RESUMO
Chronic obstructive pulmonary disease (COPD) is a lifestyle-related disease that develops in middle-aged and older adults, often due to smoking habits, and has been noted to cause bone fragility. COPD is a risk factor for osteoporosis and fragility fracture, and a high prevalence of osteoporosis and incidence of vertebral fractures have been shown in patients with COPD. Findings of lung tissue analysis in patients with COPD are primarily emphysema with a loss of alveolar septal walls, and the severity of pulmonary emphysema is negatively correlated with thoracic spine bone mineral density (BMD). On the other hand, epidemiological studies on COPD and fracture risk have reported a BMD-independent increase in fracture risk; however, verification in animal models and human bone biopsy samples has been slow, and the essential pathogenesis has not been elucidated. The detailed pathological/molecular mechanisms of musculoskeletal complications in patients with COPD are unknown, and basic research is needed to elucidate the mechanisms. This paper discusses the impacts of COPD on bone strength, focusing on findings in animal models in terms of bone microstructure, bone metabolic dynamics, and material properties.
Assuntos
Densidade Óssea , Osso e Ossos , Doença Pulmonar Obstrutiva Crônica , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/patologia , Humanos , Densidade Óssea/fisiologia , Animais , Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Osteoporose/fisiopatologia , Osteoporose/patologia , Fraturas Ósseas/patologia , Fraturas Ósseas/fisiopatologia , Fraturas Ósseas/epidemiologiaRESUMO
Polyacrylic acid (PAA), an organic chemical, has been used as an intermediate in the manufacture of pharmaceuticals and cosmetics. It has been suggested recently that PAA has a high pulmonary inflammatory and fibrotic potential. Although endoplasmic reticulum stress is induced by various external and intracellular stimuli, there have been no reports examining the relationship between PAA-induced lung injury and endoplasmic reticulum stress. F344 rats were intratracheally instilled with dispersed PAA (molecular weight: 269,000) at low (0.5 mg/mL) and high (2.5 mg/mL) doses, and they were sacrificed at 3 days, 1 week, 1 month, 3 months and 6 months after exposure. PAA caused extensive inflammation and fibrotic changes in the lungs' histopathology over a month following instillation. Compared to the control group, the mRNA levels of endoplasmic reticulum stress markers Bip and Chop in BALF were significantly increased in the exposure group. In fluorescent immunostaining, both Bip and Chop exhibited co-localization with macrophages. Intratracheal instillation of PAA induced neutrophil inflammation and fibrosis in the rat lung, suggesting that PAA with molecular weight 269,000 may lead to pulmonary disorder. Furthermore, the presence of endoplasmic reticulum stress in macrophages was suggested to be involved in PAA-induced lung injury.
Assuntos
Acrilatos , Lesão Pulmonar , Polímeros , Ratos , Animais , Ratos Endogâmicos F344 , Estresse do Retículo Endoplasmático , Inflamação , PulmãoRESUMO
AIMS: Several studies have used animal models to examine knee joint contracture; however, few reports detail the construction process of a knee joint contracture model in a mouse. The use of mouse models is beneficial, as genetically modified mice can be used to investigate the pathogenesis of joint contracture. Compared to others, mouse models are associated with a lower cost to evaluate therapeutic effects. Here, we describe a novel knee contracture mouse model by immobilization using external fixation. METHODS: The knee joints of mice were immobilized by external fixation using a splint and tape. The passive extension range of motion (ROM), histological and immunohistochemical changes, and expression levels of fibrosis-related genes at 2 and 4 weeks were compared between the immobilized (Im group) and non-immobilized (Non-Im group) groups. RESULTS: The extension ROM at 4 weeks was significantly lower in the Im group than in the Non-Im group (p < 0.01). At 2 and 4 weeks, the thickness and area of the joint capsule were significantly greater in the Im group than in the Non-Im group (p < 0.01 in all cases). At 2 weeks, the mRNA expression levels of the fibrosis-related genes, except for the transforming growth factor-ß1, and the protein levels of cellular communication network factor 2 and vimentin in the joint capsule were significantly higher in the Im group (p < 0.01 in all cases). CONCLUSION: This mouse model may serve as a useful tool to investigate the etiology of joint contracture and establish new treatment methods.
Assuntos
Contratura , Fixadores Externos , Animais , Contratura/metabolismo , Modelos Animais de Doenças , Fixadores Externos/efeitos adversos , Fibrose , Fixação de Fratura/efeitos adversos , Imobilização/efeitos adversos , Cápsula Articular/patologia , Articulação do Joelho/patologia , CamundongosRESUMO
INTRODUCTION: Sarcopenia is a complication of Chronic Obstructive Pulmonary Disease (COPD) that negatively affects physical activity and quality of life. However, the underlying mechanism by which COPD affects skeletal muscles remains to be elucidated. Therefore, we investigated the association between oxidative stress and structural alterations in muscles in elastase-induced emphysema mouse models. MATERIALS AND METHODS: Twelve-week-old male C57BL/6J mice were treated with either intratracheal porcine pancreatic elastase (PPE) dissolved in saline, or saline alone. The mice were euthanized 12 weeks after treatment, and the lungs and limb muscles were used for protein analysis of oxidative stress, p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway and muscle atrophy signaling pathway related with oxidative stress. Furthermore, C57BL/6J mice treated with PPE or saline were analyzed for the effects of oral administration of astaxanthin or p38 inhibitor. RESULTS: The weight of the soleus muscle, proportion of type I muscle fibers, and cross-sectional areas of muscle fibers in the PPE group were lower than those in the control group. Oxidative stress marker levels in the PPE group were elevated in skeletal muscles. The p38 MAPK signaling pathway was activated in the soleus muscles, leading to the activation of the ubiquitin-proteasome system and autophagy. Astaxanthin and p38 inhibitors attenuated alterations in muscle structure through the deactivation of the p38 MAPK signaling pathway. CONCLUSIONS: This study provides first evidence in COPD mouse model that oxidative stress trigger a series of muscle structural changes. Our findings suggest a novel target for sarcopenia in COPD.
Assuntos
Doença Pulmonar Obstrutiva Crônica , Sarcopenia , Masculino , Camundongos , Suínos , Animais , Sarcopenia/patologia , Camundongos Endogâmicos C57BL , Qualidade de Vida , Pulmão , Estresse Oxidativo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Modelos Animais de Doenças , Elastase Pancreática/metabolismo , Músculo Esquelético/metabolismoRESUMO
Wnt signaling is relevant for a wide range of biological processes, including reproductive function. The function of Wnt10a in female fertility, however, remains obscure. In the present study, we explored the structure and function of the female reproductive organs in Wnt10a knockout (KO) mice. The expression of ß-catenin signaling was significantly lower in the ovaries of the Wnt10a KO mice compared with wild-type (WT) mice. In addition, the estrous cycles were disrupted, ovarian follicles were diminished, and endometria were thinner, accompanied by lower serum estrogen levels, and higher testosterone and progesterone levels in Wnt10a KO mice. The expression of the ovarian cytochrome P450 family 19 subfamily A member 1 (Cyp19a1) was significantly lower in Wnt10a KO mice. We detected no significant changes in the levels of the gonadotropins between WT and KO mice. Together, our findings indicate that deficiency of Wnt10a causes female infertility through ß-catenin and Cyp19a1signaling pathways in mice.
Assuntos
Infertilidade Feminina , Proteínas Wnt , beta Catenina , Animais , Aromatase/genética , Aromatase/metabolismo , Feminino , Humanos , Infertilidade Feminina/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Ovário , Proteínas Wnt/genética , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismoRESUMO
BACKGROUND: Some organic chemicals are known to cause allergic disorders such as bronchial asthma and hypersensitivity pneumonitis, and it has been considered that they do not cause irreversible pulmonary fibrosis. It has recently been reported, however, that cross-linked acrylic acid-based polymer, an organic chemical, might cause serious interstitial lung diseases, including pulmonary fibrosis. We investigated whether or not intratracheal instillation exposure to cross-linked polyacrylic acid (CL-PAA) can cause lung disorder in rats. METHODS: Male F344 rats were intratracheally instilled with dispersed CL-PAA at low (0.2 mg/rat) and high (1.0 mg/rat) doses, and were sacrificed at 3 days, 1 week, 1 month, 3 months and 6 months after exposure to examine inflammatory and fibrotic responses and related gene expressions in the lungs. Rat lungs exposed to crystalline silica, asbestos (chrysotile), and NiO and CeO2 nanoparticles were used as comparators. RESULTS: Persistent increases in total cell count, neutrophil count and neutrophil percentage, and in the concentration of the cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2 and C-X-C motif chemokine 5 (CXCL5), which correlated with lung tissue gene expression, were observed in bronchoalveolar lavage fluid (BALF) from 3 days until at least 1 month following CL-PAA intratracheal instillation. Persistent increases in heme oxygenase-1 (HO-1) in the lung tissue were also observed from 3 days to 6 months after exposure. Histopathological findings of the lungs demonstrated that extensive inflammation at 3 days was greater than that in exposure to silica, NiO nanoparticles and CeO2 nanoparticles, and equal to or greater than that in asbestos (chrysotile) exposure, and the inflammation continued until 1 month. Fibrotic changes also progressed after 1 month postexposure. CONCLUSION: Our results suggested that CL-PAA potentially causes strong neutrophil inflammation in the rat and human lung.
Assuntos
Resinas Acrílicas , Pulmão , Animais , Líquido da Lavagem Broncoalveolar , Masculino , Ratos , Ratos Endogâmicos F344RESUMO
BACKGROUND: We conducted intratracheal instillations of different molecular weights of polyacrylic acid (PAA) into rats in order to examine what kinds of physicochemical characteristics of acrylic acid-based polymer affect responses in the lung. METHODS: F344 rats were intratracheally exposed to a high molecular weight (HMW) of 598 thousand g/mol or a low molecular weight (LMW) of 30.9 thousand g/mol PAA at low and high doses. Rats were sacrificed at 3 days, 1 week, 1 month, 3 months and 6 months post exposure. RESULTS: HMW PAA caused persistent increases in neutrophil influx, cytokine-induced neutrophil chemoattractants (CINC) in the bronchoalveolar lavage fluid (BALF), and heme oxygenase-1 (HO-1) in the lung tissue from 3 days to 3 months and 6 months following instillation. On the other hand, LMW PAA caused only transient increases in neutrophil influx, CINC in BALF, and HO-1 in the lung tissue from 3 days to up to 1 week or 1 month following instillation. Histopathological findings of the lungs demonstrated that the extensive inflammation and fibrotic changes caused by the HMW PAA was greater than that in exposure to the LMW PAA during the observation period. CONCLUSION: HMW PAA induced persistence of lung disorder, suggesting that molecular weight is a physicochemical characteristic of PAA-induced lung disorder.
Assuntos
Heme Oxigenase-1 , Pulmão , Resinas Acrílicas/farmacologia , Animais , Líquido da Lavagem Broncoalveolar/química , Fatores Quimiotáticos/farmacologia , Citocinas/farmacologia , Intubação Intratraqueal , Pulmão/patologia , Peso Molecular , Ratos , Ratos Endogâmicos F344RESUMO
We conducted intratracheal instillations of polyacrylic acid (PAA) with crosslinking and non-crosslinking into rats in order to examine what kinds of physicochemical characteristics of acrylic-acid-based polymers affect responses in the lung. F344 rats were intratracheally exposed to similar molecular weights of crosslinked PAA (CL-PAA) (degree of crosslinking: ~0.1%) and non-crosslinked PAA (Non-CL-PAA) at low and high doses. Rats were sacrificed at 3 days, 1 week, 1 month, 3 months, and 6 months post-exposure. Both PAAs caused increases in neutrophil influx, cytokine-induced neutrophil chemoattractants (CINC) in the bronchoalveolar lavage fluid (BALF), and heme oxygenase-1 (HO-1) in the lung tissue from 3 days to 6 months following instillation. The release of lactate dehydrogenase (LDH) activity in the BALF was higher in the CL-PAA-exposed groups. Histopathological findings of the lungs demonstrated that the extensive fibrotic changes caused by CL-PAA were also greater than those in exposure to the Non-CL- PAA during the observation period. CL-PAA has more fibrogenicity of the lung, suggesting that crosslinking may be one of the physicochemical characteristic factors of PAA-induced lung disorder.
Assuntos
Pulmão , Ratos , Animais , Ratos Endogâmicos F344 , Ratos Wistar , Pulmão/patologia , Líquido da Lavagem Broncoalveolar/químicaRESUMO
We aimed to investigate the effects of maternal chewing on prenatal stress-induced cognitive impairments in the offspring and to explore the molecular pathways of maternal chewing in a mice model. Maternal chewing ameliorated spatial learning impairments in the offspring in a Morris water maze test. Immunohistochemistry and Western blot findings revealed that maternal chewing alleviated hippocampal neurogenesis impairment and increased the expression of hippocampal brain-derived neurotrophic factor in the offspring. In addition, maternal chewing increased the expression of glucocorticoid receptor (GR) and 11ß-hydroxysteroid dehydrogenase isozyme 2 (11ß-HSD2) and decreased the expression of 11ß-HSD1 in the placenta, thereby attenuating the increase of glucocorticoid in the offspring. Furthermore, maternal chewing increased the expression of 11ß-HSD2, FK506-binding protein 51 (FKBP51) and FKBP52 and decreased the expression of 11ß-HSD1, thereby increasing hippocampal nuclear GR level. In addition, maternal chewing attenuated the increase in expression of DNMT1 and DNMT3a and the decrease in expression of histone H3 methylation at lysine 4, 9, 27 and histone H3 acetylation at lysine 9 induced by prenatal stress in the offspring. Our findings suggest that maternal chewing could ameliorate prenatal stress-induced cognitive impairments in the offspring at least in part by protecting placenta barrier function, alleviating hippocampal nuclear GR transport impairment and increasing the hippocampal brain-derived neurotrophic factor (BDNF) level.
Assuntos
Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Mastigação , Efeitos Tardios da Exposição Pré-Natal/patologia , Transdução de Sinais , Estresse Psicológico/complicações , Acetilação , Animais , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Metilação de DNA , Feminino , Glucocorticoides/metabolismo , Hipocampo/patologia , Histonas/metabolismo , Camundongos , Neurogênese , Placenta/metabolismo , Gravidez , Receptores de Glucocorticoides/metabolismo , Aprendizagem EspacialRESUMO
Numerical simulation is performed for sessile droplet spreading and penetration on porous surfaces in this study. The volume of the fluid model is used to accurately track the droplet deformation, and the pressure implicit split operator algorithm is presented to calculate the coupling of the droplet pressure and velocity. The effects of droplet characteristics, porous media characteristics, and the wettability of liquid/porous media on sessile droplet spreading and permeation are investigated in detail. The studied problem can be characterized by four control parameters: the Bond number, Darcy number, static equilibrium contact angle, and ratio between the initial diameter of the droplet and the particle diameter in the porous substrate. The numerical simulations show that droplet spreading and penetration are competitive with each other and dependent on the above four dimensionless parameters. The results obtained in this work are of benefit to provide deep insights into the dynamic behavior of sessile droplet on porous substrates.
RESUMO
Background: We recently reported that WNT10A plays a pivotal role in wound healing by regulating collagen expression/synthesis, as the depletion of WNT10A dramatically delays skin ulcer formation. WNT signaling also has a close correlation with the cancer microenvironment and proliferation, since tumors are actually considered to be 'unhealing' or 'overhealing' wounds. To ascertain the in vivo regulatory functions of WNT10A in tumor growth, we examined the net effects of WNT10A depletion using Wnt10a-deficient mice (Wnt10a -/-). Methods and Results: We subjected C57BL/6J wild-type (WT) or Wnt10a -/- mice to murine melanoma B16-F10 cell transplantation. Wnt10a -/- mice showed a significantly smaller volume of transplanted melanoma as well as fewer microvessels and less collagen expression and more necrosis than WT mice. Conclusions: Taken together, our observations suggest that critical in vivo roles of Wnt10a-depleted anti-stromagenesis prevent tumor growth, in contrast with true wound healing/scarring.
Assuntos
Colágeno/metabolismo , Melanoma Experimental/patologia , Proteínas do Tecido Nervoso/genética , Neoplasias Cutâneas/patologia , Proteínas Wnt/genética , Animais , Linhagem Celular Tumoral , Feminino , Deleção de Genes , Masculino , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/metabolismo , Microvasos/patologia , Proteínas do Tecido Nervoso/metabolismo , Neoplasias Cutâneas/irrigação sanguínea , Neoplasias Cutâneas/metabolismo , Células Estromais/patologia , Proteínas Wnt/metabolismoRESUMO
RATIONALE: Nitric oxide (NO), synthesized by NOSs (NO synthases), plays a role in the development of pulmonary hypertension (PH). However, the role of NO/NOSs in bone marrow (BM) cells in PH remains elusive. OBJECTIVES: To determine the role of NOSs in BM cells in PH. METHODS: Experiments were performed on 36 patients with idiopathic pulmonary fibrosis and on wild-type (WT), nNOS (neuronal NOS)-/-, iNOS (inducible NOS)-/-, eNOS (endothelial NOS)-/-, and n/i/eNOSs-/- mice. MEASUREMENTS AND MAIN RESULTS: In the patients, there was a significant correlation between higher pulmonary artery systolic pressure and lower nitrite plus nitrate levels in the BAL fluid. In the mice, hypoxia-induced PH deteriorated significantly in the n/i/eNOSs-/- genotype and, to a lesser extent, in the eNOS-/- genotype as compared with the WT genotype. In the n/i/eNOSs-/- genotype exposed to hypoxia, the number of circulating BM-derived vascular smooth muscle progenitor cells was significantly larger, and transplantation of green fluorescent protein-transgenic BM cells revealed the contribution of BM cells to pulmonary vascular remodeling. Importantly, n/i/eNOSs-/--BM transplantation significantly aggravated hypoxia-induced PH in the WT genotype, and WT-BM transplantation significantly ameliorated hypoxia-induced PH in the n/i/eNOSs-/- genotype. A total of 69 and 49 mRNAs related to immunity and inflammation, respectively, were significantly upregulated in the lungs of WT genotype mice transplanted with n/i/eNOSs-/--BM compared with those with WT-BM, suggesting the involvement of immune and inflammatory mechanisms in the exacerbation of hypoxia-induced PH caused by n/i/eNOSs-/--BM transplantation. CONCLUSIONS: These results demonstrate that myelocytic n/i/eNOSs play an important protective role in the pathogenesis of PH.
Assuntos
Células da Medula Óssea/efeitos dos fármacos , Células Precursoras de Granulócitos/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/fisiopatologia , Hipóxia/tratamento farmacológico , Hipóxia/fisiopatologia , Óxido Nítrico Sintase/uso terapêutico , Animais , Humanos , Masculino , Camundongos , Modelos Animais , Substâncias Protetoras/uso terapêuticoRESUMO
BACKGROUND: Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) is life-threatening. Several serum biomarkers, such as Krebs von den Lungen-6 (KL-6) and surfactant protein D (SP-D), are clinically used for evaluating AE-IPF, but these biomarkers are not adequate for establishing an early and accurate diagnosis of AE-IPF. Recently, the protective roles of the members of the peroxiredoxin (PRDX) family have been reported in IPF; however, the role of PRDX4 in AE-IPF is unclear. METHODS: Serum levels of PRDX4 protein, KL-6, SP-D and lactate dehydrogenase (LDH) in 51 patients with stable IPF (S-IPF), 38 patients with AE-IPF and 15 healthy volunteers were retrospectively assessed using enzyme-linked immunosorbent assay. Moreover, as an animal model of pulmonary fibrosis, wild-type (WT) and PRDX4-transgenic (Tg) mice were intratracheally administered with bleomycin (BLM, 2 mg/kg), and fibrotic and inflammatory changes in lungs were evaluated 3 weeks after the intratracheal administration. RESULTS: Serum levels of PRDX4 protein, KL-6, SP-D and LDH in patients with S-IPF and AE-IPF were significantly higher than those in healthy volunteers, and those in AE-IPF patients were the highest among the three groups. Using receiver operating characteristic curves, area under the curve values of serum PRDX4 protein, KL-6, SP-D, and LDH for detecting AE-IPF were 0.873, 0.698, 0.675, and 0.906, respectively. BLM-treated Tg mice demonstrated aggravated histopathological findings and poor prognosis compared with BLM-treated WT mice. Moreover, PRDX4 expression was observed in alveolar macrophages and lung epithelial cells of BLM-treated Tg mice. CONCLUSIONS: PRDX4 is associated with the aggravation of inflammatory changes and fibrosis in the pathogenesis of IPF, and serum PRDX4 may be useful in clinical practice of IPF patients.
Assuntos
Progressão da Doença , Fibrose Pulmonar Idiopática/sangue , Fibrose Pulmonar Idiopática/etiologia , Peroxirredoxinas/biossíntese , Adulto , Idoso , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Estudos RetrospectivosRESUMO
AIMS: Nephrotic syndrome (NS) is a major manifestation of lupus nephritis (LN). The dysregulation of podocytes, the glomerular basement membrane (GBM) and endothelial cells (ECs) results in proteinuria in glomerular diseases. The aim of our study was to clarify whether the dysregulation of these barriers is associated with NS in proliferative LN and membranous LN. METHODS AND RESULTS: Fifty-six patients with NS, including minimal change NS in 15, primary membranous nephropathy (PMN) in 13, class III/IV LN in 15, and class V LN in 13, were enrolled in this study. Subjects with idiopathic haematuria were assigned as controls. Glomerular expression of Wilms tumour protein 1 (WT1), nephrin, synaptopodin and podocalyxin was evaluated by immunohistochemistry (IHC) and real-time quantitative reverse transcription polymerase chain reaction. EC injury was evaluated by CD31 immunostaining and electron microscopy (EM). Reduced expression of WT1, nephrin and synaptopodin was found in PMN, class III/IV LN and class V LN as compared with controls by IHC and mRNA analysis. Reduced expression of these molecules was not different between class III/IV LN and class V LN. Reduced numbers of CD31-positive ECs were found in class III/IV LN as compared with class V LN. EC injury showing subendothelial widening on EM was apparent in class III/IV LN as compared with class V LN. Foot process effacement was found only along the GBM showing EC injury in class III/IV LN. CONCLUSIONS: Our study suggests that coexistence of podocyte and EC injury may lead to NS in proliferative LN. Podocyte damage alone leads to NS in membranous LN.
Assuntos
Células Endoteliais/patologia , Nefrite Lúpica/complicações , Síndrome Nefrótica/etiologia , Podócitos/patologia , Adolescente , Adulto , Idoso , Criança , Progressão da Doença , Células Endoteliais/metabolismo , Feminino , Humanos , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Nefrite Lúpica/metabolismo , Nefrite Lúpica/patologia , Masculino , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/patologia , Podócitos/metabolismo , Proteinúria/metabolismo , Proteinúria/patologia , Sialoglicoproteínas/metabolismo , Proteínas WT1/metabolismo , Adulto JovemRESUMO
BACKGROUND: In order to examine whether myeloperoxidase (MPO) can be a useful marker for evaluating the pulmonary toxicity of nanomaterials, we analyzed MPO protein in bronchoalveolar lavage fluid (BALF) samples obtained from previous examinations of a rat model. In those examinations we performed intratracheal instillation exposures (dose: 0.2-1.0 mg) and inhalation exposures (exposure concentration: 0.32-10.4 mg/m3) using 9 and 4 nanomaterials with different toxicities, respectively. Based on those previous studies, we set Nickel oxide nanoparticles (NiO), cerium dioxide nanoparticles (CeO2), multi wall carbon nanotubes with short or long length (MWCNT (S) and MWCNT (L)), and single wall carbon nanotube (SWCNT) as chemicals with high toxicity; and titanium dioxide nanoparticles (TiO2 (P90) and TiO2 (Rutile)), zinc oxide nanoparticles (ZnO), and toner with external additives including nanoparticles as chemicals with low toxicity. We measured the concentration of MPO in BALF samples from rats from 3 days to 6 months following a single intratracheal instillation, and from 3 days to 3 months after the end of inhalation exposure. RESULTS: Intratracheal instillation of high toxicity NiO, CeO2, MWCNT (S), MWCNT (L), and SWCNT persistently increased the concentration of MPO, and inhalation of NiO and CeO2 increased the MPO in BALF. By contrast, intratracheal instillation of low toxicity TiO2 (P90), TiO2 (Rutile), ZnO, and toner increased the concentration of MPO in BALF only transiently, and inhalation of TiO2 (Rutile) and ZnO induced almost no increase of the MPO. The concentration of MPO correlated with the number of total cells and neutrophils, the concentration of chemokines for neutrophils (cytokine-induced neutrophil chemoattractant (CINC)-1 and heme oxygenase (HO)-1), and the activity of released lactate dehydrogenase (LDH) in BALF. The results from the receiver operating characteristics (ROC) for the toxicity of chemicals by the concentration of MPO proteins in the intratracheal instillation and inhalation exposures showed that the largest areas under the curves (AUC) s in both examinations occurred at 1 month after exposure. CONCLUSION: These data suggest that MPO can be a useful biomarker for the ranking of the pulmonary toxicity of nanomaterials, especially at 1 month after exposure, in both intratracheal instillation and inhalation exposure.
Assuntos
Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Nanopartículas/toxicidade , Peroxidase/análise , Animais , Biomarcadores/análise , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Quimiocinas/análise , Pulmão/enzimologia , Pulmão/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Masculino , Nanopartículas/química , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Ratos Endogâmicos F344RESUMO
The polypeptide N-acetylgalactosaminyltransferase (GalNAc-Ts) family of enzymes regulates the critical initial steps of mucin-type O-glycosylation. Among GalNAc-Ts that may significantly influence cancer biology, thus affecting cell differentiation, adhesion, invasion, and/or metastasis, GalNAc-T3 exhibits a high expression in several human cancers, closely associated with tumor progression and a poor prognosis. However, the expression pattern of GalNAc-T3 in oral squamous cell carcinoma (OSCC) remains obscure. Since postoperative recurrence of even early stage OSCC (ESOSCC) occurs at an early phase, significantly affecting their clinical course and worse outcome, the identification of clinically significant accurate biomarkers is needed. Therefore, we investigated the correlation between the immunohistochemical GalNAc-T3 expression and various clinicopathological characteristics and recurrence using 110 paraffin-embedded tumor samples obtained from patients with surgically resected ESOSCC (T1-2N0). Recurrence was recognized in 37 of 110 (33.6 %) patients. The GalNAc-T3 expression was considered to be strongly positive when 20 % or more of the cancer cells showed positive cytoplasmic staining. Consequently, a strong expression of GalNAc-T3 was observed in 40 patients (36.4 %), showing a close relationship to poor differentiation, the presence of lymphatic and vascular invasion, and recurrence. Univariate and multivariate analyses further demonstrated that the patients with a strong GalNAc-T3+ status had markedly lower disease-free survival (DFS) rates, especially within the first 2 years postoperatively. Therefore, GalNAc-T3 might play a role in the pathogenesis of ESOSCC recurrence, and its immunohistochemical detection potentially predicts a shorter DFS and may be a useful parameter for providing clinical management against ESOSCC in the early postoperative phase.
Assuntos
Carcinoma de Células Escamosas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Bucais/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/mortalidade , Adesão Celular , Diferenciação Celular , Linhagem Celular Tumoral , Citoplasma/metabolismo , Progressão da Doença , Intervalo Livre de Doença , Feminino , Perfilação da Expressão Gênica , Glicosilação , Humanos , Imuno-Histoquímica , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Neoplasias Bucais/mortalidade , Invasividade Neoplásica , Metástase Neoplásica , Proteínas de Neoplasias/metabolismo , Recidiva Local de Neoplasia , Prognóstico , Adulto Jovem , Polipeptídeo N-AcetilgalactosaminiltransferaseRESUMO
We have reported that the function of histamine and its receptors (HRs) has a close relationship with the development of nonalcoholic fatty liver disease (NAFLD). However, much less is known regarding its pathogenic and molecular mechanism(s), including the early stage of hepatic and intestinal function for lipid and bile acid (BA) metabolism. We used H1R and H2R knockout mice (H1/2R-KO) to clarify those pivotal roles in cholesterol/BA metabolism, in which H1/2R-KO mice were separately fed a short-term 1% cholesterol or cholic acid (CA) diet. [(3) H]Cholesterol absorption study revealed that significantly enhanced accumulation occurred in the jejunum, blood and liver, but not in the feces, of H2R-KO mice, compared to wild-type and H1R-KO mice. Furthermore, four weeks after the high-cholesterol diet, the H2R-KO jejunum but not liver exhibited increased expressions of cholesterol transporters, consistent with higher plasma lipoprotein levels. Five days after CA diet, the H2R-KO mice showed significantly higher expressions of ileal BA-reabsorption and hepatic BA-efflux factors, corresponding to higher serum but lower fecal BA levels. The following long-term CA diets resulted in severe injury to the H2R-KO liver. Histamine/H2R signaling might have a protective role in the initial phase during NAFLD progression, correlated with cholesterol and BA metabolism in the liver/intestine.
Assuntos
Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Histamina/fisiologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Receptores Histamínicos H2/metabolismo , Transdução de Sinais , Animais , Fígado/fisiopatologia , CamundongosRESUMO
BACKGROUND: Asthma is characterized by airflow limitation with chronic airway inflammation, hyperresponsiveness and mucus hypersecretion. NO is generated by three nitric oxide synthase (i/n/eNOSs) isoforms, but conflicting results have been reported using asthmatic mice treated with NOSs inhibitors and NOS-knockout mice. To elucidate the authentic role of NO/NOSs in asthma, we used asthmatic mice lacking all NOSs (n/i/eNOS(-/-)). METHODS: Wild-type and n/i/eNOS(-/-) mice were sensitized and challenged with ovalbumin. Pathological findings and expressions of interferon (IFN)-γ, interleukin (IL)-4, -5, -10, -13 and chemokines in the lung were evaluated. RESULTS: Decreased eosinophilic inflammation, bronchial thickening and mucus secretion, IL-4, -5 and -13, monocyte chemoattractant protein-1, eotaxin-1 and thymus and activation-regulated chemokine expressions were observed in n/i/eNOS(-/-) mice compared to wild-type, but expressions of IFN-γ and IL-10 were similar. CONCLUSION: Using asthmatic n/i/eNOS(-/-) mice, NO plays important roles in accelerating bronchial eosinophilic inflammation and mucus hypersecretion in the pathophysiology of asthma.
Assuntos
Asma/enzimologia , Bronquite/patologia , Citocinas/genética , Muco/metabolismo , Óxido Nítrico Sintase/deficiência , RNA Mensageiro/análise , Animais , Asma/genética , Asma/patologia , Bronquite/imunologia , Quimiocina CCL11/genética , Quimiocina CCL17/genética , Quimiocina CCL2/genética , Eosinófilos/imunologia , Expressão Gênica , Interferon gama/genética , Interleucina-10/genética , Interleucina-13/genética , Interleucina-4/genética , Interleucina-5/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase/genéticaRESUMO
Apoptosis signal-regulating kinase 1 (ASK1), also known as mitogen-activated protein kinase kinase kinase (MAP3K), is ubiquitously expressed and situated in an important upstream position of many signal transduction pathways. ASK1 plays a pivotal role in stressor-induced cell survival and inflammatory reactions. To ascertain the regulatory functions of ASK1 in bile duct ligation (BDL)-induced liver injury, we examined the net effects of ASK1 depletion on hepatic necroinflammation and/or fibrosis. We subjected C57BL/6 wild-type (WT) or ASK1-deficient (ASK1(-/-)) mice to sham or BDL surgery for 14 days. In day 3 BDL animals, ASK1(-/-) mice had significantly fewer bile infarcts along with more reduced interlobular or portal inflammatory infiltrate of various immune cells, including neutrophils, compared with WT mice in which ASK1 expression was markedly activated. Morphologically apoptotic hepatocytes or cholangiocytes were negligible in both the sham and BDL animals. In contrast, ASK1(-/-) mice had significantly less proliferating activity of not only hepatocytes but also large cholangiocytes than WT mice. Day 14 BDL ASK1(-/-) mice manifested potential antifibrogenic aspects of ASK1 deficiency, characterized by significantly fewer activated peribiliary fibrogenic cells and peribiliary fibrosis. These observations indicate that ASK1-mediated hepatic necroinflammation and proliferation, but not apoptosis, are closely linked to liver fibrosis and fibrogenesis. A specific ASK1 pathway blocker or inhibitor might offer a therapeutic strategy against human cholestatic diseases.
Assuntos
Apoptose , Cirrose Hepática/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Transdução de Sinais , Animais , Ductos Biliares/patologia , Proliferação de Células , Colestase/patologia , Hepatócitos/metabolismo , Inflamação , Fígado/metabolismo , Cirrose Hepática/patologia , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Deleção de SequênciaRESUMO
Histamine is not only essential for acute inflammatory reactions, but it also participates in a chronic inflammatory disorder. We generated apolipoprotein E (apoE) and histamine receptors (HHRs), including the major H1 and H2 receptors (HH1R, HH2R) double knockout mice (DKO) to clarify the role of HHRs in hyperlipidemia-induced atherosclerosis, in which apoE-KO and DKO mice were fed a high cholesterol diet. We found that pronounced hyperlipidemia-induced atherosclerotic progression occurred in HH1R/apoE-DKO mice, but in HH2R/apoE-DKO mice less atherosclerosis, despite pro-atherogenic serum cholesterol levels compared with apoE-KO mice. Furthermore, the increased expressions of scavenger receptors (SRs), such as SR-A, CD36 and lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1), nuclear factor-kappa B (NFκB), monocyte chemoattractant protein (MCP-1), matrix metalloproteinases (MMPs) or liver X receptor (LXR)-related inflammatory signaling factors, were consistent with the pro-atherogenic phenotype of HH2R/apoE-DKO mice. We hypothesize that histamine/HH1R and HH2R signaling has conflicting innate functions, inflammatory/atherogenic and anti-inflammatory/anti-atherogenic actions, and that there are innate links between histamine signaling and hyperlipidemia-induced atherosclerosis, independently of serum cholesterol metabolism. Specific histamine signaling blockers, in particular, HH2R blockers, are a possible novel therapeutic target for hyperlipidemia-induced atherosclerosis.