Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 299(1): 33, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478174

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic pulmonary fibrosis disease that is fatal. Mesenchymal stem cells (MSCs)-secreted exosomes (exos) have been linked to improving PF. Moreover, exosomal microRNAs (miRs) can control the growth of numerous diseases, including lung disorders. Our bioinformatics analysis showed that miR-30b was downregulated in tissue samples from surgical remnants of biopsies or lungs explanted from patients with IPF who underwent pulmonary transplantation. This suggests that miR-30b plays an important role in both the pathogenesis and treatment of IPF. Herein, this research was designed to ascertain the mechanism of MSCs-exos-packaged miR-30b in alleviating PF. The serum was harvested from idiopathic PF (IPF) patients with interstitial pneumonia caused by dermatomyositis and the MLE12 lung epithelial cell fibrosis model was built with TGF-ß1 (10 ng/mL), followed by miR-30b expression determination. TGF-ß1-stimulated MLE12 cells were co-incubated with exos from MSCs with or without Spred2 or Runx1 overexpression, followed by measurement of cell viability and apoptosis. After establishing the IPF mouse model with bleomycin and injecting exos and/or silencing and overexpressing adenovirus vectors, fibrosis evaluation was conducted. In mice and cells, the expression of TGF-ß1, TNF-α, and IL-1ß was tested via ELISA, and the levels of E-cad, ZO-1, α-SMA, and collagen type I via western blot analysis. The promoters of miR-30b, Runx1, and Spred2 were investigated. miR-30b was downregulated in the serum of IPF patients and TGF-ß1-stimulated MLE12 cells. Mechanistically, miR-30b inhibited Spred2 transcription by negatively targeting Runx1. MSCs-exos or MSCs-exo-miR-30b decreased the apoptosis, inflammation, and fibrosis while increasing their viability in TGF-ß1-stimulated MLE12 cells, which was annulled by overexpressing Runx1 or Spred2. Exo-miR-30b decreased Runx1 expression to downregulate Spred2, reducing fibrosis and inflammation in IPF mice. Our results indicated that MSCs-exos-encapsulated miR-30b had a potential function to inhibit PF and part of its function may be achieved by targeting RUNX1 to reduce the Spred2 transcription level. Moreover, this work offered evidence and therapeutic targets for therapeutic strategies for managing clinical PF in patients.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Fibrose Pulmonar , Humanos , Camundongos , Animais , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Exossomos/genética , Exossomos/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fibrose , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas Repressoras/metabolismo
2.
Glob Chang Biol ; 30(3): e17234, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469998

RESUMO

Rapid biodiversity losses under global climate change threaten forest ecosystem functions. However, our understanding of the patterns and drivers of multiple ecosystem functions across biodiversity gradients remains equivocal. To address this important knowledge gap, we measured simultaneous responses of multiple ecosystem functions (nutrient cycling, soil carbon stocks, organic matter decomposition, plant productivity) to a tree species richness gradient of 1, 4, 8, 16, and 32 species in a young subtropical forest. We found that tree species richness had negligible effects on nutrient cycling, organic matter decomposition, and plant productivity, but soil carbon stocks and ecosystem multifunctionality significantly increased with tree species richness. Linear mixed-effect models showed that soil organisms, particularly arbuscular mycorrhizal fungi (AMF) and soil nematodes, elicited the greatest relative effects on ecosystem multifunctionality. Structural equation models revealed indirect effects of tree species richness on ecosystem multifunctionality mediated by trophic interactions in soil micro-food webs. Specifically, we found a significant negative effect of gram-positive bacteria on soil nematode abundance (a top-down effect), and a significant positive effect of AMF biomass on soil nematode abundance (a bottom-up effect). Overall, our study emphasizes the significance of a multitrophic perspective in elucidating biodiversity-multifunctionality relationships and highlights the conservation of functioning soil micro-food webs to maintain multiple ecosystem functions.


Assuntos
Ecossistema , Micorrizas , Cadeia Alimentar , Árvores , Solo/química , Biodiversidade , Plantas , Carbono
3.
Toxicol Ind Health ; 40(6): 312-322, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38590048

RESUMO

Previous epidemiologic research has shown that phthalate exposure in pregnant women is related to adverse birth outcomes in a sex-specific manner. However, the biological mechanism of phthalate exposure that causes these birth outcomes remains poorly defined. In this research, we investigated the association between phthalate exposure and placental oxidative stress in a large population-based cohort study, aiming to initially explore the relationship between phthalate exposure and gene expression in placental oxidative stress in a sex-specific manner. Quantitative PCR was performed to measure the expression of placental inflammatory mRNAs (HO-1, HIF1α, and GRP78) in 2469 placentae. The multiple linear regression models were used to investigate the associations between mRNA and urinary phthalate monoesters. Phthalate metabolites monomethyl phthalate (MMP) and mono-n-butyl phthalate (MBP) were positively correlated with higher HIF1α expression in placentae of male fetuses (p < .05). Mono-benzyl phthalate (MBzP) increased the expression of HO-1, HIF1α, and GRP78 in placentae of male fetuses, and mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) up-regulated the expression of HIF1α and GRP78. Additionally, mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) was negatively correlated with HO-1, HIF1α, and GRP78 in placentae of female fetuses. Maternal phthalate exposure was associated with oxidative stress variations in placental tissues. The associations were closer in the placentas of male fetuses than in that of female ones. The placenta oxidative stress is worth further investigation as a potential mediator of maternal exposure-induced disease risk in children.


Assuntos
Biomarcadores , Chaperona BiP do Retículo Endoplasmático , Exposição Materna , Estresse Oxidativo , Ácidos Ftálicos , Placenta , Humanos , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/urina , Feminino , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Masculino , Placenta/efeitos dos fármacos , Placenta/metabolismo , Biomarcadores/urina , Estudos Prospectivos , Adulto , Exposição Materna/efeitos adversos , Fatores Sexuais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Estudos de Coortes
4.
Sensors (Basel) ; 24(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732935

RESUMO

A position identification system for wandering elderly people uses BLE to transmit ID information. The objective of this study is to make the BLE module batteryless using a piezoelectric element. The piezoelectric element is mounted on the sole of a shoe, and when pressure is applied to the piezoelectric element by walking, a voltage is generated between both electrodes of the piezoelectric element. This voltage is used to store the necessary power as a battery to operate the BLE module. In this paper, we provide a step-by-step design approach using piezoelectric elements attached to a shoe to power an actual BLE module. We derive an equivalent circuit for the piezoelectric element under walking conditions and, through circuit simulation and actual measurements, clarify the amount of time required to charge the voltage to drive the BLE, demonstrating the possibility of a batteryless BLE module for use in locating a wanderer while they are walking.

5.
Math Biosci Eng ; 21(2): 2366-2384, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38454687

RESUMO

In this paper, we introduce a novel deep learning method for dental panoramic image segmentation, which is crucial in oral medicine and orthodontics for accurate diagnosis and treatment planning. Traditional methods often fail to effectively combine global and local context, and struggle with unlabeled data, limiting performance in varied clinical settings. We address these issues with an advanced TransUNet architecture, enhancing feature retention and utilization by connecting the input and output layers directly. Our architecture further employs spatial and channel attention mechanisms in the decoder segments for targeted region focus, and deep supervision techniques to overcome the vanishing gradient problem for more efficient training. Additionally, our network includes a self-learning algorithm using unlabeled data, boosting generalization capabilities. Named the Semi-supervised Tooth Segmentation Transformer U-Net (STS-TransUNet), our method demonstrated superior performance on the MICCAI STS-2D dataset, proving its effectiveness and robustness in tooth segmentation tasks.


Assuntos
Algoritmos , Fontes de Energia Elétrica , Processamento de Imagem Assistida por Computador
6.
Ying Yong Sheng Tai Xue Bao ; 35(2): 339-346, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38523090

RESUMO

Forest type and stand age are important biological factors affecting soil enzyme activities. However, the changes in soil enzyme activities across stand ages and underlying mechanisms under the two forest restoration strate-gies of plantations and natural secondary forests remain elusive. In this study, we investigated the variations of four soil enzyme activities including cello-biohydrolase (CBH), ß-1,4-glucosidase (ßG), acid phosphatase (AP) and ß-1,4-N-acetylglucosaminidase (NAG), which were closely associated with soil carbon, nitrogen, and phosphorus cycling, across Cunninghamia lanceolata plantations and natural secondary forests (5, 8, 21, 27 and 40 years old). The results showed that soil enzyme activities showed different patterns across different forest types. The acti-vities of AP, ßG and CBH in the C. lanceolata plantations were significantly higher than those in the natural secon-dary forests, and there was no significant difference in the NAG activity. In the plantations, AP activity showed a decreasing tendency with the increasing stand ages, with the AP activity in the 5-year-old plantations significantly higher than other stand ages by more than 62.3%. The activities of NAG and CBH decreased first and then increased, and ßG enzyme activity fluctuated with the increasing stand age. In the natural secondary forests, NAG enzyme activity fluctuated with the increasing stand age, with that in the 8-year-old and 27-year-old stand ages being significantly higher than the other stand ages by more than 14.9%. ßG and CBH enzyme activities increased first and then decreased, and no significant difference was observed in the AP activity. Results of the stepwise regression analyses showed that soil predictors explained more than 34% of the variation in the best-fitting models predicting soil enzyme activities in the C. lanceolata plantations and natural secondary forests. In conclusion, there would be a risk of soil fertility degradation C. lanceolata plantations with the increasing stand age, while natural secondary forests were more conducive to maintaining soil fertility.


Assuntos
Cunninghamia , Humanos , Adulto , Pré-Escolar , Criança , Solo , Florestas , Nitrogênio/análise , Fósforo/análise , Carbono/análise , Microbiologia do Solo , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA