Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
1.
Cell ; 186(15): 3196-3207.e17, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37369204

RESUMO

Pathogens produce diverse effector proteins to manipulate host cellular processes. However, how functional diversity is generated in an effector repertoire is poorly understood. Many effectors in the devastating plant pathogen Phytophthora contain tandem repeats of the "(L)WY" motif, which are structurally conserved but variable in sequences. Here, we discovered a functional module formed by a specific (L)WY-LWY combination in multiple Phytophthora effectors, which efficiently recruits the serine/threonine protein phosphatase 2A (PP2A) core enzyme in plant hosts. Crystal structure of an effector-PP2A complex shows that the (L)WY-LWY module enables hijacking of the host PP2A core enzyme to form functional holoenzymes. While sharing the PP2A-interacting module at the amino terminus, these effectors possess divergent C-terminal LWY units and regulate distinct sets of phosphoproteins in the host. Our results highlight the appropriation of an essential host phosphatase through molecular mimicry by pathogens and diversification promoted by protein modularity in an effector repertoire.


Assuntos
Monoéster Fosfórico Hidrolases , Phytophthora , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas/metabolismo , Phytophthora/química , Phytophthora/metabolismo , Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Proteína Fosfatase 2/metabolismo , Doenças das Plantas
2.
Cell ; 185(17): 3186-3200.e17, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35907403

RESUMO

Upon stress, eukaryotes typically reprogram their translatome through GCN2-mediated phosphorylation of the eukaryotic translation initiation factor, eIF2α, to inhibit general translation initiation while selectively translating essential stress regulators. Unexpectedly, in plants, pattern-triggered immunity (PTI) and response to other environmental stresses occur independently of the GCN2/eIF2α pathway. Here, we show that while PTI induces mRNA decapping to inhibit general translation, defense mRNAs with a purine-rich element ("R-motif") are selectively translated using R-motif as an internal ribosome entry site (IRES). R-motif-dependent translation is executed by poly(A)-binding proteins (PABPs) through preferential association with the PTI-activating eIFiso4G over the repressive eIF4G. Phosphorylation by PTI regulators mitogen-activated protein kinase 3 and 6 (MPK3/6) inhibits eIF4G's activity while enhancing PABP binding to the R-motif and promoting eIFiso4G-mediated defense mRNA translation, establishing a link between PTI signaling and protein synthesis. Given its prevalence in both plants and animals, the PABP/R-motif translation initiation module may have a broader role in reprogramming the stress translatome.


Assuntos
Fator de Iniciação Eucariótico 4G , Proteínas de Ligação a Poli(A) , Animais , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Biossíntese de Proteínas , Purinas , RNA Mensageiro/metabolismo
3.
Mol Cell ; 69(3): 493-504.e6, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29358080

RESUMO

Plant pattern recognition receptors (PRRs) perceive microbial and endogenous molecular patterns to activate immune signaling. The cytoplasmic kinase BIK1 acts downstream of multiple PRRs as a rate-limiting component, whose phosphorylation and accumulation are central to immune signal propagation. Previous work identified the calcium-dependent protein kinase CPK28 and heterotrimeric G proteins as negative and positive regulators of BIK1 accumulation, respectively. However, mechanisms underlying this regulation remain unknown. Here we show that the plant U-box proteins PUB25 and PUB26 are homologous E3 ligases that mark BIK1 for degradation to negatively regulate immunity. We demonstrate that the heterotrimeric G proteins inhibit PUB25/26 activity to stabilize BIK1, whereas CPK28 specifically phosphorylates conserved residues in PUB25/26 to enhance their activity and promote BIK1 degradation. Interestingly, PUB25/26 specifically target non-activated BIK1, suggesting that activated BIK1 is maintained for immune signaling. Our findings reveal a multi-protein regulatory module that enables robust yet tightly regulated immune responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/metabolismo , Citoplasma , Citosol , Regulação da Expressão Gênica de Plantas/genética , Homeostase , Fosforilação , Imunidade Vegetal/fisiologia , Proteínas de Plantas , Transdução de Sinais , Fatores de Transcrição
4.
Proc Natl Acad Sci U S A ; 120(31): e2303675120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37494395

RESUMO

Anti-CRISPR (Acr) proteins are encoded by phages and other mobile genetic elements and inhibit host CRISPR-Cas immunity using versatile strategies. AcrIIC4 is a broad-spectrum Acr that inhibits the type II-C CRISPR-Cas9 system in several species by an unknown mechanism. Here, we determined a series of structures of Haemophilus parainfluenzae Cas9 (HpaCas9)-sgRNA in complex with AcrIIC4 and/or target DNA, as well as the crystal structure of AcrIIC4 alone. We found that AcrIIC4 resides in the crevice between the REC1 and REC2 domains of HpaCas9, where its extensive interactions restrict the mobility of the REC2 domain and prevent the unwinding of target double-stranded (ds) DNA at the PAM-distal end. Therefore, the full-length guide RNA:target DNA heteroduplex fails to form in the presence of AcrIIC4, preventing Cas9 nuclease activation. Altogether, our structural and biochemical studies illuminate a unique Acr mechanism that allows DNA binding to the Cas9 effector complex but blocks its cleavage by preventing R-loop formation, a key step supporting DNA cleavage by Cas9.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Estruturas R-Loop , RNA Guia de Sistemas CRISPR-Cas , DNA/metabolismo , Bacteriófagos/genética , Edição de Genes
5.
Exp Cell Res ; 439(2): 114100, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38797258

RESUMO

Widespread metastasis is the primary reason for the high mortality associated with ovarian cancer (OC), and effective targeted therapy for tumor aggressiveness is still insufficient in clinical practice. Therefore, it is urgent to find new targets to improve prognosis of patients. PDE4A is a cyclic nucleotide phosphodiesterase that plays a crucial role in the occurrence and development in various malignancies. Our study firstly reported the function of PDE4A in OC. Expression of PDE4A was validated through bioinformatics analysis, RT-qPCR, Western blot, and immunohistochemistry. Additionally, its impact on cell growth and motility was assessed via in vitro and in vivo experiments. PDE4A was downregulated in OC tissues compared with normal tissues and low PDE4A expression was correlated with poor clinical outcomes in OC patients. The knockdown of PDE4A significantly promoted the proliferation, migration and invasion of OC cells while overexpression of PDE4A resulted in the opposite effect. Furthermore, smaller and fewer tumor metastatic foci were observed in mice bearing PDE4A-overexpressing OVCAR3 cells. Mechanistically, downregulation of PDE4A expression can induce epithelial-mesenchymal transition (EMT) and nuclear translocation of Snail, which suggests that PDE4A plays a pivotal role in suppressing OC progression. Notably, Rolipram, the PDE4 inhibitor, mirrored the effects observed with PDE4A deletion. In summary, the downregulation of PDE4A appears to facilitate OC progression by modulating the Snail/EMT pathway, underscoring the potential of PDE4A as a therapeutic target against ovarian cancer metastasis.


Assuntos
Movimento Celular , Proliferação de Células , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas , Fatores de Transcrição da Família Snail , Humanos , Feminino , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Animais , Proliferação de Células/genética , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , Camundongos , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Progressão da Doença , Camundongos Nus , Camundongos Endogâmicos BALB C , Núcleo Celular/metabolismo , Prognóstico
6.
Nucleic Acids Res ; 51(4): 1984-1995, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36744495

RESUMO

Anti-CRISPR proteins are encoded by phages to inhibit the CRISPR-Cas systems of the hosts. AcrIIC5 inhibits several naturally high-fidelity type II-C Cas9 enzymes, including orthologs from Neisseria meningitidis (Nme1Cas9) and Simonsiella muelleri (SmuCas9). Here, we solve the structure of AcrIIC5 in complex with Nme1Cas9 and sgRNA. We show that AcrIIC5 adopts a novel fold to mimic the size and charge distribution of double-stranded DNA, and uses its negatively charged grooves to bind and occlude the protospacer adjacent motif (PAM) binding site in the target DNA cleft of Cas9. AcrIIC5 is positioned into the crevice between the WED and PI domains of Cas9, and one end of the anti-CRISPR interacts with the phosphate lock loop and a linker between the RuvC and BH domains. We employ biochemical and mutational analyses to build a model for AcrIIC5's mechanism of action, and identify residues on both the anti-CRISPR and Cas9 that are important for their interaction and inhibition. Together, the structure and mechanism of AcrIIC5 reveal convergent evolution among disparate anti-CRISPR proteins that use a DNA-mimic strategy to inhibit diverse CRISPR-Cas surveillance complexes, and provide new insights into a tool for potent inhibition of type II-C Cas9 orthologs.


Assuntos
Sistemas CRISPR-Cas , Neisseria meningitidis , Neisseriaceae , Proteínas Virais , Sítios de Ligação , Proteína 9 Associada à CRISPR/genética , DNA/química , Neisseria meningitidis/virologia , Neisseriaceae/virologia , Proteínas Virais/metabolismo
7.
Nano Lett ; 24(12): 3826-3834, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498923

RESUMO

Lightweight, easily processed, and durable polymeric materials play a crucial role in wearable sensor devices. However, achieving simultaneously high strength and toughness remains a challenge. This study addresses this by utilizing an ion-specific effect to control crystalline domains, enabling the fabrication of a polymeric triboelectric material with tunable mechanical properties. The dense crystal-domain cross-linking enhances energy dissipation, resulting in a material boasting both high tensile strength (58.0 MPa) and toughness (198.8 MJ m-3), alongside a remarkable 416.7% fracture elongation and 545.0 MPa modulus. Leveraging these properties, the material is successfully integrated into wearable self-powered devices, enabling real-time feedback on human joint movement. This work presents a valuable strategy for overcoming the strength-toughness trade-off in polymeric materials, paving the way for their enhanced applicability and broader use in diverse sensing applications.

8.
Nano Lett ; 24(10): 3273-3281, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427598

RESUMO

As intelligent technology surges forward, wearable electronics have emerged as versatile tools for monitoring health and sensing our surroundings. Among these advancements, porous triboelectric materials have garnered significant attention for their lightness. However, these materials face the challenge of improving structural stability to further enhance the sensing accuracy of triboelectric sensors. In this study, a lightweight and strong porous cellulosic triboelectric material is designed by cell wall nanoengineering. By tailoring of the cell wall structure, the material shows a high mechanical strength of 51.8 MPa. The self-powered sensor constructed by this material has a high sensitivity of 33.61 kPa-1, a fast response time of 36 ms, and excellent pressure detection durability. Notably, the sensor still enables a high sensing performance after the porous cellulosic triboelectric material exposure to 200 °C and achieves real-time feedback of human motion, thereby demonstrating great potential in the field of wearable electronic devices.


Assuntos
Parede Celular , Dispositivos Eletrônicos Vestíveis , Humanos , Eletrônica , Movimento (Física) , Porosidade
9.
Nano Lett ; 24(23): 7125-7133, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38808683

RESUMO

Wearable sensors are experiencing vibrant growth in the fields of health monitoring systems and human motion detection, with comfort becoming a significant research direction for wearable sensing devices. However, the weak moisture-wicking capability of sensor materials leads to liquid retention, severely restricting the comfort of the wearable sensors. This study employs a pattern-guided alignment strategy to construct microhill arrays, endowing triboelectric materials with directional moisture-wicking capability. Within 2.25 s, triboelectric materials can quickly and directionally remove the droplets, driven by the Laplace pressure differences and the wettability gradient. The directional moisture-wicking triboelectric materials exhibit excellent pressure sensing performance, enabling rapid response/recovery (29.1/37.0 ms), thereby achieving real-time online monitoring of human respiration and movement states. This work addresses the long-standing challenge of insufficient moisture-wicking driving force in flexible electronic sensing materials, holding significant implications for enhancing the comfort and application potential of electronic skin and wearable electronic devices.


Assuntos
Pressão , Dispositivos Eletrônicos Vestíveis , Molhabilidade , Humanos , Desenho de Equipamento
10.
Nano Lett ; 24(25): 7809-7818, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38874576

RESUMO

Noncontact sensing technology serves as a pivotal medium for seamless data acquisition and intelligent perception in the era of the Internet of Things (IoT), bringing innovative interactive experiences to wearable human-machine interaction perception networks. However, the pervasive limitations of current noncontact sensing devices posed by harsh environmental conditions hinder the precision and stability of signals. In this study, the triboelectric nanopaper prepared by a phase-directed assembly strategy is presented, which possesses low charge transfer mobility (1618 cm2 V-1 s-1) and exceptional high-temperature stability. Wearable self-powered noncontact sensors constructed from triboelectric nanopaper operate stably under high temperatures (200 °C). Furthermore, a temperature warning system for workers in hazardous environments is demonstrated, capable of nonintrusively identifying harmful thermal stimuli and detecting motion status. This research not only establishes a technological foundation for accurate and stable noncontact sensing under high temperatures but also promotes the sustainable intelligent development of wearable IoT devices under extreme environments.

11.
J Am Chem Soc ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865282

RESUMO

As the dimensionality of materials generally affects their characteristics, thin films composed of low-dimensional nanomaterials, such as nanowires (NWs) or nanoplates, are of great importance in modern engineering. Among various bottom-up film fabrication strategies, interfacial assembly of nanoscale building blocks holds great promise in constructing large-scale aligned thin films, leading to emergent or enhanced collective properties compared to individual building blocks. As for 1D nanostructures, the interfacial self-assembly causes the morphology orientation, effectively achieving anisotropic electrical, thermal, and optical conduction. However, issues such as defects between each nanoscale building block, crystal orientation, and homogeneity constrain the application of ordered films. The precise control of transdimensional synthesis and the formation mechanism from 1D to 2D are rarely reported. To meet this gap, we introduce an interfacial-assembly-induced interfacial synthesis strategy and successfully synthesize quasi-2D nanofilms via the oriented attachment of 1D NWs on the liquid interface. Theoretical sampling and simulation show that NWs on the liquid interface maintain their lowest interaction energy for the ordered crystal plane (110) orientation and then rearrange and attach to the quasi-2D nanofilm. This quasi-2D nanofilm shows enhanced electric conductivity and unique optical properties compared with its corresponding 1D geometry materials. Uncovering these growth pathways of the 1D-to-2D transition provides opportunities for future material design and synthesis at the interface.

12.
Small ; 20(16): e2307504, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38018269

RESUMO

Triboelectric materials present great potential for harvesting huge amounts of dispersed energy, and converting them directly into useful electricity, a process that generates power more sustainably. Triboelectric nanogenerators (TENGs) have emerged as a technology to power electronics and sensors, and it is expected to solve the problem of energy harvesting and self-powered sensing from extreme environments. In this paper, a high-temperature-resistant triboelectric material is designed based on multilevel non-covalent bonding interactions, which achieves an ultra-high surface charge density of 192 µC m-2 at high temperatures. TENGs based on the triboelectric material exhibit more than an order of magnitude higher power output (2750 mW m-2 at 200 °C) than the existing devices at high temperatures. These remarkable properties are achieved based on enthalpy-driven molecular assembly in highly unbonded states. Thus, the material maintains bond strength and ultra-high surface charge density in entropy-dominated high-temperature environments. This molecular design concept points out a promising direction for the preparation of polymers with excellent triboelectric properties.

13.
Chemphyschem ; 25(2): e202300497, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37936333

RESUMO

The NH3 synthesis from N2 plays an important role in the ecological cycle and industrial production. Different from industrial NH3 synthesis with high pollution and energy consumption, electrocatalytic NH3 synthesis is favored because of its environmental protection, energy saving, ambient reaction conditions and other characteristics. However, due to the low efficiency and poor reaction selectivity of the existing electrocatalysts, which can not be used actually, the development of new electrocatalysts for nitrogen reduction reaction (NRR) is particularly urgent. Herein, we designed a series of transition metal atoms anchored B-doped defective C3 N surface (TM@B2 C3 N) as single-atom catalysts. Through the screening process of N2 adsorption activation, N2 H formation and NH3 desorption, finally the excellent electrocatalysts with strong stability and high activity (Cr@B2 C3 N and Mn@B2 C3 N) were obtained. After simulating the entire pathway, it was found that the NRR process on Cr@B2 C3 N and Mn@B2 C3 N via consecutive and distal pathways with the lowest limiting potential of -0.42 and -0.52 V, which have the good ability to inhibit hydrogen evolution reaction. Finally, the electronic properties were analyzed, and the reason for their high catalytic activity was summarized. This work provides a new idea for the rational design of NRR electrocatalysts and promotes the practical application of electrocatalysts.

14.
Chemphyschem ; : e202400414, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896533

RESUMO

We systematically investigated the stable configurations and catalytic activity in the Oxygen Reduction Reaction (ORR) of graphene co-doped with boron and nitrogen (B-N) using first-principles methods. Compared to single B/N doping, co-doping with BN is energetically favored. We found that intermediate species of ORR process adsorb on boron atoms, which act as catalytic sites. The presence of neighboring nitrogen atoms around boron plays a crucial role in modulating the catalytic activity of boron. For the same adsorption configuration, the adsorption energy of the adsorbate increases with the number of neighboring nitrogen atoms around boron and generally correlates positively with the number of electrons gained by the adsorbate. Regarding the catalytic activity of ORR, excessively strong adsorption of adsorbates impedes their hydrogenation. The best substrates for ORR catalytic activity are B-N-graphene and N-B2-graphene, with the rate-determining step being the hydrogenation of *OO and overpotentials of 0.49 V and 0.54 V, respectively.

15.
J Chem Inf Model ; 64(10): 4348-4358, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38709146

RESUMO

Developing new pharmaceuticals is a costly and time-consuming endeavor fraught with significant safety risks. A critical aspect of drug research and disease therapy is discerning the existence of interactions between drugs and proteins. The evolution of deep learning (DL) in computer science has been remarkably aided in this regard in recent years. Yet, two challenges remain: (i) balancing the extraction of profound, local cohesive characteristics while warding off gradient disappearance and (ii) globally representing and understanding the interactions between the drug and target local attributes, which is vital for delivering molecular level insights indispensable to drug development. In response to these challenges, we propose a DL network structure, MolLoG, primarily comprising two modules: local feature encoders (LFE) and global interactive learning (GIL). Within the LFE module, graph convolution networks and leap blocks capture the local features of drug and protein molecules, respectively. The GIL module enables the efficient amalgamation of feature information, facilitating the global learning of feature structural semantics and procuring multihead attention weights for abstract features stemming from two modalities, providing biologically pertinent explanations for black-box results. Finally, predictive outcomes are achieved by decoding the unified representation via a multilayer perceptron. Our experimental analysis reveals that MolLoG outperforms several cutting-edge baselines across four data sets, delivering superior overall performance and providing satisfactory results when elucidating various facets of drug-target interaction predictions.


Assuntos
Aprendizado Profundo , Proteínas , Proteínas/metabolismo , Proteínas/química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Descoberta de Drogas/métodos , Modelos Moleculares
16.
Nanotechnology ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981451

RESUMO

Due to shortcomings such as poor homogeneity of Al doping, precisely controlling the thickness, inability to conformally deposit on high aspect ratio devices and high pinhole rate, the applications of Al-doped ZnO (AZO) nanomembrane in integrated optoelectronic devices are remarkably influenced. Here, we report in situ monitoring during the atomic layer deposition (ALD) of AZO nanomembrane by using an integrated spectroscopic ellipsometer. AZO nanomembranes with different compositions were deposited with real-time and precise atomic level monitoring of the deposition process. We specifically investigate the half reaction and thickness evolution during the ALD processes and the influence of the chamber temperature is also disclosed. Structural characterizations demonstrate that the obtained AZO nanomembranes without any post-treatment are uniform, dense and pinhole-free. The transmittances of the nanomembranes in visible range are > 94%, and the optimal conductivity can reach up to 1210 S/cm. The output of current research may pave the way for AZO nanomembrane becoming promising in integrated optoelectronic devices.

17.
Environ Sci Technol ; 58(19): 8372-8379, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38691628

RESUMO

The development of highly efficient catalysts for formaldehyde (HCHO) oxidation is of significant interest for the improvement of indoor air quality. Up to 400 works relating to the catalytic oxidation of HCHO have been published to date; however, their analysis for collective inference through conventional literature search is still a challenging task. A machine learning (ML) framework was presented to predict catalyst performance from experimental descriptors based on an HCHO oxidation catalysts database. MnOx, CeO2, Co3O4, TiO2, FeOx, ZrO2, Al2O3, SiO2, and carbon-based catalysts with different promoters were compiled from the literature. Notably, 20 descriptors including reaction catalyst composition, reaction conditions, and catalyst physical properties were collected for data mining (2263 data points). Furthermore, the eXtreme Gradient Boosting algorithm was employed, which successfully predicted the conversion efficiency of HCHO with an R-square value of 0.81. Shapley additive analysis suggested Pt/MnO2 and Ag/Ce-Co3O4 exhibited excellent catalytic performance of HCHO oxidation based on the analysis of the entire database. Validated by experimental tests and theoretical simulations, the key descriptor identified by ML, i.e., the first promoter, was further described as metal-support interactions. This study highlights ML as a useful tool for database establishment and the catalyst rational design strategy based on the importance of analysis between experimental descriptors and the performance of complex catalytic systems.


Assuntos
Poluição do Ar em Ambientes Fechados , Formaldeído , Aprendizado de Máquina , Oxirredução , Formaldeído/química , Catálise
18.
Environ Sci Technol ; 58(27): 12189-12200, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38838084

RESUMO

Ground-level ozone (O3) pollution has emerged as a significant concern due to its detrimental effects on human health and the ecosystem. Catalytic removal of O3 has proven to be the most efficient and cost-effective method. However, its practical application faces substantial challenges, particularly in relation to its effectiveness across the entire humidity range. Herein, we proposed a novel strategy termed "dual active sites" by employing graphitized carbon-loaded core-shell cobalt catalysts (Co@Co3O4-C). Co@Co3O4-C was synthesized via the pyrolysis of a Co-organic ligand as the precursor. By utilizing this approach, we achieved a nearly constant 100% working efficiency of the Co@Co3O4-C catalyst for catalyzing O3 decomposition across the entire humidity range. Physicochemical characterization coupled with density functional theory calculations elucidates that the presence of encapsulated metallic Co nanoparticles enhances the reactivity of the cobalt oxide capping layer. Additionally, the interface carbon atom, strongly influenced by adjacent metallic Co nuclei, functions as a secondary active site for the decomposition of O3 decomposition. The utilization of dual active sites effectively mitigates the competitive adsorption of H2O molecules, thus isolating them for adsorption in the cobalt oxide capping layer. This optimized configuration allows for the decomposition of O3 without interference from moisture. Furthermore, O3 decomposition monolithic catalysts were synthesized using a material extrusion-based three-dimensional (3D) printing technology, which demonstrated a low pressure drop and exceptional mechanical strength. This work provides a "dual active site" strategy for the O3 decomposition reaction, realizing O3 catalytic decomposition over the entire humidity range.


Assuntos
Umidade , Ozônio , Ozônio/química , Catálise , Grafite/química , Cobalto/química , Carbono/química , Óxidos
19.
Environ Sci Technol ; 58(6): 3041-3053, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38291736

RESUMO

Typically, SO2 unavoidably deactivates catalysts in most heterogeneous catalytic oxidations. However, for Pt-based catalysts, SO2 exhibits an extraordinary boosting effect in propane catalytic oxidation, but the promotive mechanism remains contentious. In this study, an in situ-formed tactful (Pt-S-O)-Ti structure was concluded to be a key factor for Pt/TiO2 catalysts with a substantial SO2 tolerance ability. The experiments and theoretical calculations confirm that the high degree of hybridization and orbital coupling between Pt 5d and S 3p orbitals enable more charge transfer from Pt to S species, thus forming the (Pt-S-O)-Ti structure with the oxygen atom dissociated from the chemisorbed O2 adsorbed on oxygen vacancies. The active oxygen atom in the (Pt-S-O)-Ti active structure is a robust site for C3H8 adsorption, leading to a better C3H8 combustion performance. This work can provide insights into the rational design of chemical bonds for high SO2 tolerance catalysts, thereby improving economic and environmental benefits.


Assuntos
Oxigênio , Titânio , Titânio/química , Oxirredução , Catálise , Adsorção
20.
Nano Lett ; 23(16): 7389-7396, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37498627

RESUMO

Structural color always shows a reversible switch between reflection and transmission states when viewed from different angles, attracting increasing attention in display applications. However, this switching between reflection and transmission states of structural color suffers from the inherent lack of autonomous regulation, which is unmanageable in the case of different application scenarios. Here, we design an intelligent two-way structural color film which can reversibly change its color when applied with an extra stimulation such as voltage, heat signal, or light. A special structural feature contains a traditional photonic crystal film of polystyrene (PS) microspheres assembled by smart windows. Remarkably, our structural color film shows a prominent polarization sensitivity, and the angle dependence of the structural color broadens the gamut of display color demonstrated by both finite element theoretical analysis and experimental observation. Prospectively, this hierarchically designed film provides a promising pathway toward next-generation multicolor displays and smart windows.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA