelectric and other functional materials.

5.
Ecotoxicol Environ Saf ; 213: 111997, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33582416

RESUMO

Antibiotics are widely detected in the water environment, posing a serious threat to the health of humans and animals. The effect of levofloxacin (LOFL) on pollutant removal and the difference in the influence mechanisms at normal and low temperatures in constructed wetlands are worth discussing. A hydroponic culture experiment was designed with Iris pseudacorus L. at low and normal temperatures. LOFL (0-100 µg/L) was added to the systems. The results indicated that the removal of pollutants was affected most by temperature, followed by LOFL concentration. At the same concentration of LOFL, the pollutant removal rate was significantly higher at normal temperature than at low temperature. Low concentrations of LOFL promoted the degradation of pollutants except TN under normal-temperature conditions. Compared with the results at low temperature, the bacterial community richness was higher and the diversity of bacterial communities was lower under normal-temperature conditions. The genera and the function of bacteria were greatly affected by antibiotic concentration, temperature and test time. A series of microorganisms resistant to antibiotics and low temperature were identified in this study. The results will provide valuable information and a reference for our understanding of the ecological effects of LOFL.


Assuntos
Hidroponia , Gênero Iris/microbiologia , Eliminação de Resíduos Líquidos/métodos , Antibacterianos/metabolismo , Bactérias , Humanos , Iris , Gênero Iris/metabolismo , Temperatura , Águas Residuárias/química , Águas Residuárias/microbiologia , Áreas Alagadas
6.
Nano Lett ; 20(2): 881-886, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31887059

RESUMO

The coupling strain in nanoscale systems can achieve control of the physical properties in functional materials, such as ferromagnets, ferroelectrics, and superconductors. Here, we directly demonstrate the atomic-scale structure of super-tetragonal PbTiO3 nanocomposite epitaxial thin films, including the extraordinary coupling of strain transition and the existence of the oxygen vacancies. Large strain gradients, both longitudinal and transverse (∼3 × 107 m-1), have been observed. The original non-magnetic ferroelectric composites notably evoke ferromagnetic properties, derived from the combination of Ti3+ and oxygen vacancies. The saturation ferromagnetic moment can be controlled by the strain of both the interphase and substrate, optimized to a high value of ∼55 emu/cc in 10-nm thick nanocomposite epitaxial thin films on the LaAlO3 substrate. Strain engineering provides a route to explore multiferroic systems in conventional non-magnetic ferroelectric oxides and to create functional data storage devices from both ferroelectrics and ferromagnetics.

7.
J Environ Manage ; 292: 112578, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33965685

RESUMO

To investigate the effect of a constructed wetland (CW) with steel slag as the filler on water contaminated by low phosphorus levels, a multistage pond CW system was designed in this study. Low-phosphorus polluted river water was used as the research object. This study explored the effects of using steel slag as a CW filler on phosphorus removal and the total phosphorus (TP) purification effect of the wetland system. The results showed that the TP removal rates in the ecological pond, oxidation pond, surface flow wetlands and submerged plant pond were 5.17%, 8.02%, 21.56%, and 16.31%, respectively. Intermittent increases in phosphorus concentration were observed in the reactors and were caused by the decay of plant tissues, which released pollutants. Because steel slag was added to the filler, the TP concentrations in the effluent of the first- and second-level horizontal subsurface CWs increased by 151.13% and 16.29%, respectively, compared to the influent concentration. The 20th to 40th days of the test run was a period of rapid phosphorus release of the system. The use of steel slag has a potential risk of phosphorus release when applied in CWs used to purify low-phosphorus contaminated water bodies.


Assuntos
Purificação da Água , Áreas Alagadas , Nitrogênio , Fósforo , Rios , Aço , Eliminação de Resíduos Líquidos , Água
8.
Environ Sci Technol ; 48(1): 582-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24328241

RESUMO

Since in situ formation of Mg(OH)2 can efficiently sorb phosphate (PO4) from low concentrations in the environment, a novel dispersed magnesium oxide nanoflake-modified diatomite adsorbent (MOD) was developed for use in restoration of eutrophic lakes by removal of excess PO4. Various adsorption conditions, such as pH, temperature and contact time were investigated. Overall, sorption capacities increased with increasing temperature and contact time, and decreased with increasing pH. Adsorption of PO4 was well described by both the Langmuir isotherm and pseudo second-order models. Theoretical maximum sorption capacity of MOD for PO4 was 44.44-52.08 mg/g at experimental conditions. Characterization of PO4 adsorbed to MOD by use of X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and solid state (31)P nuclear magnetic resonance revealed that electrostatic attraction, surface complexation and chemical conversion in situ were the major forces in adsorption of PO4. Mg(OH)2 formed in situ had a net positive charge on the surface of the MOD that could adsorb PO4(3-) and HPO4(2-) anion to form surface complex and gradually convert to Mg3(PO4)2 and MgHPO4. Efficiency of removal of PO4 was 90% when 300 mg MOD/L was added to eutrophic lake water. Results presented here demonstrated the potential use of the MOD for restoration of eutrophic lakes by removal of excess PO4.


Assuntos
Terra de Diatomáceas/química , Eutrofização , Lagos/química , Hidróxido de Magnésio/química , Fosfatos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Ânions , Nanoestruturas/química , Espectroscopia Fotoeletrônica , Difração de Raios X
9.
Environ Sci Technol ; 48(23): 13711-7, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25369427

RESUMO

The toxicity, bioaccumulation, and biotransformation of citrate and polyvinylpyrrolidone (PVP) coated silver nanoparticles (NPs) (AgNP-citrate and AgNP-PVP) in marine organisms via marine sediment exposure was investigated. Results from 7-d sediment toxicity tests indicate that AgNP-citrate and AgNP-PVP did not exhibit toxicity to the amphipod (Ampelisca abdita) and mysid (Americamysis bahia) at ≤75 mg/kg dry wt. A 28-d bioaccumulation study showed that Ag was significantly accumulated in the marine polychaete Nereis virens (N. virens) in the AgNP-citrate, AgNP-PVP and a conventional salt (AgNO3) treatments. Synchrotron X-ray absorption spectroscopy (XAS) results showed the distribution of Ag species in marine sediments amended with AgNP-citrate, AgNP-PVP, and AgNO3 was AgCl (50­65%) > Ag2S (32­42%) > Ag metal (Ag0) (3­11%). In N virens, AgCl (25­59%) and Ag2S (10­31%) generally decreased and, Ag metal (32­44%) increased, relative to the sediments. The patterns of speciation in the worm were different depending upon the coating of the AgNP and both types of AgNPs were different than the AgNO3 salt. These results show that the AgNP surface capping agents influenced Ag uptake, biotransformation, and/or excretion. To our knowledge, this is the first demonstration of the bioaccumulation and speciation of AgNPs in a marine organism (N. virens).


Assuntos
Organismos Aquáticos , Nanopartículas Metálicas/toxicidade , Prata/farmacocinética , Prata/toxicidade , Testes de Toxicidade/métodos , Poluentes Químicos da Água/farmacocinética , Anfípodes/metabolismo , Animais , Biotransformação , Ácido Cítrico/química , Ácido Cítrico/farmacocinética , Crustáceos/metabolismo , Meio Ambiente , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Poliquetos/metabolismo , Povidona/química , Povidona/farmacocinética , Prata/química , Espectrometria por Raios X/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Espectroscopia por Absorção de Raios X
10.
J Nanosci Nanotechnol ; 14(5): 3592-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24734595

RESUMO

Controlling the blend morphology is critical for achieving high power conversion efficiency in polymer/fullerene bulk heterojunction (BHJ) photovoltaic devices. As a simple and effective method to control morphology, adding processing additives has been widely applied in the organic BHJ solar cells. In this paper, we demonstrate that adding 1,8-diiodooctane as a processing additives is an effective method to improve the morphology and the efficiency of bulk heterojunctions (BHJ) solar cells based on the regioregular poly(3-hexylthiophene) (P3HT) and a soluble fullerene derivative ([6,6]-phenyl C61-butyric acid methyl ester, PC61BM). We investigated the unique way in which the 1,8-diiodooctane plays the rule to enhance the performance of solar cells according to different morphology and crystallinity of active layers prepared with and without the additive. The morphology is studied with atomic force microscopy (AFM) and Grazing Incidence X-ray Diffraction (GIXRD). We also find a balance between a large interfacial area for exciton dissociation and continuous pathways for carrier transportation when the additive is used.

11.
Science ; 379(6638): 1218-1224, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36952424

RESUMO

Atomic-scale ferroelectrics are of great interest for high-density electronics, particularly field-effect transistors, low-power logic, and nonvolatile memories. We devised a film with a layered structure of bismuth oxide that can stabilize the ferroelectric state down to 1 nanometer through samarium bondage. This film can be grown on a variety of substrates with a cost-effective chemical solution deposition. We observed a standard ferroelectric hysteresis loop down to a thickness of ~1 nanometer. The thin films with thicknesses that range from 1 to 4.56 nanometers possess a relatively large remanent polarization from 17 to 50 microcoulombs per square centimeter. We verified the structure with first-principles calculations, which also pointed to the material being a lone pair-driven ferroelectric material. The structure design of the ultrathin ferroelectric films has great potential for the manufacturing of atomic-scale electronic devices.

12.
Environ Sci Technol ; 46(22): 12391-8, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23102049

RESUMO

Small (6-10 nm) functionalized gold nanoparticles (AuNPs) featuring different, well-defined surface charges were used to probe the uptake and distribution of nanomaterials in terrestrial plants, including rice, radish, pumpkin, and perennial ryegrass. Exposure of the AuNPs to plant seedlings under hydroponic conditions for a 5-day period was investigated. Results from these studies indicate that AuNP uptake and distribution depend on both nanoparticle surface charge and plant species. The experiments show that positively charged AuNPs are most readily taken up by plant roots, while negatively charged AuNPs are most efficiently translocated into plant shoots (including stems and leaves) from the roots. Radish and ryegrass roots generally accumulated higher amounts of the AuNPs (14-900 ng/mg) than rice and pumpkin roots (7-59 ng/mg). Each of the AuNPs used in this study were found to accumulate to statistically significant extents in rice shoots (1.1-2.9 ng/mg), while none of the AuNPs accumulated in the shoots of radishes and pumpkins.


Assuntos
Cucurbita/metabolismo , Ouro/química , Ouro/metabolismo , Nanopartículas Metálicas/química , Poaceae/metabolismo , Raphanus/metabolismo , Transporte Biológico , Hidroponia , Nanopartículas Metálicas/análise , Componentes Aéreos da Planta/metabolismo , Raízes de Plantas/metabolismo , Especificidade da Espécie
13.
Environ Sci Technol ; 46(3): 1819-27, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22201446

RESUMO

Engineered nanoparticles, due to their unique electrical, mechanical, and catalytic properties, are presently found in many commercial products and will be intentionally or inadvertently released at increasing concentrations into the natural environment. Metal- and metal oxide-based nanomaterials have been shown to act as mediators of DNA damage in mammalian cells, organisms, and even in bacteria, but the molecular mechanisms through which this occurs are poorly understood. For the first time, we report that copper oxide nanoparticles induce DNA damage in agricultural and grassland plants. Significant accumulation of oxidatively modified, mutagenic DNA lesions (7,8-dihydro-8-oxoguanine; 2,6-diamino-4-hydroxy-5-formamidopyrimidine; 4,6-diamino-5-formamidopyrimidine) and strong plant growth inhibition were observed for radish (Raphanus sativus), perennial ryegrass (Lolium perenne), and annual ryegrass (Lolium rigidum) under controlled laboratory conditions. Lesion accumulation levels mediated by copper ions and macroscale copper particles were measured in tandem to clarify the mechanisms of DNA damage. To our knowledge, this is the first evidence of multiple DNA lesion formation and accumulation in plants. These findings provide impetus for future investigations on nanoparticle-mediated DNA damage and repair mechanisms in plants.


Assuntos
Cobre/toxicidade , Dano ao DNA , Lolium/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Raphanus/efeitos dos fármacos , Cobre/farmacocinética , Cromatografia Gasosa-Espectrometria de Massas , Lolium/genética , Lolium/crescimento & desenvolvimento , Lolium/metabolismo , Microscopia Eletrônica de Transmissão e Varredura , Raphanus/genética , Raphanus/crescimento & desenvolvimento , Raphanus/metabolismo , Espectrometria por Raios X
14.
J Phys Condens Matter ; 35(8)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36544395

RESUMO

As the thickness of a transition metal oxide thin film is reduced to several unit cells, dimensional and interfacial effects modulate its structure and properties, and initiate low-dimension quantum phase transitions different from its bulk counterparts. To check if a metal-insulator transition (MIT) occurs to a low-dimensional 4d2electron systems, we investigated SrMoO3thin films by characterizing and analyzing their lattice structures, electric transport properties and electronic states. Among various dimensional effects and interfacial effects, quantum confinement effect (QCE) was discerned as the dominating mechanism of the thickness-driven MIT. Surface/interface scattering contributes to the residual resistivity while the competition of several interactions modulated by QCE governs the temperature dependence of the resistivity of SrMoO3ultrathin films.

15.
Nanomaterials (Basel) ; 12(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080045

RESUMO

Semipolar (112¯2) InGaN/GaN superlattice templates with different periodical InGaN layer thicknesses were grown on m-plane sapphire substrates using metal-organic chemical vapor deposition (MOCVD). The strain in the superlattice layers, the relaxation mechanism and the influence of the strain relaxation on the semipolar superlattice template were explored. The results demonstrated that the strain in the (112¯2) InGaN/GaN superlattice templates was anisotropic and increased with increasing InGaN thickness. The strain relaxation in the InGaN/GaN superlattice templates was related to the formation of one-dimension misfit dislocation arrays in the superlattice structure, which caused tilts in the superlattice layer. Whereas, the rate of increase of the strain became slower with increasing InGaN thickness and new misfit dislocations emerged, which damaged the quality of the superlattice relaxed templates. The strain relaxation in the superlattice structure improved the surface microtopography and increased the incorporation of indium in the InGaN epitaxial layers.

16.
Sci Adv ; 8(13): eabm8550, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35363530

RESUMO

The orthorhombic rare-earth manganates and ferrites multiferroics are promising candidates for the next generation multistate spintronic devices. However, their ferroelectric polarization is small, and transition temperature is far below room temperature (RT). The improvement of ferroelectricity remains challenging. Here, through the subtle strain and defect engineering, an RT colossal polarization of 4.14 µC/cm2 is achieved in SmFeO3-δ films, which is two orders of magnitude larger than its bulk and is also the largest one among the orthorhombic rare-earth manganite and ferrite family. Meanwhile, its RT magnetism is uniformly distributed in the film. Combining the integrated differential phase-contrast imaging and density functional theory calculations, we reveal the origin of this superior ferroelectricity in which the purposely introduced oxygen vacancies in the Fe-O layer distorts the FeO6 octahedral cage and drives the Fe ion away from its high-symmetry position. The present approach can be applied to improve ferroelectric properties for multiferroics.

17.
ACS Appl Mater Interfaces ; 14(14): 16928-16938, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35353496

RESUMO

Developing atomic-scale synthesis control is a prerequisite for understanding and engineering the exotic physics inherent to transition-metal oxide heterostructures. Thus, far, however, the number of materials systems explored has been extremely limited, particularly with regard to the crystalline substrate, which is routinely SrTiO3. Here, we investigate the growth of a rare-earth nickelate─LaNiO3─on (LaAlO3)(Sr2AlTaO6) (LSAT) (001) by oxide molecular beam epitaxy (MBE). Whereas the LSAT substrates are smooth, they do not exhibit the single surface termination usually assumed necessary for control over the interface structure. Performing both nonresonant and resonant anomalous in situ synchrotron surface X-ray scattering during MBE growth, we show that reproducible heterostructures can be achieved regardless of both the mixed surface termination and the layer-by-layer deposition sequence. The rearrangement of the layers occurs dynamically during growth, resulting in the fabrication of high-quality LaNiO3/LSAT heterostructures with a sharp and consistent interfacial structure. This is due to the thermodynamics of the deposition window as well as the nature of the chemical species at interfaces─here, the flexible charge state of nickel at the oxide surface. This has important implications regarding the use of a wider variety of substrates for fundamental studies on complex oxide synthesis.

18.
J Phys Condens Matter ; 33(15)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33498026

RESUMO

We report growth, electronic structure and superconductivity of ultrathin epitaxial CoSi2films on Si (111). At low coverages, preferred islands with 2, 5 and 6 monolayers height develop, which agrees well with the surface energy calculation. We observe clear quantum well states as a result of electronic confinement and their dispersion agrees well with density functional theory calculations, indicating weak correlation effect despite strong contributions from Co 3delectrons.Ex situtransport measurements show that superconductivity persists down to at least 10 monolayers, with reducedTcbut largely enhanced upper critical field. Our study opens up the opportunity to study the interplay between quantum confinement, interfacial symmetry breaking and superconductivity in an epitaxial silicide film, which is technologically relevant in microelectronics.

19.
Nat Commun ; 11(1): 1672, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246083

RESUMO

Reduced-dimensional (quasi-2D) perovskite materials are widely applied for perovskite photovoltaics due to their remarkable environmental stability. However, their device performance still lags far behind traditional three dimensional perovskites, particularly high open circuit voltage (Voc) loss. Here, inhomogeneous energy landscape is pointed out to be the sole reason, which introduces extra energy loss, creates band tail states and inhibits minority carrier transport. We thus propose to form homogeneous energy landscape to overcome the problem. A synergistic approach is conceived, by taking advantage of material structure and crystallization kinetic engineering. Accordingly, with the help of density functional theory guided material design, (aminomethyl) piperidinium quasi-2D perovskites are selected. The lowest energy distribution and homogeneous energy landscape are achieved through carefully regulating their crystallization kinetics. We conclude that homogeneous energy landscape significantly reduces the Shockley-Read-Hall recombination and suppresses the quasi-Fermi level splitting, which is crucial to achieve high Voc.

20.
Nanotechnology ; 20(27): 275201, 2009 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-19528672

RESUMO

Aligned amorphous and crystallized silicon nanorods (SiNRs) were successfully fabricated at low temperatures using radio frequency magnetron sputtering and hot wire chemical vapor deposition with glancing angle incident flux. The influences of the deposition pressure, sputtering power, substrate rotation and hydrogen dilution ratio on the diameter, density, orientation and crystallization of the Si nanorods were systematically investigated. With increasing sputtering power, the density of Si nanorods decreases and the diameter of SiNRs increases. The pressure has the opposite effect on the growth of SiNRs compared with the sputtering power. By combining glancing angle deposition (GLAD) with the hydrogen diluted silane in hot wire chemical vapor deposition (HWCVD), aligned crystallized Si nanorods with a crystalline volume fraction of 0.55 were achieved under a substrate temperature of 140 degrees C. The Si nanorods have been tested for photovoltaic application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA