RESUMO
BACKGROUND: As one of the most important factors of the japonica rice plant, leaf shape affects the photosynthesis and carbohydrate accumulation directly. Mining and using new leaf shape related genes/QTLs can further enrich the theory of molecular breeding and accelerate the breeding process of japonica rice. METHODS: In the present study, 2 RILs and a natural population with 295 japonica rice varieties were used to map QTLs for flag leaf length (FL), flag leaf width (FW) and flag leaf area (FLA) by linkage analysis and genome-wide association study (GWAS) throughout 2 years. RESULTS: A total of 64 QTLs were detected by 2 ways, and pleiotropic QTLs qFL2 (Chr2_33,332,579) and qFL10 (Chr10_10,107,835; Chr10_10,230,100) consisted of overlapping QTLs mapped by linkage analysis and GWAS throughout the 2 years were identified. CONCLUSIONS: The candidate genes LOC_Os02g54254, LOC_Os02g54550, LOC_Os10g20160, LOC_Os10g20240, LOC_Os10g20260 were obtained, filtered by linkage disequilibrium (LD), and haplotype analysis. LOC_Os10g20160 (SD-RLK-45) showed outstanding characteristics in quantitative real-time PCR (qRT-PCR) analysis in leaf development period, belongs to S-domain receptor-like protein kinases gene and probably to be a main gene regulating flag leaf width of japonica rice. The results of this study provide valuable resources for mining the main genes/QTLs of japonica rice leaf development and molecular breeding of japonica rice ideal leaf shape.
Assuntos
Mapeamento Cromossômico/métodos , Mineração de Dados/métodos , Oryza/anatomia & histologia , Locos de Características Quantitativas , Embaralhamento de DNA , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Haplótipos , Oryza/genética , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Proteínas de Plantas/genéticaRESUMO
This study examines the impact of surface defects on the electro-explosive properties of metal explosive foil transducers. Specifically, it focuses on the effects of defects in the bridge foil and their influence on the electrical explosion time and transduction efficiency. To analyze these effects, a current-voltage simulation model is developed to simulate the behavior of a defective bridge foil. The simulation results are validated through experimental current-voltage measurements at both ends of the bridge area. The findings reveal that the presence of through-hole defects on the surface of the bridge foil leads to an advancement in the electrical explosion time and a reduction in the transduction efficiency of the bridge foil. A performance comparison is made between the defective bridge foil and a defect-free copper foil. As observed, a through-hole defect with a radius of 20 µm results in a 1 ns advance in the blast time and a 1.52% decrease in energy conversion efficiency. Similarly, a through-hole defect with a radius of 50 µm causes a 51 ns advancement in the blast time and a 13.96% reduction in the energy conversion efficiency. These findings underscore the detrimental effects of surface defects on the electro-explosive properties, emphasizing the importance of minimizing defects to enhance their performance.
RESUMO
Rice has been reported to be highly sensitive to salt stress at the seedling stage. However, the lack of target genes that can be used for improving salt tolerance has resulted in several saline soils unsuitable for cultivation and planting. To characterize new salt-tolerant genes, we used 1,002 F2:3 populations derived from Teng-Xi144 and Long-Dao19 crosses as the phenotypic source to systematically characterize seedlings' survival days and ion concentration under salt stress. Utilizing QTL-seq resequencing technology and a high-density linkage map based on 4,326 SNP markers, we identified qSTS4 as a major QTL influencing seedling salt tolerance, which accounted for 33.14% of the phenotypic variation. Through functional annotation, variation detection and qRT-PCR analysis of genes within 46.9 Kb of qSTS4, it was revealed that there was one SNP in the promoter region of OsBBX11, which resulted in a significant response difference between the two parents to salt stress. Transgenic plants using knockout-based technology and demonstrated that Na+ and K+ in the roots of the functional-loss-type OsBBX11 were translocated largely to the leaves under 120 mmol/L NaCl compared with the wild-type, causing osbbx11 leaves to die after 12 days of salt stress due to an imbalance in osmotic pressure. In conclusion, this study identified OsBBX11 as a salt-tolerance gene, and one SNPs in the OsBBX11 promoter region can be used to identify its interacting transcription factors. This provides a theoretical basis for finding the molecular mechanism of OsBBX11 upstream and downstream regulation of salt tolerance and molecular design breeding in the future.
RESUMO
Type III effectors secreted by rhizobia regulate nodulation in the host plant and are important modulators of symbiosis between rhizobia and soybean (Glycine max), although the underlying mechanisms are poorly understood. Here, we studied the type III effector NopAA in Sinorhizobium fredii HH103, confirming its secretion into the extracellular environment under the action of genistein. The enzyme activity of NopAA was investigated in vitro, using xyloglucan and ß-glucan as substrates. NopAA functions were investigated by the generation of a NopAA mutant and the effects of NopAA deficiency on symbiosis were analyzed. Soybean genes associated with NopAA were identified in a recombinant inbred line (RIL) population and their functions were verified. NopAA was confirmed to be a type III effector with glycosyl hydrolase activity, and its mutant did not promote nodulation. Quantitative trait locus (QTL) analysis identified 10 QTLs with one, Glyma.19g074200 (GmARP), found to be associated with NopAA and to positively regulate the establishment of symbiosis. All these results support the hypothesis that type III effectors interact with host proteins to regulate the establishment of symbiosis and suggest the possibility of manipulating the symbiotic soybean-rhizobia interaction to promote efficient nitrogen fixation.
RESUMO
A series of benzothiazole-based compounds were synthesized and characterized. Among them, probe Z showed significant dual-functional performance which was capable of sensing pH change and Cu2+. Probe Z displayed fluorescent turn-on under alkaline conditions due to deprotonation of the hydroxyl group along with the obviously color change from colorless to mint green. Interestingly, it further achieved in ratiometric detection of Cu2+ through absorbance or fluorescence signals in strong alkaline condition. The limit of detection was calculated correspondingly as 0.37 µM and 1.35 µM, respectively. Especially, the combination of the XNOR and INHIBIT logic gates could be used to confirm that one medium was in neutrality or alkalinity condition. Moreover, Z was successfully used in real water samples and test paper for fast identification of Cu2+, respectively.