RESUMO
All-RNA-mediated targeted gene integration methods, rendering reduced immunogenicity, effective deliverability with non-viral vehicles, and a low risk of random mutagenesis, are urgently needed for next-generation gene addition technologies. Naturally occurring R2 retrotransposons hold promise in this context due to their site-specific integration profile. Here, we systematically analyzed the biodiversity of R2 elements and screened several R2 orthologs capable of full-length gene insertion in mammalian cells. Robust R2 system gene integration efficiency was attained using combined donor RNA and protein engineering. Importantly, the all-RNA-delivered engineered R2 system showed effective integration activity, with efficiency over 60% in mouse embryos. Unbiased high-throughput sequencing demonstrated that the engineered R2 system exhibited high on-target integration specificity (99%). In conclusion, our study provides engineered R2 tools for applications based on hit-and-run targeted DNA integration and insights for further optimization of retrotransposon systems.
Assuntos
RNA , Retroelementos , Animais , Retroelementos/genética , Camundongos , Humanos , RNA/genética , RNA/metabolismo , Células HEK293 , Engenharia Genética/métodos , Marcação de Genes/métodosRESUMO
In early mammalian embryos, it remains unclear how the first cell fate bias is initially triggered and amplified toward cell fate segregation. Here, we report that a long noncoding RNA, LincGET, is transiently and asymmetrically expressed in the nucleus of two- to four-cell mouse embryos. Overexpression of LincGET in one of the two-cell blastomeres biases its progeny predominantly toward the inner cell mass (ICM) fate. Mechanistically, LincGET physically binds to CARM1 and promotes the nuclear localization of CARM1, which can further increase the level of H3 methylation at Arginine 26 (H3R26me), activate ICM-specific gene expression, upregulate transposons, and increase global chromatin accessibility. Simultaneous overexpression of LincGET and depletion of Carm1 no longer biased embryonic fate, indicating that the effect of LincGET in directing ICM lineage depends on CARM1. Thus, our data identify LincGET as one of the earliest known lineage regulators to bias cell fate in mammalian 2-cell embryos.
Assuntos
Blastocisto/metabolismo , Blastômeros/metabolismo , Linhagem da Célula/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , RNA Longo não Codificante/biossíntese , Animais , Blastocisto/citologia , Blastômeros/citologia , Feminino , Histonas/metabolismo , Metilação , Camundongos , Camundongos Endogâmicos ICR , Proteína-Arginina N-Metiltransferases/biossíntese , Proteína-Arginina N-Metiltransferases/genética , RNA Longo não Codificante/genéticaRESUMO
Mammalian interspecific hybrids provide unique advantages for mechanistic studies of speciation, gene expression regulation, and X chromosome inactivation (XCI) but are constrained by their limited natural resources. Previous artificially generated mammalian interspecific hybrid cells are usually tetraploids with unstable genomes and limited developmental abilities. Here, we report the generation of mouse-rat allodiploid embryonic stem cells (AdESCs) by fusing haploid ESCs of the two species. The AdESCs have a stable allodiploid genome and are capable of differentiating into all three germ layers and early-stage germ cells. Both the mouse and rat alleles have comparable contributions to the expression of most genes. We have proven AdESCs as a powerful tool to study the mechanisms regulating X chromosome inactivation and to identify X inactivation-escaping genes, as well as to efficiently identify genes regulating phenotypic differences between species. A similar method could be used to create hybrid AdESCs of other distantly related species.
Assuntos
Fusão Celular/métodos , Quimera/genética , Células-Tronco Embrionárias/citologia , Células Híbridas , Camundongos , Ratos , Animais , Diferenciação Celular , Corpos Embrioides , Células-Tronco Embrionárias/metabolismo , Feminino , Haploidia , Masculino , Camundongos Endogâmicos , Ratos Endogâmicos F344 , Especificidade da Espécie , Inativação do Cromossomo XRESUMO
Pol II pause release is a rate-limiting step in gene transcription, influencing various cell fate alterations. Numerous proteins orchestrate Pol II pause release, thereby playing pivotal roles in the intricate process of cellular fate modulation. Super elongation complex (SEC), a large assembly comprising diverse protein components, has garnered attention due to its emerging significance in orchestrating physiological and pathological cellular identity changes by regulating the transcription of crucial genes. Consequently, SEC emerges as a noteworthy functional complex capable of modulating cell fate alterations. Therefore, a comprehensive review is warranted to systematically summarize the core roles of SEC in different types of cell fate alterations. This review focuses on elucidating the current understanding of the structural and functional basis of SEC. Additionally, we discuss the intricate regulatory mechanisms governing SEC in various models of cell fate alteration, encompassing both physiological and pathological contexts. Furthermore, leveraging the existing knowledge of SEC, we propose some insightful directions for future research, aiming to enhance our mechanistic and functional comprehension of SEC within the diverse landscape of cell fate alterations.
Assuntos
Diferenciação Celular , Humanos , Animais , Diferenciação Celular/fisiologia , Transcrição GênicaRESUMO
SIRT6 acts as a longevity protein in rodents1,2. However, its biological function in primates remains largely unknown. Here we generate a SIRT6-null cynomolgus monkey (Macaca fascicularis) model using a CRISPR-Cas9-based approach. SIRT6-deficient monkeys die hours after birth and exhibit severe prenatal developmental retardation. SIRT6 loss delays neuronal differentiation by transcriptionally activating the long non-coding RNA H19 (a developmental repressor), and we were able to recapitulate this process in a human neural progenitor cell differentiation system. SIRT6 deficiency results in histone hyperacetylation at the imprinting control region of H19, CTCF recruitment and upregulation of H19. Our results suggest that SIRT6 is involved in regulating development in non-human primates, and may provide mechanistic insight into human perinatal lethality syndrome.
Assuntos
Deficiências do Desenvolvimento/genética , Macaca fascicularis/genética , Sirtuínas/deficiência , Sirtuínas/genética , Acetilação , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Encéfalo/embriologia , Fator de Ligação a CCCTC/metabolismo , Diferenciação Celular/genética , Feminino , Morte Fetal , Deleção de Genes , Edição de Genes , Impressão Genômica , Histonas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Masculino , Músculos/citologia , Músculos/embriologia , Células-Tronco Neurais/citologia , Neurogênese/genética , RNA Longo não Codificante/genética , Sirtuínas/metabolismo , Transcriptoma/genéticaRESUMO
PURPOSE: Patients with spinal metastases undergoing surgical treatment face challenges related to preoperative anemia, intraoperative blood loss, and frailty, emphasizing the significance of perioperative blood management. This retrospective analysis aimed to assess the correlation between hemoglobin-related parameters and outcomes, identifying key markers to aid in blood management. METHODS: A retrospective review was performed to identify patients who underwent surgical treatment for spinal metastases. Hb-related parameters, including baseline Hb, postoperative nadir Hb, predischarge Hb, postoperative nadir Hb drift, and predischarge Hb drift (both in absolute values and percentages) were subjected to univariate and multivariate analyses. These analyses were conducted in conjunction with other established variables to identify independent markers predicting patient outcomes. The outcomes of interest were postoperative short-term (6-week) mortality, long-term (1-year) mortality, and postoperative 30-day morbidity. RESULTS: A total of 289 patients were included. Our study demonstrated that predischarge Hb (OR 0.62, 95% CI 0.44-0.88, P = 0.007) was an independent prognostic factor of short-term mortality, while baseline Hb (OR 0.76, 95% CI 0.66-0.88, P < 0.001) was identified as an independent prognostic factor of long-term mortality. Additionally, nadir Hb drift (OR 0.82, 95% CI 0.70-0.97, P = 0.023) was found to be an independent prognostic factor for postoperative 30-day morbidity. CONCLUSIONS: This study demonstrated that predischarge Hb, baseline Hb, and nadir Hb drift are prognostic factors for outcomes. These findings provide a foundation for precise blood management strategies. It is crucial to consider Hb-related parameters appropriately, and prospective intervention studies addressing these markers should be conducted in the future.
Assuntos
Hemoglobinas , Neoplasias da Coluna Vertebral , Humanos , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Hemoglobinas/análise , Idoso , Neoplasias da Coluna Vertebral/secundário , Neoplasias da Coluna Vertebral/cirurgia , Neoplasias da Coluna Vertebral/sangue , Neoplasias da Coluna Vertebral/mortalidade , Perda Sanguínea Cirúrgica/estatística & dados numéricos , Perda Sanguínea Cirúrgica/prevenção & controle , Resultado do Tratamento , Anemia/sangue , Anemia/diagnóstico , Adulto , Prognóstico , Transfusão de Sangue/estatística & dados numéricos , Biomarcadores/sangue , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/epidemiologiaRESUMO
Enzyme-linked electrochemical immunosensors have attracted considerable attention for the sensitive and selective detection of various targets in clinical diagnosis, food quality control, and environmental analysis. In order to improve the performances of conventional immunoassays, significant efforts have been made to couple enzyme-linked or nanozyme-based catalysis and redox cycling for signal amplification. The current review summarizes the recent advances in the development of enzyme- or nanozyme-based electrochemical immunosensors with redox cycling for signal amplification. The special features of redox cycling reactions and their synergistic functions in signal amplification are discussed. Additionally, the current challenges and future directions of enzyme- or nanozyme-based electrochemical immunosensors with redox cycling are addressed.
Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Oxirredução , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Catálise , Humanos , Enzimas/metabolismo , Enzimas/químicaRESUMO
In this work, we report on an electrochemical method for the signal-on detection of caspase-3 and the evaluation of apoptosis based on the biotinylation reaction and the signal amplification of methylene blue (MB)-loaded metal-organic frameworks (MOFs). Zr-based UiO-66-NH2 MOFs were used as the nanocarriers to load electroactive MB molecules. Recombinant hexahistidine (His6)-tagged streptavidin (rSA) was attached to the MOFs through the coordination interaction between the His6 tag in rSA and the metal ions on the surface of the MOFs. The acetylated peptide substrate Ac-GDEVDGGGPPPPC was immobilized on the gold electrode. In the presence of caspase-3, the peptide was specifically cleaved, leading to the release of the Ac-GDEVD sequence. A N-terminal amine group was generated and then biotinylated in the presence of biotin-NHS. Based on the strong interaction between rSA and biotin, rSA@MOF@MB was captured by the biotinylated peptide-modified electrode, producing a significantly amplified electrochemical signal. Caspase-3 was sensitively determined with a linear range from 0.1 to 25 pg/mL and a limit of detection down to 0.04 pg/mL. Further, the active caspase-3 in apoptosis inducer-treated HeLa cells was further quantified by this method. The proposed signal-on biosensor is compatible with the complex biological samples and shows great potential for apoptosis-related diagnosis and the screening of caspase-targeting drugs.
Assuntos
Técnicas Biossensoriais , Caspase 3 , Estruturas Metalorgânicas , Azul de Metileno , Estruturas Metalorgânicas/química , Azul de Metileno/química , Humanos , Caspase 3/metabolismo , Células HeLa , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Apoptose , Estreptavidina/química , Biotinilação , Eletrodos , Limite de Detecção , Zircônio/química , Ácidos FtálicosRESUMO
Epigenetic alterations and metabolic dysfunction are two hallmarks of aging. However, the mechanism of how their interaction regulates aging, particularly in mammals, remains largely unknown. Here we show ELOVL fatty acid elongase 2 (Elovl2), a gene whose epigenetic alterations are most highly correlated with age prediction, contributes to aging by regulating lipid metabolism. Impaired Elovl2 function disturbs lipid synthesis with increased endoplasmic reticulum stress and mitochondrial dysfunction, leading to key accelerated aging phenotypes. Restoration of mitochondrial activity can rescue age-related macular degeneration (AMD) phenotypes induced by Elovl2 deficiency in human retinal pigmental epithelial (RPE) cells. We revealed an epigenetic-metabolism axis contributing to aging and potentially to antiaging therapy.
RESUMO
Soil salinization is a major obstacle to land productivity, crop yield and crop quality in arid areas and directly affects food security. Soil profile salt data are key for accurately determining irrigation volumes. To explore the potential for using Landsat 8 time-series data to monitor soil salinization, 172 Landsat 8 images from 2013 to 2019 were obtained from the Alar Reclamation Area of Xinjiang, northwest China. The multiyear extreme dataset was synthesized from the annual maximum or minimum values of 16 vegetation indices, which were combined with the soil conductivity of 540 samples from soil profiles at 0~0.375 m, 0~0.75 m and 0~1.00 m depths in 30 cotton fields with varying degrees of salinization as investigated by EM38-MK2. Three remote sensing monitoring models for soil conductivity at different depths were constructed using the Cubist method, and digital mapping was carried out. The results showed that the Cubist model of soil profile electrical conductivity from 0 to 0.375 m, 0 to 0.75 m and 0 to 1.00 m showed high prediction accuracy, and the determination coefficients of the prediction set were 0.80, 0.74 and 0.72, respectively. Therefore, it is feasible to use a multiyear extreme value for the vegetation index combined with a Cubist modeling method to monitor soil profile salinization at a regional scale.
RESUMO
ZnIn2S4, a novel two-dimensional visible light-responsive photocatalyst, has attracted much attention in the photocatalytic evolution of H2 under visible light irradiation due to its attractive intrinsic photoelectric properties and geometric configuration. However, ZnIn2S4 still has severe charge recombination, which results in moderate photocatalytic performance. Herein, we report the successful synthesis of 2D/2D ZnIn2S4/Ti3C2 nanocomposites by a facile one-step hydrothermal method. The efficiency of the nanocomposites in photocatalytic hydrogen evolution under visible light irradiation was also evaluated for different ratios of Ti3C2, and the optimal photocatalytic activity was achieved at 5% Ti3C2. Importantly, the activity was significantly higher than that of pure ZnIn2S4, ZnIn2S4/Pt, and ZnIn2S4/graphene. The enhanced photocatalytic activity is mainly due to the close interfacial contact between Ti3C2 and ZnIn2S4 nanosheets, which amplifies the transport of photogenerated electrons and enhances the separation of photogenerated carriers. This research describes a novel approach for the synthesis of 2D MXenes for photocatalytic hydrogen production and expands the utility of MXene composite materials in the fields of energy storage and conversion.
Assuntos
Grafite , Titânio , Elétrons , HidrogênioRESUMO
The design and synthesis of efficient photocatalysts that promote the degradation of organic pollutants in water have attracted extensive attention in recent years. In this work, CdS nanoparticles are grown in situ on Co@C derived from metal-organic frameworks. The resulting hierarchical CdS/Co@C nanostructures are evaluated in terms of their adsorption and photocatalytic ciprofloxacin degradation efficiency under visible-light irradiation. The results show that, apart from offering a large surface area (55.69 m2·g-1), the prepared material can effectively suppress the self-agglomeration of CdS and enhance the absorption of visible light. The CdS/Co@C-7 composite containing 7% wt Co@C has the highest photodegradation rate, and its activity is approximately 4.4 times greater than that of CdS alone. Moreover, this composite exhibits remarkable stability after three successive cycles of photocatalysis. The enhanced photocatalytic performance is largely ascribed to the rapid separation of electron-hole pairs and the effective electron transfer between CdS and Co@C, which is confirmed via electrochemical experiments and photoluminescence spectra. The active substance capture experiment and the electron spin resonance technique show that h+ is the main active entity implicated in the degradation of CIP, and accordingly, a possible mechanism of CIP photocatalytic degradation over CdS/Co@C is proposed. In general, this work presents a new perspective on designing novel photocatalysts that promote the degradation of organic pollutants in water.
Assuntos
Ciprofloxacina , Nanopartículas , Ciprofloxacina/química , Fotólise , Carbono , Adsorção , Cobalto , Catálise , Nanopartículas/química , ÁguaRESUMO
In this study, Co-doped TiO2 was synthesized using waste tobacco stem silk (TSS) as a template via a one-pot impregnation method. These samples were characterized using various physicochemical techniques such as N2 adsorption/desorption analysis, diffuse reflectance UV-visible spectroscopy, X-ray diffraction, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectroscopy, and electron paramagnetic resonance spectroscopy. The synthesized material was used for the photodegradation of tetracycline hydrochloride (TCH) under visible light (420-800 nm). No strong photodegradation activity was observed for mesoporous TiO2 synthesized using waste TSS as a template, mesoporous Co-doped TiO2, or TiO2. In contrast, Co-doped mesoporous TiO2 synthesized using waste TSS as a template exhibited significant photocatalytic degradation, with 86% removal of TCH. Moreover, owing to the unique chemical structure of Ti-O-Co, the energy gap of TiO2 decreased. The edge of the absorption band was redshifted, such that the photoexcitation energy for generating electron-hole pairs decreased. The electron-hole separation efficiency improved, rendering the microstructured biotemplated TiO2 a much more efficient catalyst for the visible-light degradation of TCH.
Assuntos
Nicotiana , Tetraciclina , Luz , Antibacterianos/química , Titânio/química , CatáliseRESUMO
Purely organic materials with visible light excitable fluorescence afterglow are promising for applications. Herein, fluorescence afterglow with various intensity and duration was observed on fluorescent dyes once being dispersed in polymer matrix, thanks to the slow reverse intersystem crossing rate (kRISC ) and long delayed fluorescence lifetime (τDF ) derived from the coplanar and rigid chemical structure of the dyes. To verify the mechanism, different polymers were used to tune singlet-triplet splitting energy based on solvent effect. And commercial acriflavine (Acf) film showed blue shifted fluorescence compared to purified one, with slower kRISC (≈100 â s-1 ) and longer τDF (0.6â s). Via energy transfer from Acf to rhodamine B, the afterglow color was further regulated, with the largest fluorescence quantum yield of 42.4 %. It was demonstrated that the materials worked on color tunable light sources, and low-cost ($2 for 50 000â labels) anti-counterfeit labels recognized by white light.
RESUMO
The stimulus-responsive room temperature phosphorescent (RTP) materials have endowed wide potential applications. In this work, by introducing naphthalene and spiropyran (SP) into polyacrylamide as the energy donor and acceptor respectively, a new kind of brilliant dynamic color-tunable amorphous copolymers were prepared with good stability and processibility, and afterglow emissions from green to orange in response to the stimulus of photo or acid, thanks to multi-responsibility of SP and the energy transfer between naphthalene and SP. In addition to the deeply exploring of the inherent mechanism, these copolymers have been successfully applied in dynamically controllable applications in information protection and delivery.
RESUMO
No matter photoinduced organic radicals have been reported frequently, they are usually non-luminescent at ambient conditions. The internal mechanism on stability and electronic transitions of photoinduced radicals, is thus crucial for the development of relevant materials. Herein, a series of photoinduced radical emission systems were developed conveniently through doping benzoic acids into the hydrogen donor polyvinyl alcohol (PVA) matrix. Visual photoinduced radical emission and photochromism could be observed on Ph-3COOH@PVA film with the formation of cyclohexadienyl-type structure. For the first time, radical afterglow appeared with energy transfer from triplet state. The appropriate introduction of carboxylic groups to three nonadjacent carbon atoms on the benzene ring was the best for decreasing spin population and promoting electronic transitions of the radical. This study largely expands the radical emission property from both internal mechanism and practical application.
RESUMO
Photodetectors are critical components in intelligent optoelectronic systems, and photomultiplication-capable devices are essential for detecting weak optical signals. Despite significant advances, developing photomultiplication-type organic photodetectors with high gain and low noise current simultaneously remains challenging. In this work, a new conjugated polymer PDN with singlet open-shell ground state is introduced in active layers for electron capture, and the corresponding PDN-based photodetectors exhibited an enhanced photoelectric gain and decreased dark current density at a low forward bias. At 1.5â V, the PDN-based ternary photodetector has the external quantum efficiency (EQE) up to 2552.3 % and the specific detectivity of 1.4×1014 â Jones at 710â nm calculated by the measured noise current, with the gain 22â times higher than that of the control group. This study provides an approach for exploiting polymers with singlet open-shell ground state to enhance the gain of organic photodetectors.
RESUMO
PURPOSE: We aimed to identify effective routinely collected laboratory biomarkers for predicting postoperative outcomes in surgically treated spinal metastases and attempted to establish an effective prediction model. METHODS: This study included 268 patients with spinal metastases surgically treated at a single institution. We evaluated patient laboratory biomarkers to determine trends to predict survival. The markers included white blood cell (WBC) count, platelet count, neutrophil count, lymphocyte count, hemoglobin, albumin, alkaline phosphatase, creatinine, total bilirubin, calcium, international normalized ratio (INR), platelet-to-lymphocyte ratio (PLR), and neutrophil-to-lymphocyte ratio (NLR). A nomogram based on laboratory markers was established to predict postoperative 90-day and 1-year survival. The discrimination and calibration were validated using concordance index (C-index), area under curves (AUC) from receiver operating characteristic curves, and calibration curves. Another 47 patients were used as a validation group to test the accuracy of the nomogram. The prediction accuracy of the nomogram was compared to Tomita, revised Tokuhashi, modified Bauer, and Skeletal Oncology Research Group machine-learning (SORG ML). RESULTS: WBC, lymphocyte count, albumin, and creatinine were shown to be the independent prognostic factors. The four predictive laboratory markers and primary tumor, were incorporated into the nomogram to predict the 90-day and 1-year survival probability. The nomogram performed good with a C-index of 0.706 (0.702-0.710). For predicting 90-day survival, the AUC in the training group and the validation group was 0.740 (0.660-0.819) and 0.795 (0.568-1.000), respectively. For predicting 1-year survival, the AUC in the training group and the validation group was 0.765 (0.709-0.822) and 0.712 (0.547-0.877), respectively. Our nomogram seems to have better predictive accuracy than Tomita, revised Tokuhashi, and modified Bauer, alongside comparable prediction ability to SORG ML. CONCLUSIONS: Our study confirmed that routinely collected laboratory markers are closely associated with the prognosis of spinal metastases. A nomogram based on primary tumor, WBC, lymphocyte count, albumin, and creatinine, could accurately predict postoperative survival for patients with spinal metastases.
Assuntos
Neoplasias da Coluna Vertebral , Humanos , Estudos Retrospectivos , Creatinina , Neoplasias da Coluna Vertebral/cirurgia , Biomarcadores , AlbuminasRESUMO
To analyze the changes in refresher personnel structure in a clinical laboratory of a 3A hospital, understand the development trends in laboratory science, and provide a reference for refresher training in various hospitals. The basic information of the trainees in the institute from January 2009 to December 2018 was collected and analyzed with respect to gender, age, educational background, professional title, duration of training, number of trainees in sub-majors, and number of months of training in sub-majors. In the past 10 years, the gender of the trainees in the institute was mostly female. The educational level and professional title of the trainees have gradually increased. The training period was most often 6 months, and the sub-majors were mostly clinical microbiology and bone marrow cytology. With the change in the social environment, the structure and needs of personnel refresher training will change. Each hospital should reasonably plan the enrollment scale and scientifically formulate training plans and programs to meet the needs of continuing education in the new era.
Assuntos
Hospitais , Laboratórios Clínicos , Humanos , Feminino , Masculino , Laboratórios , ChinaRESUMO
BACKGROUND: There is a need to establish an effective neoadjuvant therapy for soft tissue sarcomas (STSs). We previously showed that apatinib, administered in combination with doxorubicin-based chemotherapy, improves the efficacy of treatment. This study aimed to clarify the effectiveness and safety of apatinib combined with doxorubicin and ifosfamide (AI) neoadjuvant chemotherapy for STSs. METHODS: This retrospective study included patients with STS who received neoadjuvant therapy and surgery between January 2016 and January 2019. The patients were divided into two treatment groups: AI + apatinib group and AI group (doxorubicin + ifosfamide). RESULTS: The study included 74 patients (AI + apatinib: 26, AI: 48) with STS. There were significant between-group differences in objective response rates (53.85% vs. 29.17%, p = 0.047) and the average change in target lesion size from baseline (-40.46 ± 40.30 vs. -16.31 ± 34.32, p = 0.008). The R0 rate (84.62% vs. 68.75%; p = 0.170) and 2-year disease-free survival (73.08% vs. 62.50%, p = 0.343) were similar across groups. Finally, the rates of neoadjuvant therapy-related adverse effects and postoperative complications were similar in both groups (p > 0.05). CONCLUSION: Apatinib plus doxorubicin and ifosfamide regimen is safe and effective as neoadjuvant therapy for patients with STS. However, the significantly improved preoperative ORR observed after neoadjuvant therapy did not translate into a significantly improved R0 rate and 2-year DFS. Prospective, well-powered studies are warranted to determine the long-term efficacy and optimal application of these protocols.