Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(15): 3509-3518, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38647692

RESUMO

Escherichia coli O157:H7 (E. coli O157:H7) is a foodborne pathogenic microorganism that is commonly found in the environment and poses a significant threat to human health, public safety, and economic stability worldwide. Thus, early detection is essential for E. coli O157:H7 control. In recent years, a series of E. coli O157:H7 detection methods have been developed, but the sensitivity and portability of the methods still need improvement. Therefore, in this study, a rapid and efficient testing platform based on the CRISPR/Cas12a cleavage reaction was constructed. Through the integration of recombinant polymerase amplification and lateral flow chromatography, we established a dual-interpretation-mode detection platform based on CRISPR/Cas12a-derived fluorescence and lateral flow chromatography for the detection of E. coli O157:H7. For the fluorescence detection method, the limits of detection (LODs) of genomic DNA and E. coli O157:H7 were 1.8 fg/µL and 2.4 CFU/mL, respectively, within 40 min. Conversely, for the lateral flow detection method, LODs of 1.8 fg/µL and 2.4 × 102 CFU/mL were achieved for genomic DNA and E. coli O157:H7, respectively, within 45 min. This detection strategy offered higher sensitivity and lower equipment requirements than industry standards. In conclusion, the established platform showed excellent specificity and strong universality. Modifying the target gene and its primers can broaden the platform's applicability to detect various other foodborne pathogens.


Assuntos
Sistemas CRISPR-Cas , Escherichia coli O157 , Limite de Detecção , Escherichia coli O157/genética , Escherichia coli O157/isolamento & purificação , DNA Bacteriano/análise , DNA Bacteriano/genética , Microbiologia de Alimentos/métodos , Proteínas Associadas a CRISPR/genética , Humanos , Endodesoxirribonucleases/genética
2.
Appl Microbiol Biotechnol ; 108(1): 313, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683244

RESUMO

To avoid the unreasonable use of chemical fertilizer, an environmentally friendly means of improving soil fertility is required. This study explored the role of the plant growth-promoting rhizosphere bacteria (PGPR) strain Bacillus velezensis SAAS-63 in improving nutrient stress in lettuce. Compared with no inoculation, B. velezensis SAAS-63 inoculants exhibited significantly increased fresh weight, root length, and shoot height under nutrient deficiency, as well as improved antioxidant activities and proline contents. The exogenous addition of B. velezensis SAAS-63 also significantly increased the accumulation of macroelements and micronutrients in lettuce. To elucidate the resistance mechanisms induced by B. velezensis SAAS-63 under nutrient stress, high-throughput sequencing and multi-omics analysis were performed. Inoculation with B. velezensis SAAS-63 altered the microbial community of the rhizosphere and increased the relative abundances of Streptomyces, Actinoallomurus, Verrucomicrobia, and Chloroflexi. It is worth noting that the inoculant SAAS-63 can affect plant rhizosphere metabolism. The inoculant changed the metabolic flow of phenylpropanoid metabolic pathway under nutrient deficiency and promoted phenylalanine to participate more in the synthesis of lignin precursors and coumarin substances by inhibiting the synthesis of flavone and isoflavone, thus improving plant resistance. This study showed that the addition of inoculant SAAS-63 could help plants recruit microorganisms to decompose and utilize trehalose and re-established the carbon metabolism of the plant rhizosphere. Additionally, microbes were found to be closely related to the accumulation of metabolites based on correlation analysis. The results indicated that the addition of PGPRs has an important role in regulating soil rhizosphere microbes and metabolism, providing valuable information for understanding how PGPRs affect complex biological processes and enhance plant adaptation to nutrient deficiency. KEY POINTS: • Inoculation with SAAS-63 significantly promoted plant growth under nutrient-deficient conditions • Inoculation with SAAS-63 affected rhizosphere microbial diversity and community structure • Inoculation with SAAS-63 affected plant rhizosphere metabolism and induced plants to synthesize substances that resist stress.


Assuntos
Bacillus , Lactuca , Nutrientes , Rizosfera , Microbiologia do Solo , Estresse Fisiológico , Bacillus/metabolismo , Bacillus/genética , Lactuca/microbiologia , Lactuca/crescimento & desenvolvimento , Nutrientes/metabolismo , Raízes de Plantas/microbiologia , Microbiota , Multiômica
3.
Curr Microbiol ; 81(8): 228, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38890167

RESUMO

Soil nutrient deficiency has become a key factor limiting crop growth. Plant growth-promoting rhizobacteria (PGPR) are vital in resisting abiotic stress. In this study, we investigated the effects of inoculation with Bacillus amyloliquefaciens JB20221020 on the physiology, biochemistry, rhizosphere microorganisms, and metabolism of lettuce under nutrient stress. Pot experiments showed that inoculation with B. amyloliquefaciens JB20221020 significantly promoted lettuce growth under nutrient deficiency. At the same time, the activities of the antioxidant enzymes superoxide dismutase, peroxidase, and catalase and the content of proline increased, and the content of Malondialdehyde decreased in the lettuce inoculated with B. amyloliquefaciens JB20221020. Inoculation with B. amyloliquefaciens JB20221020 altered the microbial community of the rhizosphere and increased the relative abundances of Myxococcales, Deltaproteobacteria, Proteobacteria, Devosia, and Verrucomicrobia. Inoculation also altered the rhizosphere metabolism under nutrient deficiency. The folate metabolism pathway was significantly enriched in the Kyoto Encyclopedia of Genes and Genomes enrichment analysis. This study explored the interaction between plants and microorganisms under nutrient deficiency, further explained the critical role of rhizosphere microorganisms in the process of plant nutrient stress, and provided a theoretical basis for the use of microorganisms to improve plant resistance.


Assuntos
Bacillus amyloliquefaciens , Lactuca , Rizosfera , Microbiologia do Solo , Estresse Fisiológico , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/fisiologia , Lactuca/microbiologia , Lactuca/crescimento & desenvolvimento , Nutrientes/metabolismo , Microbiota , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Solo/química
4.
Materials (Basel) ; 17(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39124481

RESUMO

High-carbon-chromium martensitic stainless steel (MSS) is widely used in many fields due to its excellent mechanical properties, while the coarse eutectic carbide in MSS deteriorates corrosion resistance. In this work, nitrogen was added to the MSS to improve corrosion resistance. The effects of nitrogen on the microstructure and corrosion resistance of MSS were systematically studied. The results showed that the addition of nitrogen promoted the development of Cr2N and reversed austenite, effectively inhibiting the formation of δ-ferrite. Therefore, the durability of the passivation film was improved, the passivation zone was expanded, and the susceptibility to metastable pitting was decreased. As a consequence, nearly two orders of magnitude have been achieved in the pitting potential (Epit) of MSS containing nitrogen, and the polarization resistance value (Rp) has gone up from 4.05 kΩ·cm2 to 1.24 × 102 kΩ·cm2. This means that in a corrosive environment, nitrogen-treated MSS stainless steel is less likely to form pitting pits, which further extends the service life of the material.

5.
Poult Sci ; 103(5): 103600, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471230

RESUMO

The aim of this study was to evaluate the effect of microencapsulated essential oils (MEO) on the laying performance, egg quality, immunity, intestinal morphology, and oxidative status of laying hens. A total of 640 Hy-line Brown laying hens, 41 wk of age, were randomly divided into 4 groups, each with 8 replicates containing 20 birds per replicate. The dietary conditions tested included a basal diet (Control) or the basal diet supplemented with various levels of MEO at 100 mg/kg (MEO100), 300 mg/kg (MEO300), and 500 mg/kg (MEO500). The three treatment groups were intermittently fed MEO, following an alternating schedule of 1 wk on and 1 wk off for a total of 56 d. Results showed that feeding MEO at levels of 300 and 500 mg/kg improved both egg production and feed conversion ratios compared to the control group. Hens consumed MEO-supplemented diets exhibited a significant decrease in the breaking egg ratio (P < 0.05) compared to those fed the control diet. Shell thickness and Haugh unit values significantly increased in the groups receiving 300 and 500 mg/kg of MEO (P < 0.05). Both the MEO300 and MEO500 treatments led to improvements in immunoglobulin (IgA, IgM, and IgG) and cytokine (IL-2 and IFN-γ) levels in serum. Hens in the MEO300 and MEO500 groups exhibited higher values for parameters related to intestinal morphometry compared to the control group. Furthermore, supplementation with 300 and 500 mg/kg of MEO enhanced the antioxidant capacity of plasma, as evidenced by increased activities of glutathione peroxidase (GSH-Px), total superoxide dismutase (T-SOD), and catalase (CAT) (P < 0.05). In summary, the intermittent feeding of MEO improved egg production, enhanced antioxidative processes, immune functions, and intestinal morphology, leading to an amelioration in the egg quality of laying hens. Our data demonstrate that supplementation of 300 mg/kg of MEO in feed can significantly improve animal health and egg quality. Implementation of these feeding practices could have a positive economic impact on poultry and egg industry.


Assuntos
Ração Animal , Galinhas , Dieta , Suplementos Nutricionais , Intestinos , Óleos Voláteis , Animais , Galinhas/fisiologia , Galinhas/imunologia , Óleos Voláteis/administração & dosagem , Óleos Voláteis/farmacologia , Feminino , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais/análise , Intestinos/efeitos dos fármacos , Intestinos/fisiologia , Intestinos/anatomia & histologia , Distribuição Aleatória , Óvulo/fisiologia , Óvulo/efeitos dos fármacos , Relação Dose-Resposta a Droga , Reprodução/efeitos dos fármacos
6.
Materials (Basel) ; 17(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673206

RESUMO

The deteriorated plasticity arising from the insoluble precipitates may lead to cracks during the rolling of FeCrAl alloys. The microstructure evolution and hot deformation behavior of an FeCrAl alloy were investigated in the temperature range of 750-1200 °C and strain rate range of 0.01-10 s-1. The flow stress of the FeCrAl alloy decreased with an increasing deformation temperature and decreased strain rate during hot working. The thermal deformation activation energy was determined to be 329.49 kJ/mol based on the compression test. Then, the optimal hot working range was given based on the established hot processing maps. The hot processing map revealed four small instability zones. The optimal working range for the material was identified as follows: at a true strain of 0.69, the deformation temperature should be 1050-1200 °C, and the strain rate should be 0.01-0.4 s-1. The observation of key samples of thermally simulated compression showed that discontinuous dynamic recrystallization started to occur with the temperate above 1000 °C, leading to bended grain boundaries. When the temperature was increased to 1150 °C, the dynamic recrystallization resulted in a microstructure composed of fine and equiaxed grains.

7.
Food Funct ; 15(10): 5527-5538, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38700280

RESUMO

The salty oligopeptides from Stropharia rugosoannulata have been proven to be potential ACE inhibitors. To investigate the ACE receptor binding properties and interaction mechanisms of salty oligopeptides, the molecular interaction, dynamics simulation, and antihypertensive evaluation cross-validation strategy were employed to reveal the oligopeptides' binding reactions and modes with the ACE receptor. Single oligopeptide (ESPERPFL, KSWDDFFTR) had exothermic and specific binding reactions with the ACE receptor, driven by hydrogen bonds and van der Waals forces. The coexistence of the multiple oligopeptide molecules did not produce the apparent ACE receptor competition binding reactions. The molecular dynamics simulation verified that the two oligopeptides disturbed the ACE receptor's different residue regions. Both oligopeptides could form stable complexes with the ACE receptor. Based on the classification of 50 oligopeptides' binding modes, ESPERPFL and KSWDDFFTR belonged to different classes, and their receptor binding modes and sites complemented, resulting in a potential synergistic effect on ACE inhibition. The antihypertensive effect of KSWDDFFTR and its distribution in the body were evaluated using SHR rats orally and ICR mice by tail vein injection, and KSWDDFFTR had antihypertensive effects within 8 h. The study provides a theoretical basis for understanding salty oligopeptides' ACE receptor binding mechanism and their antihypertensive effects.


Assuntos
Anti-Hipertensivos , Simulação de Dinâmica Molecular , Oligopeptídeos , Animais , Oligopeptídeos/farmacologia , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/química , Ratos , Masculino , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/química , Agaricales/química , Agaricales/metabolismo , Camundongos , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Ligação Proteica , Pressão Sanguínea/efeitos dos fármacos , Ratos Endogâmicos SHR
8.
Nat Genet ; 56(6): 1270-1277, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38684899

RESUMO

The origin and functionality of long noncoding RNA (lncRNA) remain poorly understood. Here, we show that multiple quantitative trait loci modulating distinct domestication traits in soybeans are pleiotropic effects of a locus composed of two tandem lncRNA genes. These lncRNA genes, each containing two inverted repeats, originating from coding sequences of the MYB genes, function in wild soybeans by generating clusters of small RNA (sRNA) species that inhibit the expression of their MYB gene relatives through post-transcriptional regulation. By contrast, the expression of lncRNA genes in cultivated soybeans is severely repressed, and, consequently, the corresponding MYB genes are highly expressed, shaping multiple distinct domestication traits as well as leafhopper resistance. The inverted repeats were formed before the divergence of the Glycine genus from the Phaseolus-Vigna lineage and exhibit strong structure-function constraints. This study exemplifies a type of target for selection during plant domestication and identifies mechanisms of lncRNA formation and action.


Assuntos
Domesticação , Regulação da Expressão Gênica de Plantas , Glycine max , Hemípteros , Locos de Características Quantitativas , RNA Longo não Codificante , Glycine max/genética , RNA Longo não Codificante/genética , Animais , Hemípteros/genética , Doenças das Plantas/genética , RNA de Plantas/genética
9.
Foods ; 12(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38137236

RESUMO

Staphylococcus aureus exists widely in the natural environment and is one of the main food-borne pathogenic microorganisms causing human bacteremia. For safe food management, a rapid, high-specificity, sensitive method for the detection of S. aureus should be developed. In this study, a platform for detecting S. aureus (nuc gene) based on isothermal amplification (loop-mediated isothermal amplification-LAMP, recombinase polymerase amplification-RPA) and the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas12a) proteins system (LAMP, RPA-CRISPR/Cas12a) was proposed. In this study, the LAMP, RPA-CRISPR/Cas12a detection platform and immunochromatographic test strip (ICS) were combined to achieve a low-cost, simple and visualized detection of S. aureus. The limit of visual detection was 57.8 fg/µL of nuc DNA and 6.7 × 102 CFU/mL of bacteria. Moreover, the platform could be combined with fluorescence detection, namely LAMP, RPA-CRISPR/Cas12a-flu, to establish a rapid and highly sensitive method for the detection of S. aureus. The limit of fluorescence detection was 5.78 fg/µL of genomic DNA and 67 CFU/mL of S. aureus. In addition, this detection platform can detect S. aureus in dairy products, and the detection time was ~40 min. Consequently, the isothermal amplification CRISPR/Cas12a platform is a useful tool for the rapid and sensitive detection of S. aureus in food.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA