Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39217416

RESUMO

Programmed death-ligand 1 (PD-L1) on tumor-derived small extracellular vesicles (sEVs) limits therapeutic effectiveness by interacting with the PD-1 receptor on host immune cells. Targeting the secretion of sEV PD-L1 has emerged as a promising strategy to enhance immunotherapy. However, the lack of small-molecule inhibitors poses a challenge for clinical translation. In this study, we developed a target and phenotype dual-driven high-throughput screening (TAP-HTS) strategy that combined virtual screening with nanoflow-based experimental verification. We identified ibuprofen (IBP) as a novel inhibitor that effectively targeted sEV PD-L1 secretion. IBP disrupted the biogenesis and secretion of PD-L1+ sEVs in tumor cells by physically interacting with a critical regulator of sEV biogenesis, hepatocyte growth factor-regulated tyrosine kinase substrate (HRS). Notably, the mechanism of action of IBP is distinct from its commonly known targets, cyclooxygenases (COX1 or COX2). Administration of IBP stimulated antitumor immunity and enhanced the efficacy of anti-PD-1 therapy in melanoma and oral squamous cell carcinoma (OSCC) mouse models. To address potential adverse effects, we further developed an IBP gel for topical application, which demonstrated remarkable therapeutic efficacy when combined with anti-PD-1 treatment. The discovery of this specific small inhibitor provides a promising avenue for establishing durable, systemic antitumor immunity.

2.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685910

RESUMO

Oral squamous cell carcinoma (OSCC) is the most prevalent subtype of head and neck tumors, highly prone to lymph node metastasis. This study aims to examine the expression pattern of Ras-related protein Rab-27A (RAB27A) and explore its potential implications in OSCC. The expression of RAB27A was assessed through immunohistochemical analysis utilizing tissue microarrays. In vitro experiments were conducted using RAB27A-knockdown cells to investigate its impact on OSCC tumor cells. Additionally, transcriptome sequencing was performed to elucidate potential underlying mechanisms. RAB27A was significantly overexpressed in OSCC, and particularly in metastatic lymph nodes. It was positively correlated with the clinical progression and poor survival prognosis. Silencing RAB27A notably decreased the proliferation, migration, and invasion abilities of OSCC cells in vitro. A Gene Ontology (GO) enrichment analysis indicated a strong association between RAB27A and the epidermal growth factor receptor (EGFR) signaling pathway. Further investigations revealed that RAB27A regulated the palmitoylation of EGFR via zinc finger DHHC-type containing 13 (ZDHHC13). These findings provide insights into OSCC progression and highlight RAB27A as a potential therapeutic target for combating this aggressive cancer.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/genética , Neoplasias Bucais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Receptores ErbB/genética , Proteínas rab27 de Ligação ao GTP
3.
Cell Tissue Res ; 389(3): 517-530, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35786766

RESUMO

Venous malformations (VMs), featuring localized dilated veins, are the most common developmental vascular anomalies. Aberrantly organized perivascular extracellular matrix (ECM) is one of the prominent pathological hallmarks of VMs, accounting for vascular dysfunction. Although previous studies have revealed various proteins involved in ECM remodeling, the detailed pattern and molecular mechanisms underlying the endothelium-ECM interplay have not been fully elucidated. Our previous studies revealed drastically elevated extracellular vesicle (EV) secretion in VM lesions. Here, we identified increased EV-carried MMP14 in lesion fluids of VMs and culture medium of TIE2-L914F mutant endothelial cells (ECs), along with stronger ECM degradation. Knockdown of RAB27A, a required regulator for vesicle docking and fusion, led to decreased secretion of EV-carried MMP14 in vitro. Histochemical analysis further demonstrated a highly positive correlation between RAB27A in the endothelium and MMP14 in the perivascular environment. Therefore, our results proved that RAB27A-regulated secretion of EV-MMP14, as a new pattern of endothelium-ECM interplay, contributed to the development of VMs by promoting ECM degradation.


Assuntos
Vesículas Extracelulares , Metaloproteinase 14 da Matriz/metabolismo , Malformações Vasculares , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Malformações Vasculares/metabolismo , Malformações Vasculares/patologia
4.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1599-1607, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39235018

RESUMO

Effective microorganisms (EM) might alleviate deterioration of soil environmental quality and yield decline of pepper (Capsicum annuum) caused by continuous replanting and imbalanced fertilizer application in Xinjiang. We investigated the effects of applying EM microbial agent on the growth of pepper plants, yield, soil nutrient content, soil enzyme activity, and rhizosphere eukaryotic community. The results showed that the application of EM microbial agent increased plant height, stem diameter, leaf length, leaf width and root length by 22.6%, 35.3%, 33.3%, 29.7% and 15.1%, respectively. It also increased fruit width, individual fruit weight, and yield by 5.3%, 42.9%, and 74.7%, respectively. After the application of EM microbial agent, the levels of soil available nitrogen increased by 10.2% and 5.8% during the flowering and maturity stages, respectively. Similarly, available phosphorus increased by 10.4% and 13.4%, respectively. The soil sucrase activity was increased by 40.7%, 14.6%, and 9.3% during the seedling, flowering, and maturity stages, respectively. Urease activity was also increased by 7.9%, 10.2%, and 11.5%, respectively. Furthermore, the application of EM microbial agent increased soil peroxidase activity by 16.8% and 44.6% at flowering and maturity stages, respectively. The application of microbial agent significantly altered the ß-diversity of the rhizosphere eukaryotic community in pepper plants. Specifically, microbial agent increased the relative abundances of populations belonging to Enchytraeus and Sminthurides genera, which could contribute to soil improvement and nutrient cycling. Compared to the CK, the relative abundance of pathogenic microorganisms including Olpidium and Aplanochytrium genera decreased by 98.0% and 89.3%, and the relative abundance of the Verticillium decreased to 0. These results demonstrated that EM microbial agent could increase soil nutrient content, enhance soil enzyme activity, and reduce soil pathogenic fungi in the pepper cultivation areas of Xinjiang, thus achieving beneficial effects on pepper growth and fruit yield.


Assuntos
Capsicum , Rizosfera , Microbiologia do Solo , Capsicum/crescimento & desenvolvimento , Capsicum/microbiologia , China , Solo/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo
5.
Cancer Immunol Res ; 11(2): 228-240, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36484721

RESUMO

PD-L1 localized to immunosuppressive small extracellular vesicles (sEV PD-L1) contributes to tumor progression and is associated with resistance to immune-checkpoint blockade (ICB) therapy. Here, by establishing a screening strategy with a combination of tissue microarray (TMA), IHC staining, and measurement of circulating sEV PD-L1, we found that the endosomal sorting complex required for transport (ESCRT) member protein hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) was the key regulator of circulating sEV PD-L1 in head and neck squamous cell carcinoma (HNSCC) patients. Increased HRS expression was found in tumor tissues and positively correlated with elevated circulating sEV PD-L1 in patients with HNSCC. The expression of HRS was also negatively correlated to the infiltration of CD8+ T cells. Knockdown of HRS markedly reduced PD-L1 expression in HNSCC cell-derived sEVs, and these sEVs from HRS knockdown cells showed decreased immunosuppressive effects on CD8+ T cells. Knockout of HRS inhibited tumor growth in immunocompetent mice together with PD-1 blockade. Moreover, a higher HRS expression was associated with a lower response rate to anti-PD-1 therapy in patients with HNSCC. In summary, our study reveals HRS, the core component of ESCRT-0, regulates sEV PD-L1 secretion, and is associated with the response to ICB therapy in patients with HNSCC, suggesting HRS is a promising target to improve cancer immunotherapy.


Assuntos
Vesículas Extracelulares , Neoplasias de Cabeça e Pescoço , Animais , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Antígeno B7-H1 , Camundongos Knockout , Resultado do Tratamento , Vesículas Extracelulares/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte
6.
Exp Mol Med ; 54(9): 1379-1389, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36117219

RESUMO

Mounting evidence indicates that tumor-derived exosomes (TDEs) play critical roles in tumor development and progression by regulating components in the tumor microenvironment (TME) in an autocrine or paracrine manner. Moreover, due to their delivery of critical molecules that react to chemotherapy and immunotherapy, TDEs also contribute to tumor drug resistance and impede the effective response of antitumor immunotherapy, thereby leading to poor clinical outcomes. There is a pressing need for the inhibition or removal of TDEs to facilitate the treatment and prognosis of cancer patients. Here, in the present review, we systematically overviewed the current strategies for TDE inhibition and clearance, providing novel insights for future tumor interventions in translational medicine. Moreover, existing challenges and potential prospects for TDE-targeted cancer therapy are also discussed to bridge the gaps between progress and promising applications.


Assuntos
Exossomos , Neoplasias , Humanos , Exossomos/patologia , Imunoterapia , Neoplasias/patologia , Microambiente Tumoral
7.
J Ind Microbiol Biotechnol ; 36(1): 139-47, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18846398

RESUMO

Genome shuffling is a powerful strategy for rapid engineering of microbial strains for desirable industrial phenotypes. Here we improved the thermotolerance and ethanol tolerance of an industrial yeast strain SM-3 by genome shuffling while simultaneously enhancing the ethanol productivity. The starting population was generated by protoplast ultraviolet irradiation and then subjected for the recursive protoplast fusion. The positive colonies from the library, created by fusing the inactivated protoplasts were screened for growth at 35, 40, 45, 50 and 55 degrees C on YPD-agar plates containing different concentrations of ethanol. Characterization of all mutants and wild-type strain in the shake-flask indicated the compatibility of three phenotypes of thermotolerance, ethanol tolerance and ethanol yields enhancement. After three rounds of genome shuffling, the best performing strain, F34, which could grow on plate cultures up to 55 degrees C, was obtained. It was found capable of completely utilizing 20% (w/v) glucose at 45-48 degrees C, producing 9.95% (w/v) ethanol, and tolerating 25% (v/v) ethanol stress.


Assuntos
Embaralhamento de DNA , Resistência a Medicamentos , Etanol/metabolismo , Genoma Fúngico , Microbiologia Industrial , Saccharomyces cerevisiae/fisiologia , Temperatura Alta , Mutação , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA