Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 623
Filtrar
1.
Small ; : e2400967, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751056

RESUMO

Pure magnesium anode used in rechargeable magnesium batteries (RMB) exhibits high theoretical capacity but has been challenged by the passivation issue with conventional electrolytes. Alloy-type anodes have the potential to surpass this issue and have attracted increasing attention. However, the kinetic performance and stabilities of conventional alloy anodes are still constrained. In this study, the InSb-10%C anode is synthesized by a two-step high-energy ball milling process. The InSb-10%C anode exhibits a remarkably high capacity of up to 448 mA h g-1, significantly improved cycle performance (234 mA h g-1 at 100 cycles) and rate performance (168 mA h g-1 at 500 mA g-1). The above-mentioned superior performance of the InSb-10%C anode for RMBs is attributed to the cellular graphitized amorphous carbon composite structure (CGA) which effectively refines the particle size and restricts the volume expansion. Additionally, the reduced surface electron density of InSb combined with the high conductivity resulting from graphitization enhances the Mg2+ diffusion performance. Notably, the InSb-10%C anode demonstrates good compatibility with conventional halogen-free salt ether-based electrolytes in the full battery configuration.

2.
Small ; 20(12): e2308329, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37949813

RESUMO

Rechargeable magnesium-ion batteries possess desirable characteristics in large-scale energy storage applications. However, severe polarization, sluggish kinetics and structural instability caused by high charge density Mg2+ hinder the development of high-performance cathode materials. Herein, the anionic redox chemistry in VS4 is successfully activated by inducing cations reduction and introducing anionic vacancies via polyacrylonitrile (PAN) intercalation. Increased interlayer spacing and structural vacancies can promote the electrolyte ions migration and accelerate the reaction kinetics. Thanks to this "three birds with one stone" strategy, PAN intercalated VS4 exhibits an outstanding electrochemical performance: high discharge specific capacity of 187.2 mAh g-1 at 200 mA g-1 after stabilization and a long lifespan of 5000 cycles at 2 A g-1 are achieved, outperforming other reported VS4-based materials to date for magnesium storage under the APC electrolyte. Theoretical calculations confirm that the intercalated PAN can indeed induce cations reduction and generate anionic vacancies by promoting electron transfer, which can accelerate the electrochemical reaction kinetics and activate the anionic redox chemistry, thus improving the magnesium storage performance. This approach of organic molecular intercalation represents a promising guideline for electrode material design on the development of advanced multivalent-ion batteries.

3.
Small ; : e2402673, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844996

RESUMO

Atherosclerosis (AS) is a common cause of coronary heart disease and stroke. The delivery of exogenous H2S and in situ production of O2 within atherosclerotic plaques can help suppress inflammatory cell infiltration and alleviate disease progression. However, the uncontrolled release of gas donors hinders achieving effective drug concentrations and causes toxic effects. Herein, diallyl trisulfide (DATS)-loaded metal-organic cage (MOC)-68-doped MnO2 nanoparticles are developed as a microenvironment-responsive nanodrug with the capacity for the in situ co-delivery of H2S and O2 to inflammatory cells within plaques. This nanomedicine exhibited excellent monodispersity and stability and protected DATS from degradation in the circulation. In vitro studies showed that the nanomedicine reduced macrophage polarization toward an inflammatory phenotype and inhibited the formation of foam cells, while suppressing the expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and interleukin-1ß. In a mouse model of ApoE-/- genotype, the nanomedicine reduces the plaque burden, inflammatory infiltration, and hypoxic conditions within the plaques. Furthermore, the treatment process and therapeutic effects can be monitored by magnetic resonance image (MRI), in real time upon Mn2+ release from the acidic- and H2O2- microenvironment-responsive MnO2 nanoparticles. The DATS-loaded MOC-68-doped MnO2-based nanodrug holds great promise as a novel theranostic platform for AS.

4.
Small ; : e2311587, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385836

RESUMO

Magnesium ion batteries (MIBs) are expected to be the promising candidates in the post-lithium-ion era with high safety, low cost and almost dendrite-free nature. However, the sluggish diffusion kinetics and strong solvation capability of the strongly polarized Mg2+ are seriously limiting the specific capacity and lifespan of MIBs. In this work, catalytic desolvation is introduced into MIBs for the first time by modifying vanadium pentoxide (V2 O5 ) with molybdenum disulfide quantum dots (MQDs), and it is demonstrated via density function theory (DFT) calculations that MQDs can effectively lower the desolvation energy barrier of Mg2+ , and therefore catalyze the dissociation of Mg2+ -1,2-Dimethoxyethane (Mg2+ -DME) bonds and release free electrolyte cations, finally contributing to a fast diffusion kinetics within the cathode. Meanwhile, the local interlayer expansion can also increase the layer spacing of V2 O5 and speed up the magnesiation/demagnesiation kinetics. Benefiting from the structural configuration, MIBs exhibit superb reversible capacity (≈300 mAh g-1 at 50 mA g-1 ) and unparalleled cycling stability (15 000 cycles at 2 A g-1 with a capacity of ≈70 mAh g-1 ). This approach based on catalytic reactions to regulate the desolvation behavior of the whole interface provides a new idea and reference for the development of high-performance MIBs.

5.
Glob Chang Biol ; 30(2): e17182, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38348761

RESUMO

Biodiversity is considered important to the mitigation of global change impacts on ecosystem multifunctionality in terrestrial ecosystems. However, potential mechanisms through which biodiversity maintains ecosystem multifunctionality under global change remain unclear. We grew 132 plant communities with two levels of plant diversity, crossed with treatments based on 10 global change factors (nitrogen deposition, soil salinity, drought, plant invasion, simulated grazing, oil pollution, plastics pollution, antibiotics pollution, heavy metal pollution, and pesticide pollution). All global change factors negatively impacted ecosystem multifunctionality, but negative impacts were stronger in high compared with low diversity plant communities. We explored potential mechanisms for this unexpected result, finding that the inhibition of selection effects (i.e., selection for plant species associated with high ecosystem functioning) contributed to sensitivity of ecosystem multifunctionality to global change. Specifically, global change factors decreased the abundance of novel functional plants (i.e., legumes) in high but not low diversity plant communities. The negative impacts of global change on ecosystem multifunctionality were also mediated by increased relative abundance of fungal plant pathogens (identified from metabarcoding of soil samples) and their negative relationship with the abundance of novel functional plants. Taken together, our experiment highlights the importance of protecting high diversity plant communities and legumes, and managing fungal pathogens, to the maintenance of ecosystem multifunctionality in the face of complex global change.


Assuntos
Ecossistema , Fabaceae , Biodiversidade , Plantas , Solo , Poluição Ambiental
6.
FASEB J ; 37(11): e23214, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37773768

RESUMO

Atg2 is a key gene in autophagy formation and plays an important role in regulating aging progress. Exercise is an important tool to resist oxidative stress in cells and delay muscle aging. However, the relationship between exercise and the muscle Atg2 gene in regulating skeletal muscle aging remains unclear. Here, overexpression or knockdown of muscle Atg2 gene was achieved by constructing the AtgUAS/MhcGal4 system in Drosophila, and these flies were also subjected to an exercise intervention for 2 weeks. The results showed that both overexpression of Atg2 and exercise significantly increased the climbing speed, climbing endurance, cardiac function, and lifespan of aging flies. They also significantly up-regulated the expression of muscle Atg2, AMPK, Sirt1, and PGC-1α genes, and they significantly reduced muscle malondialdehyde and triglyceride. These positive benefits were even more pronounced when the two were combined. However, the effects of Atg2 knockdown on skeletal muscle, heart, and lifespan were reversed compared to its overexpression. Importantly, exercise ameliorated age-related changes induced by Atg2 knockdown. Therefore, current results confirmed that both overexpression of muscle Atg2 and exercise delayed age-related deteriorations of skeletal muscle, the heart function, and lifespan, and exercise could also reverse age-related changes induced by Atg2 knockdown. The molecular mechanism is related to the overexpression of the Atg2 gene and exercise, which increase the activity of the AMPK/Sirt1/PGC-1α pathway, oxidation and antioxidant balance, and lipid metabolism in aging muscle.


Assuntos
Proteínas de Drosophila , Condicionamento Físico Animal , Animais , Masculino , Humanos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Drosophila/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Terapia por Exercício , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
7.
Diabetes Obes Metab ; 26(7): 2673-2683, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38558498

RESUMO

AIM: To investigate the association between cardiovascular health metrics defined by Life's Essential 8 (LE8) scores and vascular complications among individuals with type 2 diabetes (T2D). MATERIALS AND METHODS: This prospective study included 11 033 participants with T2D, all devoid of macrovascular diseases (including cardiovascular and peripheral artery disease) and microvascular complications (e.g. diabetic retinopathy, neuropathy and nephropathy) at baseline from the UK Biobank. The LE8 score comprised eight metrics: smoking, body mass index, physical activity, non-high-density lipoprotein cholesterol, blood pressure, glycated haemoglobin, diet and sleep duration. Cox proportional hazards models were established to assess the associations of LE8 scores with incident macrovascular and microvascular complications. RESULTS: During a median follow-up of 12.1 years, we identified 1975 cases of incident macrovascular diseases and 1797 cases of incident microvascular complications. After adjusting for potential confounders, each 10-point increase in the LE8 score was associated with an 18% lower risk of macrovascular diseases and a 15% lower risk of microvascular complications. Comparing individuals in the highest and lowest quartiles of LE8 scores revealed hazard ratios of 0.55 (95% confidence interval 0.47-0.62) for incident macrovascular diseases, and 0.61 (95% confidence interval 0.53-0.70) for incident microvascular complications. This association remained robust across a series of sensitivity analyses and nearly all subgroups. CONCLUSION: Higher LE8 scores were associated with a lower risk of incident macrovascular and microvascular complications among individuals with T2D. These findings underscore the significance of adopting fundamental strategies to maintain optimal cardiovascular health and curtail the risk of developing diabetic vascular complications.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Angiopatias Diabéticas , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Masculino , Feminino , Estudos Prospectivos , Pessoa de Meia-Idade , Angiopatias Diabéticas/epidemiologia , Angiopatias Diabéticas/etiologia , Reino Unido/epidemiologia , Idoso , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Adulto , Fatores de Risco , Índice de Massa Corporal , Fumar/efeitos adversos , Fumar/epidemiologia , Hemoglobinas Glicadas/análise , Hemoglobinas Glicadas/metabolismo , Exercício Físico , Seguimentos , Pressão Sanguínea , Incidência
8.
Arterioscler Thromb Vasc Biol ; 43(9): 1684-1699, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37409531

RESUMO

BACKGROUND: Excess aldosterone is implicated in vascular calcification (VC), but the mechanism by which aldosterone-MR (mineralocorticoid receptor) complex promotes VC is unclear. Emerging evidence indicates that long-noncoding RNA H19 (H19) plays a critical role in VC. We examined whether aldosterone-induced osteogenic differentiation of vascular smooth muscle cells (VSMCs) through H19 epigenetic modification of Runx2 (runt-related transcription factor-2) in a MR-dependent manner. METHODS: We induced in vivo rat model of chronic kidney disease using a high adenine and phosphate diet to explore the relationship among aldosterone, MR, H19, and VC. We also cultured human aortic VSMCs to explore the roles of H19 in aldosterone-MR complex-induced osteogenic differentiation and calcification of VSMCs. RESULTS: H19 and Runx2 were significantly increased in aldosterone-induced VSMC osteogenic differentiation and VC, both in vitro and in vivo, which were significantly blocked by the MR antagonist spironolactone. Mechanistically, our findings reveal that the aldosterone-activated MR bound to H19 promoter and increased its transcriptional activity, as determined by chromatin immunoprecipitation, electrophoretic mobility shift assay, and luciferase reporter assay. Silencing H19 increased microRNA-106a-5p (miR-106a-5p) expression, which subsequently inhibited aldosterone-induced Runx2 expression at the posttranscriptional level. Importantly, we observed a direct interaction between H19 and miR-106a-5p, and downregulation of miR-106a-5p efficiently reversed the suppression of Runx2 induced by H19 silencing. CONCLUSIONS: Our study clarifies a novel mechanism by which upregulation of H19 contributes to aldosterone-MR complex-promoted Runx2-dependent VSMC osteogenic differentiation and VC through sponging miR-106a-5p. These findings highlight a potential therapeutic target for aldosterone-induced VC.


Assuntos
MicroRNAs , RNA Longo não Codificante , Calcificação Vascular , Humanos , Ratos , Animais , MicroRNAs/metabolismo , Aldosterona/toxicidade , RNA Longo não Codificante/metabolismo , Osteogênese , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo
9.
BMC Neurol ; 24(1): 205, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879485

RESUMO

BACKGROUND: The application of cerebellar transcranial magnetic stimulation (TMS) in stroke patients has received increasing attention due to its neuromodulation mechanisms. However, studies on the effect and safety of cerebellar TMS to improve balance capacity and activity of daily living (ADL) for stroke patients are limited. This systematic review and meta-analysis aimed to investigate the effect and safety of cerebellar TMS on balance capacity and ADL in stroke patients. METHOD: A systematic search of seven electronic databases (PubMed, Embase, Web of Science, Cochrane Central Register of Controlled Trials, China National Knowledge Infrastructure, Wanfang and Chinese Scientific Journal) were conducted from their inception to October 20, 2023. The randomized controlled trials (RCTs) of cerebellar TMS on balance capacity and/or ADL in stroke patients were enrolled. The quality of included studies were assessed by Physiotherapy Evidence Database (PEDro) scale. RESULTS: A total of 13 studies involving 542 participants were eligible. The pooled results from 8 studies with 357 participants showed that cerebellar TMS could significantly improve the post-intervention Berg balance scale (BBS) score (MD = 4.24, 95%CI = 2.19 to 6.29, P < 0.00001; heterogeneity, I2 = 74%, P = 0.0003). The pooled results from 4 studies with 173 participants showed that cerebellar TMS could significantly improve the post-intervention Time Up and Go (TUG) (MD=-1.51, 95%CI=-2.8 to -0.22, P = 0.02; heterogeneity, I2 = 0%, P = 0.41). The pooled results from 6 studies with 280 participants showed that cerebellar TMS could significantly improve the post-intervention ADL (MD = 7.75, 95%CI = 4.33 to 11.17, P < 0.00001; heterogeneity, I2 = 56%, P = 0.04). The subgroup analysis showed that cerebellar TMS could improve BBS post-intervention and ADL post-intervention for both subacute and chronic stage stroke patients. Cerebellar high frequency TMS could improve BBS post-intervention and ADL post-intervention. Cerebellar TMS could still improve BBS post-intervention and ADL post-intervention despite of different cerebellar TMS sessions (less and more than 10 TMS sessions), different total cerebellar TMS pulse per week (less and more than 4500 pulse/week), and different cerebellar TMS modes (repetitive TMS and Theta Burst Stimulation). None of the studies reported severe adverse events except mild side effects in three studies. CONCLUSIONS: Cerebellar TMS is an effective and safe technique for improving balance capacity and ADL in stroke patients. Further larger-sample, higher-quality, and longer follow-up RCTs are needed to explore the more reliable evidence of cerebellar TMS in the balance capacity and ADL, and clarify potential mechanisms.


Assuntos
Atividades Cotidianas , Cerebelo , Equilíbrio Postural , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Equilíbrio Postural/fisiologia , Reabilitação do Acidente Vascular Cerebral/métodos , Cerebelo/fisiologia , Cerebelo/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos
10.
Europace ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912887

RESUMO

BACKGROUND: Pulsed field ablation (PFA) is an emerging non-thermal ablative modality demonstrating considerable promise for catheter ablation of atrial fibrillation (AF). However, these PFA trials have almost universally included only caucasian populations, with little data on its effect on other races/ethnicities. OBJECTIVE: The PLEASE-AF trial sought to study 12-month efficacy and the safety of a multielectrode hexaspline PFA catheter in treating a predominatly Asian/Chinese population of patients with drug-refractory paroxysmal AF. METHODS: Patients underwent pulmonary vein (PV) isolation by delivering different pulse intensities at the PV ostium (1800V) and atrium (2000V). Acute success was defined as no PV potentials and entrance/exit conduction block of all PVs after a 20-min waiting period. Follow-up at 3, 6, and 12 months included 12-ECG and 24-hour Holter examinations. The primary efficacy endpoint was 12-month freedom from any atrial arrhythmias lasting at least 30 seconds. RESULTS: The cohort included 143 patients from 12 hospitals treated by 28 operators: age 60.2±10.0 years, 65.7% male, Asian/Chinese 100%, and left atrial diameter 36.6±4.9 mm. All PVs (565/565, 100%) were successfully isolated. The total procedure, catheter dwell, total PFA application, and total fluoroscopy times were 123.5±38.8 minutes, 63.0±30.7 minutes, 169.7±34.6 seconds and 27.3±10.1 minutes, respectively. The primary endpoint was observed in 124 of 143 patients (86.7%). One patient (0.7%) developed a small pericardial effusion 1-month post-procedure, not requiring intervention. CONCLUSIONS: The novel hexaspline PFA catheter demonstrated universal acute PVI with an excellent safety profile and promising 12-month freedom from recurrent atrial arrhythmias in an Asian/Chinese population with paroxysmal AF. REGISTRATION: URL: https://www.clinicaltrials.gov; unique identifier: NCT05114954.

11.
Phys Chem Chem Phys ; 26(8): 7001-7009, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38345314

RESUMO

Layered VS2 has been widely used as a battery anode material owing to its large specific surface area and controllable ion-transport channel. However, its semiconductor properties and poor cycling stability seriously limit its further applications. Herein, a two-dimensional BN/VS2 heterostructure (BVH) was constructed as an anode material for rechargeable metal-ion batteries (RMIBs). Demonstrated using first principles calculations, BVH exhibits a metallic property due to lattice stress between monolayer BN and VS2. BVH displays low ion diffusion energy barriers (0.13, 0.43, and 0.56 eV) and high theoretical capacities (447, 553.5, and 340.7 mA h g-1) for Li+, Na+, and Mg2+ storage. In BVH, the VS2 layer as the main redox center supports charge transfer, while the inactive BN layer enables high structural stability. This synergistic effect is expected to simultaneously achieve a high rate, high capacity, and long life. This design provides an important insight into developing new anode materials for RMIBs.

12.
Environ Res ; 242: 117739, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38007076

RESUMO

In wastewater treatment plants (WWTPs), ammonia oxidation is primarily carried out by three types of ammonia oxidation microorganisms (AOMs): ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and comammox (CMX). Antibiotic resistance genes (ARGs), which pose an important public health concern, have been identified at every stage of wastewater treatment. However, few studies have focused on the impact of ARGs on ammonia removal performance. Therefore, our study sought to investigate the effect of the representative multidrug-resistant plasmid RP4 on the functional microorganisms involved in ammonia oxidation. Using an inhibitor-based method, we first evaluated the contributions of AOA, AOB, and CMX to ammonia oxidation in activated sludge, which were determined to be 13.7%, 41.1%, and 39.1%, respectively. The inhibitory effects of C2H2, C8H14, and 3,4-dimethylpyrazole phosphate (DMPP) were then validated by qPCR. After adding donor strains to the sludge, fluorescence in situ hybridization (FISH) imaging analysis demonstrated the co-localization of RP4 plasmids and all three AOMs, thus confirming the horizontal gene transfer (HGT) of the RP4 plasmid among these microorganisms. Significant inhibitory effects of the RP4 plasmid on the ammonia nitrogen consumption of AOA, AOB, and CMX were also observed, with inhibition rates of 39.7%, 36.2%, and 49.7%, respectively. Moreover, amoA expression in AOB and CMX was variably inhibited by the RP4 plasmid, whereas AOA amoA expression was not inhibited. These results demonstrate the adverse environmental effects of the RP4 plasmid and provide indirect evidence supporting plasmid-mediated conjugation transfer from bacteria to archaea.


Assuntos
Archaea , Betaproteobacteria , Archaea/genética , Archaea/metabolismo , Esgotos/microbiologia , Amônia , Nitrogênio/metabolismo , Desnitrificação , Hibridização in Situ Fluorescente , Oxirredução , Bactérias/genética , Bactérias/metabolismo , Plasmídeos/genética , Betaproteobacteria/genética , Betaproteobacteria/metabolismo , Antibacterianos , Filogenia , Microbiologia do Solo
13.
Nutr Metab Cardiovasc Dis ; 34(6): 1407-1415, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38664127

RESUMO

BACKGROUND AND AIMS: The associations between dietary vitamin C (VC), vitamin E (VE) intake and aortic aneurysm and dissection (AAD) remain unclear. This study aimed to prospectively investigate the associations between dietary VC and VE with the incident risk of AAD. METHODS AND RESULTS: A total of 139 477 participants of UK Biobank cohort were included in the analysis. Dietary VC and VE consumptions were acquired through a 24-h recall questionnaire. Cox proportional regression models were used to examine the associations between VC, VE intake and the risk of AAD. Incident AAD was ascertained through hospital inpatient records and death registers. During a median follow-up of 12.5 years, 962 incident AAD events were documented. Both dietary VC [adjusted hazard ratio (HR), 0.77; 95 % confidence intervals (CI), 0.63-0.93; P-trend = 0.008] and VE (adjusted HR, 0.70; 95 % CI, 0.57-0.87; P-trend = 0.002) were inversely associated with incident AAD when comparing the participants in the highest quartile with those in the lowest. In subgroup analyses, the associations were more pronounced in participants who were over 60 years old, participants with smoking history, hypertension or hyperlipidemia, who were under the high risk of AAD. CONCLUSION: Higher dietary VC and VE intakes are associated with reduced risk of AAD. Our study emphasizes the importance of diet adjustment strategies targeted on VC and VE to lower the incidence rate of AAD especially in the high-risk population.


Assuntos
Aneurisma Aórtico , Dissecção Aórtica , Ácido Ascórbico , Fatores de Proteção , Vitamina E , Humanos , Masculino , Estudos Prospectivos , Pessoa de Meia-Idade , Feminino , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/efeitos adversos , Vitamina E/administração & dosagem , Fatores de Risco , Idoso , Incidência , Dissecção Aórtica/epidemiologia , Dissecção Aórtica/prevenção & controle , Aneurisma Aórtico/epidemiologia , Aneurisma Aórtico/prevenção & controle , Medição de Risco , Reino Unido/epidemiologia , Fatores de Tempo , Dieta/efeitos adversos , Adulto
14.
Clin Exp Nephrol ; 28(4): 325-336, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38151608

RESUMO

BACKGROUND: The AHA has recently introduced a novel metric, Life's Essential 8, to assess cardiovascular health (CVH). Nevertheless, the association between varying levels of LE8 and the propensity for CKD is still unclear from a large prospective cohort. Our objective is to meticulously examine the relationship between LE8 and its associated susceptibilities to CKD. METHODS: A total of 251,825 participants free of CKD from the UK Biobank were included. Cardiovascular health was scored using LE8 and categorized as low, moderate, and high. Cox proportional hazard models were employed to evaluate the associations of LE8 scores with new-onset CKD. The genetic risk score for CKD was calculated by a weighted method. RESULTS: Over a median follow-up of 12.8 years, we meticulously documented 10,124 incident cases of CKD. Remarkably, an increased LE8 score correlated with a significant reduction of risk in new-onset CKD (high LE8 score vs. low LE8 score: HR = 0.300, 95% CI 0.270-0.330, p < 0.001; median LE8 score vs. low LE8 score: HR = 0.531, 95% CI 0.487-0.580, p < 0.001). This strong LE8-CKD association remained robust in extensive subgroup assessments and sensitivity analysis. Additionally, these noteworthy associations between LE8 scores and CKD remained unaffected by genetic predispositions to CKD. CONCLUSIONS: An elevated degree of CVH, as delineated by the discerning metric LE8, exhibited a pronounced and statistically significant correlation with a marked reduction in the likelihood of CKD occurrence.


Assuntos
Doenças Cardiovasculares , Insuficiência Renal Crônica , Humanos , Estados Unidos , Biobanco do Reino Unido , Bancos de Espécimes Biológicos , Estudos Prospectivos , Predisposição Genética para Doença , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética , Fatores de Risco
15.
Med Sci Monit ; 30: e942747, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400538

RESUMO

BACKGROUND International studies have shown that use of a subcutaneous implantable cardioverter defibrillator (S-ICD) could reduce lead-related complications while maintaining adequate defibrillation performance; however, data from the Chinese population or other Asian groups are limited. MATERIAL AND METHODS SCOPE is a prospective, multicenter, observational cohort study. Two hundred patients with primary prevention indication for sudden cardiac death (SCD), who are candidates for S-ICD, will be enrolled. From the same population, another 200 patients who are candidates for transvenous implantable cardioverter defibrillator (TV-ICD) will be enrolled after being matched for age, sex, SCD high-risk etiology (ischemic cardiomyopathy, and non-ischemic cardiomyopathy, ion channel disease, and other) and atrial fibrillation in a 1: 1 ratio with enrolled S-ICD patients. All the patients will be followed for 18 months under standard of care. RESULTS The primary endpoint is proportion of patients free from inappropriate shock (IAS) at 18 months in the S-ICD group. The lower 95% confidence bound of the proportion will be compared with a performance goal of 90.3%, which was derived from the previous meta-analysis. The comparisons between S-ICD and TV-ICD on IAS, appropriate shock, and complications will be used as secondary endpoints without formal assumptions. CONCLUSIONS This is the first prospective multicenter study focusing on the long-term performance of S-ICD in a Chinese population. By comparing with the data derived from international historical studies and a matched TV-ICD group, data from SCOPE will allow for the assessment of S-ICD in the Chinese population in a contemporary real-world implantation level and programming techniques, which will help us to further modify the device implantation and programming protocol in this specific population in the future.


Assuntos
Fibrilação Atrial , Cardiomiopatias , Desfibriladores Implantáveis , Humanos , Estudos Prospectivos , Resultado do Tratamento , Morte Súbita Cardíaca/prevenção & controle , Morte Súbita Cardíaca/epidemiologia , Prevenção Primária , China
16.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34452991

RESUMO

COVID-19, caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), has presented a serious risk to global public health. The viral main protease Mpro (also called 3Clpro) encoded by NSP5 is an enzyme essential for viral replication. However, very few host proteins have been experimentally validated as targets of 3Clpro. Here, through bioinformatics analysis of 300 interferon stimulatory genes (ISGs) based on the prediction method NetCorona, we identify RNF20 (Ring Finger Protein 20) as a novel target of 3Clpro. We have also provided evidence that 3Clpro, but not the mutant 3ClproC145A without catalytic activity, cleaves RNF20 at a conserved Gln521 across species, which subsequently prevents SREBP1 from RNF20-mediated degradation and promotes SARS-CoV-2 replication. We show that RNA interference (RNAi)-mediated depletion of either RNF20 or RNF40 significantly enhances viral replication, indicating the antiviral role of RNF20/RNF40 complex against SARS-CoV-2. The involvement of SREBP1 in SARS-CoV-2 infection is evidenced by a decrease of viral replication in the cells with SREBP1 knockdown and inhibitor AM580. Taken together, our findings reveal RNF20 as a novel host target for SARS-CoV-2 main protease and indicate that 3Clpro inhibitors may treat COVID-19 through not only blocking viral polyprotein cleavage but also enhancing host antiviral response.


Assuntos
Proteases 3C de Coronavírus/metabolismo , Estabilidade Proteica , SARS-CoV-2/patogenicidade , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral , Animais , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Regulação da Expressão Gênica , Interferons/fisiologia , SARS-CoV-2/imunologia , Proteína de Ligação a Elemento Regulador de Esterol 1/antagonistas & inibidores , Células Vero
17.
Ecotoxicol Environ Saf ; 276: 116288, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581909

RESUMO

Cylindrospermopsin (CYN), a cyanobacterial toxin, has been detected in the global water environment. However, information concerning the potential environmental risk of CYN is limited, since the majority of previous studies have mainly focused on the adverse health effects of CYN through contaminated drinking water. The present study reported that CYN at environmentally relevant levels (0.1-100 µg/L) can significantly enhance the conjugative transfer of RP4 plasmid in Escherichia coli genera, wherein application of 10 µg/L of CYN led to maximum fold change of ∼6.5- fold at 16 h of exposure. Meanwhile, evaluation of underlying mechanisms revealed that environmental concentration of CYN exposure could increase oxidative stress in the bacterial cells, resulting in ROS overproduction. In turn, this led to an upregulation of antioxidant enzyme-related genes to avoid ROS attack. Further, inhibition of the synthesis of glutathione (GSH) was also detected, which led to the rapid depletion of GSH in cells and thus triggered the SOS response and promoted the conjugative transfer process. Increase in cell membrane permeability, upregulation of expression of genes related to pilus generation, ATP synthesis, and RP4 gene expression were also observed. These results highlight the potential impact on the spread of antimicrobial resistance in water environments.


Assuntos
Alcaloides , Toxinas Bacterianas , Toxinas de Cianobactérias , Escherichia coli , Glutationa , Plasmídeos , Uracila , Plasmídeos/genética , Glutationa/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Toxinas Bacterianas/toxicidade , Uracila/análogos & derivados , Uracila/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Conjugação Genética , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética
18.
Circulation ; 146(24): 1855-1881, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36384284

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is associated with increased expression of VEGF-A (vascular endothelial growth factor A) and its receptor, VEGFR2 (vascular endothelial growth factor 2), but whether and how activation of VEGF-A signal participates in the pathogenesis of PH is unclear. METHODS: VEGF-A/VEGFR2 signal activation and VEGFR2 Y949-dependent vascular leak were investigated in lung samples from patients with PH and mice exposed to hypoxia. To study their mechanistic roles in hypoxic PH, we examined right ventricle systolic pressure, right ventricular hypertrophy, and pulmonary vasculopathy in mutant mice carrying knock-in of phenylalanine that replaced the tyrosine at residual 949 of VEGFR2 (Vefgr2Y949F) and mice with conditional endothelial deletion of Vegfr2 after chronic hypoxia exposure. RESULTS: We show that PH leads to excessive pulmonary vascular leak in both patients and hypoxic mice, and this is because of an overactivated VEGF-A/VEGFR2 Y949 signaling axis. In the context of hypoxic PH, activation of Yes1 and c-Src and subsequent VE-cadherin phosphorylation in endothelial cells are involved in VEGFR2 Y949-induced vascular permeability. Abolishing VEGFR2 Y949 signaling by Vefgr2Y949F point mutation was sufficient to prevent pulmonary vascular permeability and inhibit macrophage infiltration and Rac1 activation in smooth muscle cells under hypoxia exposure, thereby leading to alleviated PH manifestations, including muscularization of distal pulmonary arterioles, elevated right ventricle systolic pressure, and right ventricular hypertrophy. It is important that we found that VEGFR2 Y949 signaling in myeloid cells including macrophages was trivial and dispensable for hypoxia-induced vascular abnormalities and PH. In contrast with selective blockage of VEGFR2 Y949 signaling, disruption of the entire VEGFR2 signaling by conditional endothelial deletion of Vegfr2 promotes the development of PH. CONCLUSIONS: Our results support the notion that VEGF-A/VEGFR2 Y949-dependent vascular permeability is an important determinant in the pathogenesis of PH and might serve as an attractive therapeutic target pathway for this disease.


Assuntos
Permeabilidade Capilar , Hipertensão Pulmonar , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Camundongos , Permeabilidade Capilar/fisiologia , Células Endoteliais/metabolismo , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/etiologia , Hipóxia/complicações , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
19.
Anal Chem ; 95(11): 4950-4956, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36802512

RESUMO

Using N2O as a universal reaction gas, a new strategy was proposed for the highly sensitive interference-free simultaneous determination of nonmetallic impurity elements in high-purity magnesium (Mg) alloys by ICP-MS/MS. In the MS/MS mode, through O-atom and N-atom transfer reactions, 28Si+ and 31P+ were converted to the oxide ions 28Si16O2+ and 31P16O+, respectively, while 32S+ and 35Cl+ were converted to the nitride ions 32S14N+ and 14N35Cl+, respectively. The ion pairs formed via the 28Si+ → 28Si16O2+, 31P+ → 31P16O+, 32S+ → 32S14N+, and 35Cl+ → 14N35Cl+ reactions by the mass shift method could eliminate spectral interferences. Compared with the O2 and H2 reaction modes, the present approach delivered much higher sensitivity and lower limit of detection (LOD) of the analytes. The accuracy of the developed method was evaluated via standard addition method and comparative analysis by sector field ICP-MS (SF-ICP-MS). The study indicates that in the MS/MS mode, use of N2O as reaction gas can provide interference-free conditions and sufficiently low LODs for analytes. The LODs of Si, P, S, and Cl could reach down to 17.2, 4.43, 10.8, and 31.9 ng L-1, respectively, and the recoveries were in the range of 94.0-106%. The determination results of the analytes were consistent with those obtained by SF-ICP-MS. This study presents a systematic method for the precise and accurate quantification of Si, P, S, and Cl in high-purity Mg alloys by ICP-MS/MS. The developed method provides valuable reference that can be expanded and applied to other fields.

20.
J Virol ; 96(17): e0077422, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35972291

RESUMO

XIAP-associated factor 1 (XAF1) is an interferon (IFN)-stimulated gene (ISG) that enhances IFN-induced apoptosis. However, it is unexplored whether XAF1 is essential for the host fighting against invaded viruses. Here, we find that XAF1 is significantly upregulated in the host cells infected with emerging RNA viruses, including influenza, Zika virus (ZIKV), and SARS-CoV-2. IFN regulatory factor 1 (IRF1), a key transcription factor in immune cells, determines the induction of XAF1 during antiviral immunity. Ectopic expression of XAF1 protects host cells against various RNA viruses independent of apoptosis. Knockout of XAF1 attenuates host antiviral innate immunity in vitro and in vivo, which leads to more severe lung injuries and higher mortality in the influenza infection mouse model. XAF1 stabilizes IRF1 protein by antagonizing the CHIP-mediated degradation of IRF1, thus inducing more antiviral IRF1 target genes, including DDX58, DDX60, MX1, and OAS2. Our study has described a protective role of XAF1 in the host antiviral innate immunity against RNA viruses. We have also elucidated the molecular mechanism that IRF1 and XAF1 form a positive feedback loop to induce rapid and robust antiviral immunity. IMPORTANCE Rapid and robust induction of antiviral genes is essential for the host to clear the invaded viruses. In addition to the IRF3/7-IFN-I-STAT1 signaling axis, the XAF1-IRF1 positive feedback loop synergistically or independently drives the transcription of antiviral genes. Moreover, XAF1 is a sensitive and reliable gene that positively correlates with the viral infection, suggesting that XAF1 is a potential diagnostic marker for viral infectious diseases. In addition to the antitumor role, our study has shown that XAF1 is essential for antiviral immunity. XAF1 is not only a proapoptotic ISG, but it also stabilizes the master transcription factor IRF1 to induce antiviral genes. IRF1 directly binds to the IRF-Es of its target gene promoters and drives their transcriptions, which suggests a unique role of the XAF1-IRF1 loop in antiviral innate immunity, particularly in the host defect of IFN-I signaling such as invertebrates.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Fator Regulador 1 de Interferon , Infecções por Vírus de RNA , Vírus de RNA , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Proteínas Reguladoras de Apoptose/imunologia , Humanos , Imunidade Inata , Fator Regulador 1 de Interferon/imunologia , Camundongos , Camundongos Knockout , Infecções por Vírus de RNA/imunologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA