Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
1.
BMC Genomics ; 25(1): 333, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570739

RESUMO

BACKGROUND: The closed poultry houses integrated with a longitudinal water curtain cooling system (LWCCS) are widely used in modern poultry production. This study showed the variations in environmental conditions in closed houses integrated with a longitudinal water curtain cooling system. We evaluated the influence of different environmental conditions on duck growth performance and the transcriptome changes of immune organs, including the bursa of Fabricius and the spleen. RESULT: This study investigated the slaughter indicators and immune organ transcriptomes of 52-day-old Cherry Valley ducks by analyzing the LWCC at different locations (water curtain end, middle position, and fan cooling end). The results showed that the cooling effect of the LWCCS was more evident from 10:00 a.m. -14:00. And from the water curtain end to the fan cooling end, the hourly average temperature differently decreased by 0.310℃, 0.450℃, 0.480℃, 0.520℃, and 0.410℃, respectively (P < 0.05). The daily and hourly average relative humidity decreased from the water curtain end to the fan cooling end, dropping by 7.500% and 8.200%, respectively (P < 0.01). We also observed differences in production performance, such as dressing weight, half-eviscerated weight, skin fat rate, and percentage of abdominal fat (P < 0.01), which may have been caused by environmental conditions. RNA-sequencing (RNA-seq) revealed 211 and 279 differentially expressed genes (DEGs) in the ducks' bursa of Fabricius and spleen compared between the water curtain end and fan cooling end, respectively. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the two organs showed the DEGs were mainly enriched in cytokine-cytokine receptor interaction, integral component of membrane, Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) signaling pathway, etc. Our results implied that full-closed poultry houses integrated with LWCCS could potentially alter micro-environments (water curtain vs. fan cooling), resulting in ducks experiencing various stressful situations that eventually affect their immunity and production performance. CONCLUSION: In this study, our results indicated that uneven distributions of longitudinal environmental factors caused by LWCCS would affect the dressed weight, breast muscle weight, skin fat rate, and other product performance. Moreover, the expression of immune-related genes in the spleen and bursa of ducks could be affected by the LWCCS. This provides a new reference to optimize the use of LWCCS in conjunction with close duck houses in practical production.


Assuntos
Patos , Transcriptoma , Animais , Patos/genética , Patos/metabolismo , Transdução de Sinais , Citocinas/genética , Perfilação da Expressão Gênica
2.
BMC Genomics ; 25(1): 486, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755558

RESUMO

BACKGROUND: Amino acids are the basic components of protein and an important index to evaluate meat quality. With the rapid development of genomics, candidate regions and genes affecting amino acid content in livestock and poultry have been gradually revealed. Hence, genome-wide association study (GWAS) can be used to screen candidate loci associated with amino acid content in duck meat. RESULT: In the current study, the content of 16 amino acids was detected in 358 duck breast muscles. The proportion of Glu to the total amino acid content was relatively high, and the proportion was 0.14. However, the proportion of Met content was relatively low, at just 0.03. By comparative analysis, significant differences were found between males and females in 3 amino acids, including Ser, Met, and Phe. In addition, 12 SNPs were significantly correlated with Pro content by GWAS analysis, and these SNPs were annotated by 7 protein-coding genes; 8 significant SNPs were associated with Tyr content, and these SNPs were annotated by 6 protein-coding genes. At the same time, linkage disequilibrium (LD) analysis was performed on these regions with significant signals. The results showed that three SNPs in the 55-56 Mbp region of chromosome 3 were highly correlated with the leader SNP (chr3:55526954) that affected Pro content (r2 > 0.6). Similarly, LD analysis showed that there were three SNPs in the 21.2-21.6 Mbp region of chromosome 13, which were highly correlated with leader SNP (chr13:21421661) (r2 > 0.6). Moreover, Through functional enrichment analysis of all candidate genes. The results of GO enrichment analysis showed that several significant GO items were associated with amino acid transport function, including amino acid transmembrane transport and glutamine transport. The results further indicate that these candidate genes are closely associated with amino acid transport. Among them, key candidate genes include SLC38A1. For KEGG enrichment analysis, CACNA2D3 and CACNA1D genes were covered by significant pathways. CONCLUSION: In this study, GWAS analysis found a total of 28 significant SNPs affecting amino acid content. Through gene annotation, a total of 20 candidate genes were screened. In addition, Through LD analysis and enrichment analysis, we considered that SERAC1, CACNA2D3 and SLC38A1 genes are important candidate genes affecting amino acid content in duck breast muscle.


Assuntos
Aminoácidos , Patos , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Animais , Patos/genética , Patos/metabolismo , Aminoácidos/metabolismo , Locos de Características Quantitativas , Desequilíbrio de Ligação , Feminino , Masculino , Loci Gênicos
3.
BMC Genomics ; 24(1): 389, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430218

RESUMO

BACKGROUND: The development of asymmetric chick gonads involves separate developmental programs in the left and right gonads. In contrast to the left ovary developing into a fully functional reproductive organ, the right ovary undergoes gradual degeneration. However, the molecular mechanisms underlying the the degeneration of the right ovary remain incompletely understood. In the present study, we investigated the histomorphological and transcriptomic changes in the right ovary of ducks and geese during the the embryonic stage up to post-hatching day 1. RESULT: Hematoxylin-eosin stainings revealed that the right ovary developed until embryonic day 20 in ducks (DE20) or embryonic day 22 in geese (GE22), after which it started to regress. Further RNA-seq analyses revealed that both the differentially expressed genes (DEGs) in ducks and geese right ovary developmental stage were significantly enriched in cell adhesion-related pathway (ECM-receptor interaction, Focal adhesion pathway) and Cellular senescence pathway. Then during the degeneration stage, the DEGs were primarily enriched in pathways associated with inflammation, including Herpes simplex virus 1 infection, Influenza A, and Toll-like receptor signaling pathway. Moreover, duck-specific DEGs showed enrichment in Steroid hormone biosynthesis, Base excision repair, and the Wnt signaling pathway, while geese-specifically DEGs were found to be enriched in apoptosis and inflammation-related pathways, such as Ferroptosis, Necroptosis, RIG-I-like receptor signaling pathway, and NOD-like receptor signaling pathway. These findings suggest that the degeneration process of the right ovary in ducks occurs at a slower pace compared to that in geese. Additionally, the observation of the left ovary of the geese varying degeneration rates in the right ovary after hatching indicated that the development of the left ovary may be influenced by the degeneration of the right ovary. CONCLUSION: The data presented in this study provide valuable insights into the dynamic changes in histological structure and transcriptome during the degeneration of the right ovary in ducks and geese. In addition, through the analysis of shared characteristics in the degeneration process of the right ovary in both ducks and geese, we have uncovered the patterns of degradation and elucidated the molecular mechanisms involved in the regression of the right ovary in poultry. Furthermore, we have also made initial discoveries regarding the relationship between the degeneration of the right ovary and the development of the left ovary.


Assuntos
Patos , Ovário , Feminino , Animais , Patos/genética , Gansos/genética , Transcriptoma , Inflamação
4.
BMC Genomics ; 24(1): 285, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237371

RESUMO

BACKGROUND: The genetic locus responsible for duck body size has been fully explained before, but the growth trait-related genetic basis is still waiting to be explored. For example, the genetic site related to growth rate, an important economic trait affecting marketing weight and feeding cost, is still unclear. Here, we performed genome wide association study (GWAS) to identify growth rate-associated genes and mutations. RESULT: In the current study, the body weight data of 358 ducks were recorded every 10 days from hatching to 120 days of age. According to the growth curve, we evaluated the relative and absolute growth rates (RGR and AGR) of 5 stages during the early rapid growth period. GWAS results for RGRs identified 31 significant SNPs on autosomes, and these SNPs were annotated by 24 protein-coding genes. Fourteen autosomal SNPs were significantly associated with AGRs. In addition, 4 shared significant SNPs were identified as having an association with both AGR and RGR, which were Chr2: 11483045 C>T, Chr2: 13750217 G>A, Chr2: 42508231 G>A and Chr2: 43644612 C>T. Among them, Chr2: 11483045 C>T, Chr2: 42508231 G>A, and Chr2: 43644612 C>T were annotated by ASAP1, LYN and CABYR, respectively. ASAP1 and LYN have already been proven to play roles in the growth and development of other species. In addition, we genotyped every duck using the most significant SNP (Chr2: 42508231 G>A) and compared the growth rate difference among each genotype population. The results showed that the growth rates of individuals carrying the Chr2: 42508231 A allele were significantly lower than those without this allele. Moreover, the results of the Mendelian randomization (MR) analysis supported the idea that the growth rate and birth weight had a causal effect on the adult body weight, with the growth rate having a greater effect size. CONCLUSION: In this study, 41 SNPs significantly related to growth rate were identified. In addition, we considered that the ASAP1 and LYN genes are essential candidate genes affecting the duck growth rate. The growth rate also showed the potential to be used as a reliable predictor of adult weight, providing a theoretical reference for preselection.


Assuntos
Patos , Estudo de Associação Genômica Ampla , Humanos , Adulto , Animais , Patos/genética , Locos de Características Quantitativas , Genótipo , Peso Corporal/genética , Polimorfismo de Nucleotídeo Único
5.
Epilepsia ; 64(10): 2667-2678, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37522416

RESUMO

OBJECTIVE: Bone metabolism can be influenced by a range of factors. We selected children with self-limited epilepsy with centrotemporal spikes (SeLECTS) and lifestyles similar to those of healthy children to control for the confounding factors that may influence bone metabolism. We aimed to identify the specific effects of epilepsy and/or anti-seizure medications (ASMs) on bone metabolism. METHODS: Patients with SeLECTS were divided into an untreated group and a monotherapy group, and the third group was a healthy control group. We determined the levels of various biochemical markers of bone metabolism, including procollagen type I nitrogenous propeptide (PINP), alkaline phosphatase (ALP), osteocalcin (OC), collagen type I cross-linked C-telopeptide (CTX), calcium, magnesium, phosphorus, parathyroid hormone (PTH), and vitamin D3 (VD3 ). RESULTS: A total of 1487 patients (from 19 centers) were diagnosed with SeLECTS; 1032 were analyzed, including 117 patients who did not receive any ASMs (untreated group), 643 patients who received only one ASM (monotherapy group), and 272 children in the healthy control group. Except for VD3 , other bone metabolism of the three groups were different (p < .001). Bone metabolism was significantly lower in the untreated group than the healthy control group (p < .05). There were significant differences between the monotherapy and healthy control group in the level of many markers. However, when comparing the monotherapy and untreated groups, the results were different; oxcarbazepine, levetiracetam, and topiramate had no significant effect on bone metabolism. Phosphorus and magnesium were significantly lower in the valproic acid group than the untreated group (adjusted p < .05, Cliff's delta .282-.768). CTX was significantly higher in the lamotrigine group than in the untreated group (adjusted p = .012, Cliff's delta = .316). SIGNIFICANCE: Epilepsy can affect many aspects of bone metabolism. After controlling epilepsy and other confounders that affect bone metabolism, we found that the effects of ASMs on bone metabolism differed. Oxcarbazepine, levetiracetam, and topiramate did not affect bone metabolism, and lamotrigine corrected some of the abnormal markers of bone metabolism in patients with epilepsy.

6.
Soft Matter ; 19(8): 1560-1568, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36748355

RESUMO

Stretchable flexible superhydrophobic surfaces are in great demand to achieve waterproofing performance in aerospace, electronic industry, and other fields. However, there are still many challenges in developing superhydrophobic surfaces, which maintain their wetting characteristics under high strain conditions with good tensile durability. Here, we propose a simple and efficient method to prepare a stretchable superhydrophobic fluororubber surface composed of hierarchical micro-convexities, which are orderly arranged and interconnected. Its peculiar structure shows excellent superhydrophobicity (155.48 ± 1.97°) and high water sliding angle due to Cassie's impregnating wetting regime. Due to the special structure and high mechanical strength of the surface, it can still maintain its superhydrophobic property after a variety of durability tests, including various stretching tests, sandpaper abrasion, sand impact, and high-temperature treatment. In addition, the surface can still realize the lossless transfer of water droplets even at large stretching strains, which is expected to be applied to microfluidic devices under extreme working conditions.

7.
Epilepsy Behav ; 147: 109387, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37625346

RESUMO

Coronavirus disease-2019 (COVID-19) first emerged in late 2019 and has since spread worldwide. More than 600 million people have been diagnosed with COVID-19, and over 6 million have died. Vaccination against COVID-19 is one of the best ways to protect humans. Epilepsy is a common disease, and there are approximately 10 million patients with epilepsy (PWE) in China. However, China has listed "uncontrolled epilepsy" as a contraindication for COVID-19 vaccination, which makes many PWE reluctant to get COVID-19 vaccination, greatly affecting the health of these patients in the COVID-19 epidemic. However, recent clinical practice has shown that although a small percentage of PWE may experience an increased frequency of seizures after COVID-19 vaccination, the benefits of COVID-19 vaccination for PWE far outweigh the risks, suggesting that COVID-19 vaccination is safe and recommended for PWE. Nonetheless, vaccination strategies vary for different PWE, and this consensus provides specific recommendations for PWE to be vaccinated against COVID-19.


Assuntos
COVID-19 , Epilepsia , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Consenso , População do Leste Asiático , Epilepsia/complicações , Epilepsia/epidemiologia , Vacinação
8.
Exp Cell Res ; 421(2): 113404, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36341908

RESUMO

14-3-3 proteins are ubiquitous adapters combining with phosphorylated serine/threonine motifs to regulate multiple cellular processes. As a negative regulator, 14-3-3 proteins could sequester the phosphorylated YAP1 in cytoplasm to inhibit its activity. In this study, we identified the K50 acetylation (K50ac) of 14-3-3ε protein and investigated its roles and mechanism in cholangiocarcinoma progression. The NAD (+)-dependent protein deacetylases inhibitor, NAM treatment significantly up-regulated the K50ac of 14-3-3ε. K50R mutation resulted in the decrease of K50ac of 14-3-3ε. The K50ac of 14-3-3ε was reversibly mediated by PCAF acetyltransferase and sirt1 deacetylases. K50ac had no obvious effect on the protein stability of 14-3-3ε, but inhibited the combination of 14-3-3ε with phosphorylated YAP1, which resulted in the activation of YAP1 in cholangiocarcinoma. K50R significantly decreased cholangiocarcinoma cell proliferation in vitro and the growth of tumor xenograft in vivo compared with WT (wild type) 14-3-3ε. The level of K50ac were higher in cholangiocarcinoma tissues accompanied by the accumulation of YAP1 in nuclear than para-carcinoma tissues. Our study revealed the underlying mechanism of K50ac of 14-3-3ε and its roles in cholangiocarcinoma, providing a potential targeting for cholangiocarcinoma therapy.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Acetilação , Colangiocarcinoma/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral
9.
Anim Genet ; 54(4): 500-509, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37194451

RESUMO

Sexually dimorphic plumage coloration is widespread in birds. The male possesses more brightly colored feathers than the female. Dark green head feathers comprise one of the most typical appearance characteristics of the male Ma duck compared with the female. However, there are noticeable individual differences observed in these characteristics. Herein, genome-wide association studies (GWAS) were employed to investigate the genetic basis of individual differences in male duck green head-related traits. Our results showed that 165 significant SNPs were associated with green head traits. Meanwhile, 71 candidate genes were detected near the significant SNPs, including four genes (CACNA1I, WDR59, GNAO1 and CACNA2D4) related to the individual differences in the green head traits of male ducks. Additionally, the eGWAS identified three SNPs located within two candidate genes (LOC101800026 and SYNPO2) associated with TYRP1 gene expression, and might be important regulators affecting the expression level of TYRP1 in the head skin of male ducks. Our data also suggested that transcription factor MXI1 might regulate the expression of TYRP1, thereby causing differences in the green head traits among male ducks. This study provided primary data for further analysis of the genetic regulation of duck feather color.


Assuntos
Patos , Estudo de Associação Genômica Ampla , Feminino , Masculino , Animais , Patos/genética , Plumas/fisiologia , Fenótipo , Polimorfismo de Nucleotídeo Único
10.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003565

RESUMO

In poultry, prolactin (PRL) plays a key role in the regulation of incubation behavior, hormone secretion, and reproductive activities. However, previous in vitro studies have focused on the actions of PRL in ovarian follicles of poultry, relying on the use of exogenous or recombinant PRL, and the true role of PRL in regulating ovarian granulosa cell (GC) functions in poultry awaits a further investigation using endogenous native PRL. Therefore, in this study, we first isolated and purified recombinant goose PRL protein (rPRL) and native goose PRL protein (nPRL) using Ni-affinity chromatography and rabbit anti-rPRL antibodies-filled immunoaffinity chromatography, respectively. Then, we analyzed and compared the effects of rPRL and nPRL at different concentrations (0, 3, 30, or 300 ng/mL) on the proliferation and apoptosis of both GCs isolated from goose ovarian pre-hierarchical follicles (phGCs) and from hierarchical follicles (hGCs). Our results show that rPRL at lower concentrations increased the viability and proliferation of both phGCs and hGCs, while it exerted anti-apoptotic effects in phGCs by upregulating the expression of Bcl-2. On the other hand, nPRL increased the apoptosis of phGCs in a concentration-dependent manner by upregulating the expressions of caspase-3 and Fas and downregulating the expressions of Bcl-2 and Becn-1. In conclusion, this study not only obtained a highly pure nPRL for the first time, but also suggested a dual role of PRL in regulating the proliferation and apoptosis of goose GCs, depending on its concentration and the stage of follicle development. The data presented here can be helpful in purifying native proteins of poultry and enabling a better understanding of the roles of PRL during the ovarian follicle development in poultry.


Assuntos
Gansos , Prolactina , Feminino , Animais , Coelhos , Prolactina/farmacologia , Prolactina/metabolismo , Gansos/metabolismo , Células da Granulosa/metabolismo , Aves Domésticas/metabolismo , Proliferação de Células , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
11.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37047763

RESUMO

The regulation of granulosa cells (GCs) proliferation and apoptosis is the key step in follicular selection which determines the egg production performance of poultry. miR-202-5p has been reported to be involved in regulating the proliferation and apoptosis of mammalian ovarian GCs. However, its role in regulating the proliferation and apoptosis of goose GCs is still unknown. In the present study, the GCs of pre-hierarchical follicles (phGCs, 8-10 mm) and those of hierarchical follicles (hGCs, F2-F4) were used to investigate the role of miR-202-5p in cell proliferation and apoptosis during follicle selection. In phGCs and hGCs cultured in vitro, miR-202-5p was found to negatively regulate cell proliferation and positively regulate cell apoptosis. The results of RNA-seq showed that BTB Domain Containing 10 (BTBD10) is predicted to be a key target gene for miR-202-5p to regulate the proliferation and apoptosis of GCs. Furthermore, it is confirmed that miR-202-5p can inhibit BTBD10 expression by targeting its 3'UTR region, and BTBD10 was revealed to promote the proliferation and inhibit the apoptosis of phGCs and hGCs. Additionally, co-transfection with BTBD10 effectively prevented miR-202-5p mimic-induced cell apoptosis and the inhibition of cell proliferation. Meanwhile, miR-202-5p also remarkably inhibited the expression of Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Beta (PIK3CB) and AKT Serine/Threonine Kinase 1 (AKT1), while it was significantly restored by BTBD10. Overall, miR-202-5p suppresses the proliferation and promotes the apoptosis of GCs through the downregulation of PIK3CB/AKT1 signaling by targeting BTBD10 during follicular selection. Our study provides a theoretical reference for understanding the molecular mechanism of goose follicular selection, as well as a candidate gene for molecular marker-assisted breeding to improve the geese' egg production performance.


Assuntos
Gansos , MicroRNAs , Animais , Feminino , Apoptose/genética , Proliferação de Células/genética , Gansos/genética , Gansos/metabolismo , Células da Granulosa/metabolismo , MicroRNAs/metabolismo , Folículo Ovariano/metabolismo
12.
BMC Genomics ; 23(1): 122, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35148676

RESUMO

BACKGROUND: Mammalian sex chromosomes provide dosage compensation, but avian lack a global mechanism of dose compensation. Herein, we employed nanopore sequencing to investigate the genetic basis of gene expression and gene dosage effects in avian Z chromosomes at the posttranscriptional level. RESULTS: In this study, the gonad and head skin of female and male duck samples (n = 4) were collected at 16 weeks of age for Oxford nanopore sequencing. Our results revealed a dosage effect and local regulation of duck Z chromosome gene expression. Additionally, AS and APA achieve tissue-specific gene expression, and male-biased lncRNA regulates its Z-linked target genes, with a positive regulatory role for gene dosage effects on the duck Z chromosome. In addition, GO enrichment and KEGG pathway analysis showed that the dosage effects of Z-linked genes were mainly associated with the cellular response to hormone stimulus, melanin biosynthetic, metabolic pathways, and melanogenesis, resulting in sex differences. CONCLUSIONS: Our data suggested that post transcriptional regulation (AS, APA and lncRNA) has a potential impact on the gene expression effects of avian Z chromosomes. Our study provides a new view of gene regulation underlying the dose effects in avian Z chromosomes at the RNA post transcriptional level.


Assuntos
Mecanismo Genético de Compensação de Dose , Cromossomos Sexuais , Animais , Aves , Feminino , Dosagem de Genes , Regulação da Expressão Gênica , Masculino , Cromossomos Sexuais/genética
13.
BMC Genomics ; 23(1): 136, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35168567

RESUMO

BACKGROUND: All birds reproduce via internal fertilization, but only ~3% of male birds possess the external genitalia that allows for intromission. Waterfowl (e.g., duck and goose) are representatives of them, and the external genitalia development of male geese is directly related to mating ability. Notably, some male geese show abnormal external genitalia development during ontogenesis. However, until now little is known about the molecular mechanisms of the external genitalia development in goose. In the present study, comparative transcriptomic analyses were performed on the hypothalamus, pituitary gland, testis, and external genitalia isolated from the 245-day-old male Tianfu meat geese showing normal (NEGG, n = 3) and abnormal (AEGG, n = 3) external genitals in order to provide a better understanding of the mechanisms controlling the development of the external genitalia in aquatic bird species. RESULTS: There were 107, 284, 2192, and 1005 differentially expressed genes (DEGs) identified in the hypothalamus, pituitary gland, testis and external genitalia between NEGG and AEGG. Functional enrichment analysis indicated that the DEGs identified in the hypothalamus were mainly enriched in the ECM-receptor interaction pathway. The ECM-receptor interaction, focal adhesion, and neuroactive ligand-receptor interaction pathways were significantly enriched by the DEGs in the pituitary gland. In the testis, the DEGs were enriched in the neuroactive ligand-receptor interaction, cell cycle, oocyte meiosis, and purine metabolism. In the external genitalia, the DEGs were enriched in the metabolic, neuroactive ligand-receptor interaction, and WNT signaling pathways. Furthermore, through integrated analysis of protein-protein interaction (PPI) network and co-expression network, fifteen genes involved in the neuroactive ligand-receptor interaction and WNT signaling pathways were identified, including KNG1, LPAR2, LPAR3, NPY, PLCB1, AVPR1B, GHSR, GRM3, HTR5A, FSHB, FSHR, WNT11, WNT5A, WIF1, and WNT7B, which could play crucial roles in the development of goose external genitalia. CONCLUSIONS: This study is the first systematically comparing the hypothalamus, pituitary gland, testis, and external genitalia transcriptomes of male geese exhibiting normal and abnormal external genitals. Both bioinformatic analysis and validation experiments indicated that the neuroactive ligand-receptor interaction pathway could regulate the WNT signaling pathway through PLCB1 to control male goose external genitalia development.


Assuntos
Gansos , Transcriptoma , Animais , Biologia Computacional , Gansos/genética , Perfilação da Expressão Gênica , Genitália , Masculino
14.
BMC Genomics ; 23(1): 281, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395713

RESUMO

BACKGROUND: Egg production is one of the most important economic traits in the poultry industry. The hypothalamic-pituitary-gonadal (HPG) axis plays an essential role in regulating reproductive activities. However, the key genes and regulatory pathways within the HPG axis dominating egg production performance remain largely unknown in ducks. RESULTS: In this study, we compared the transcriptomic profiles of the HPG-related tissues between ducks with high egg production (HEP) and low egg production (LEP) to reveal candidate genes and regulatory pathways dominating egg production. We identified 543, 759, 670, and 181 differentially expressed genes (DEGs) in the hypothalamus, pituitary, ovary stroma, and F5 follicle membrane, respectively. Gene Ontology (GO) analysis revealed that DEGs from four HPG axis-related tissues were enriched in the "cellular component" category. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the neuroactive ligand-receptor interaction pathway was significantly enriched based on DEGs commonly identified in all four HPG axis-related tissues. Gene expression profiles and Protein-Protein Interaction (PPI) network were performed to show the regulatory relationships of the DEGs identified. Five DEGs encoding secreted proteins in the hypothalamus and pituitary have interaction with DEGs encoding targeted proteins in the ovary stroma and F5 follicle membrane, implying that they were these DEGs might play similar roles in the regulation of egg production. CONCLUSIONS: Our results revealed that neuroactive ligand-receptor interaction pathway and five key genes(VEGFC, SPARC, BMP2, THBS1, and ADAMTS15) were identified as the key signaling pathways and candidate genes within the HPG axis responsible for different egg production performance between HEP and LEP. This is the first study comparing the transcriptomic profiles of all HPG axis-related tissues in HEP and LEP using RNA-seq in ducks to the best of our knowledge. These data are helpful to enrich our understanding of the classical HPG axis regulating the egg production performance and identify candidate genes that can be used for genetic selection in ducks.


Assuntos
Patos , Transcriptoma , Animais , Patos/genética , Patos/metabolismo , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Ligantes , Ovário/metabolismo
15.
BMC Microbiol ; 22(1): 76, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296244

RESUMO

BACKGROUND: Rearing systems can affect livestock production directly, but whether they have effects on intestinal growth states and ceca microorganisms in ducks is largely unclear. The current study used Nonghua ducks to estimate the effects of rearing systems on the intestines by evaluating differences in intestinal growth indices and cecal microorganisms between ducks in the floor-rearing system (FRS) and net-rearing system (NRS). RESULTS: The values of relative weight (RW), relative length (RL) and RW/RL of the duodenum, jejunum, ileum and ceca in the FRS were significantly higher than those in the NRS during weeks 4, 8 and 13 (p < 0.05). A total of 157 genera were identified from ducks under the two systems, and the dominant microorganisms in both treatments were Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria at the phylum level. The distribution of microorganisms in the ceca of the two treatments showed significant separation during the three time periods, and the value of the Simpson index in the FRS was significantly higher than that in the NRS at 13 weeks (p < 0.05). Five differential microorganisms and 25 differential metabolic pathways were found in the ceca at week 4, seven differential microorganisms and 25 differential metabolic pathways were found in the ceca at week 8, and four differential microorganisms and two differential metabolic pathways were found in the ceca at week 13. CONCLUSIONS: The rearing system influences duck intestinal development and microorganisms. The FRS group had higher intestinal RL, RW and RW/RL and obviously separated ceca microorganisms compared to those of the NRS group. The differential metabolic pathways of cecal microorganisms decreased with increasing age, and the abundance of translation pathways was higher in the NRS group at week 13, while cofactor and vitamin metabolism were more abundant in the FRS group.


Assuntos
Ceco , Patos , Animais , Bactérias , Ceco/microbiologia , Patos/microbiologia , Íleo/microbiologia , Intestinos
16.
Acta Biochim Biophys Sin (Shanghai) ; 54(11): 1731-1739, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36514219

RESUMO

In pancreatic cancer, KRAS G12D can trigger pancreatic cancer initiation and development. Rapid tumor growth is often accompanied by excess intracellular reactive oxygen species (ROS) production, which is unfavorable to tumor. However, the regulation of intracellular ROS levels in KRAS mutant pancreatic cancer remains unclear. In this study, we establish BxPC3 stable cell strains expressing KRAS wild type (WT) and G12D mutation and find unchanged ROS levels despite higher glycolysis and proliferation viability in KRAS mutant cells than KRAS WT cells. The key hydrogen sulfide (H 2S)-generating enzyme cystathionine-γ-lyase (CSE) is upregulated in KRAS mutant BxPC3 cells, and its knockdown significantly increases intracellular ROS levels and decreases cell glycolysis and proliferation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is activated by KRAS mutation to promote CSE transcription. An Nrf2 binding site (‒47/‒39 bp) in the CSE promoter is verified. CSE overexpression and the addition of NaHS after Nrf2 knockdown or inhibition by brusatol decreases ROS levels and rescues cell proliferation. Our study reveals the regulatory mechanism of intracellular ROS levels in KRAS mutant pancreatic cancer cells, which provides a potential target for pancreatic cancer therapy.


Assuntos
Fator 2 Relacionado a NF-E2 , Neoplasias Pancreáticas , Humanos , Mutação , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cistationina gama-Liase , Neoplasias Pancreáticas
17.
J Mater Sci Mater Electron ; 33(3): 1405-1424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38624943

RESUMO

The magnetic recoverable ZnO/ZnFe2O4/diatomite (ZZFDT) composite was synthesized by hydrothermal-precipitation method. The structure, optical properties and magnetic properties of the composites were characterized by different analytical instruments. ZZFDT-1 is composed of cubic spinel, hexagonal wurtzite, tetrahedron structure. SEM and TEM showed that ZnO and ZnFe2O4 particles were loaded onto the surface of diatomite, and the particle size was uniform. In addition, ZZFDT-1 is a typical mesoporous material with a specific surface area of 65.3 m2/g and pore size of about 12 nm. The response range of ZZFDT-1 is extended to visible light, and the band gap is 1.5 eV. Moreover, the M-H hysteretic curves of ZZFDT-1 exhibited superparamagnetic properties. The photocatalytic activity of different samples was evaluated by the conversion rate of oxytetracycline (OTC) under visible light. ZZFDT-1 has the best photocatalytic activity and the conversion is up to 95%. Because of its magnetic nature, it can be easily separated from the solution. The results showed that the ZZFDT composite has good photocatalytic activity under visible light. After being reused six times, it still has good stability.

18.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35456907

RESUMO

Sex determination and differentiation is an important biological process for unisexual flower development. Spinach is a model plant to study the mechanism of sex determination and differentiation of dioecious plant. Till now, little is known about spinach sex determination and differentiation mechanism. MicroRNAs are key factors in flower development. Herein, small RNA sequencing was performed to explore the roles of microRNAs in spinach sex determination and differentiation. As a result, 92 known and 3402 novel microRNAs were identified in 18 spinach female and male flower samples. 74 differentially expressed microRNAs were identified between female and male flowers, including 20 female-biased and 48 male-biased expression microRNAs. Target prediction identified 22 sex-biased microRNA-target pairs, which may be involved in spinach sex determination or differentiation. Among the differentially expressed microRNAs between FNS and M03, 55 microRNAs were found to reside in sex chromosome; one of them, sol-miR2550n, was functionally studied via genetic transformation. Silencing of sol-miR2550n resulted in abnormal anther while overexpression of sol-miR2550n induced early flowering, indicating sol-miR2550n was a male-promoting factor and validating the reliability of our small RNA sequencing data. Conclusively, this work can supply valuable information for exploring spinach sex determination and differentiation and provide a new insight in studying unisexual flower development.


Assuntos
MicroRNAs , Spinacia oleracea , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Reprodutibilidade dos Testes , Diferenciação Sexual/genética , Spinacia oleracea/genética , Spinacia oleracea/metabolismo
19.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499045

RESUMO

FASN plays a critical role in lipid metabolism, which is involved in regulating ovarian follicular development. However, the molecular mechanisms of how FASN regulate the function of ovarian follicular cells still remain elusive. In this study, by overexpression or interference of FASN in pre-hierarchical follicle granulosa cells (phGCs) and hierarchical follicle granulosa cells (hGCs), we analyzed their effects on the granulosa cell transcriptome and metabolome profiles using RNA-Seq and LC-MS/MS, respectively. The results showed that overexpression of FASN promoted proinflammatory factors expression by activating TLR3/IRF7 and TLR3/NF-κB pathways in phGCs, but only by activating TLR3/IRF7 pathways in hGCs. Then, necroptosis and apoptosis were triggered through the JAK/STAT1 pathway (induced by inflammatory factors) and BAK/caspase-7 pathway, respectively. The combined analysis of the metabolome and transcriptome revealed that FASN affected the demand of GCs for 5-hydroxytryptamine (5-HT) by activating the neuroactive ligand-receptor interaction pathway in two categorized GCs and only altering the metabolic pathway of tryptophan in phGCs, and ultimately participated in regulating the physiological function of geese GCs. Taken together, this study showed that the mechanisms of FASN regulating the physiological function of geese phGCs and hGCs were similar, but they also had some different characteristics.


Assuntos
Gansos , Espectrometria de Massas em Tandem , Animais , Feminino , Gansos/genética , Gansos/metabolismo , Cromatografia Líquida , Células Cultivadas , Células da Granulosa/metabolismo , Transcriptoma
20.
J Sci Food Agric ; 102(11): 4647-4656, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35174889

RESUMO

BACKGROUND: Eggs are essential food sources as they provide low cost and high nutritional content of animal protein. The preservation period is one of the apparent factors affecting egg quality. Previous studies based on traditional detection techniques demonstrated that storage period would significantly influence egg weight, eggshell weight, albumen height, haugh unit (HU) and albumen viscosity. Herein, we employed non-targeted metabolome technology to reveal the comprehensive changes in metabolite composition in duck eggs under the impacts of storage period. RESULTS: The results showed that the primary metabolites in the yolk of duck eggs are amino acids, carbohydrates and lipids. In contrast, the primary metabolites in the albumen are amino acids, benzene and indoles. We screened 43 and 16 different metabolites, respectively, in the albumen and yolk of duck eggs with different preservation periods. In addition, kyoto encyclopedia of genes and genomes (KEGG) enrichment was performed, and the results showed that various nutrients were degraded in the egg after preservation, thus affecting the quality of duck eggs. These nutrients included amino acids, fatty acids, nucleotides, sugars and vitamins; meanwhile, ammonia, biogenic amines and some flavor substances were produced, affecting the quality of the eggs. CONCLUSION: Ourfindings can contribute to a holistic understanding of metabolite composition changes in duck eggs during deterioration in storage. © 2022 Society of Chemical Industry.


Assuntos
Patos , Ovos , Albuminas , Aminoácidos/análise , Animais , Casca de Ovo , Gema de Ovo/química , Ácidos Graxos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA