Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 22(10): 1008-1017, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33604988

RESUMO

The ability to theoretically predict accurate NMR chemical shifts in solids is increasingly important due to the role such shifts play in selecting among proposed model structures. Herein, two theoretical methods are evaluated for their ability to assign 15 N shifts from guanosine dihydrate to one of the two independent molecules present in the lattice. The NMR data consist of 15 N shift tensors from 10 resonances. Analysis using periodic boundary or fragment methods consider a benchmark dataset to estimate errors and predict uncertainties of 5.6 and 6.2 ppm, respectively. Despite this high accuracy, only one of the five sites were confidently assigned to a specific molecule of the asymmetric unit. This limitation is not due to negligible differences in experimental data, as most sites exhibit differences of >6.0 ppm between pairs of resonances representing a given position. Instead, the theoretical methods are insufficiently accurate to make assignments at most positions.

2.
Magn Reson Chem ; 57(5): 211-223, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30230009

RESUMO

The representation of nuclear magnetic resonance (NMR) tensors as surfaces on three-dimensional molecular models is an information-rich presentation that highlights the geometric relationship between tensor principal components and the underlying molecular and electronic structure. Here, we describe a new computational tool, TensorView, for depicting NMR tensors on the molecular framework. This package makes use of the graphical interface and built-in molecular display functionality present within the Mathematica programming environment and is robust for displaying tensor properties from a broad range of commercial and user-specific computational chemistry packages. Two mathematical forms for representing tensor interaction surfaces are presented, the popular ellipsoidal construct and the more technically correct "ovaloid" form. Examples are provided for chemical shielding and shift tensors, dipole-dipole and quadrupolar couplings, and atomic anisotropic displacement parameters (thermal ellipsoids) derived from NMR crystallography.

3.
Phys Chem Chem Phys ; 20(13): 8475-8487, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29431770

RESUMO

The hydrogen-bonding environments at the COOH moiety in eight polycrystalline polymorphs of palmitic acid are explored using solid-state NMR. Although most phases have no previously reported crystal structure, measured 13C chemical shift tensors for COOH moieties, combined with DFT modeling establish that all phases crystallize with a cyclic dimer (R22(8)) hydrogen bonding arrangement. Phases A2, Bm and Em have localized OH hydrogens while phase C has a dynamically disordered OH hydrogen. The phase designated As is a mix of five forms, including 27.4% of Bm and four novel phases not fully characterized here due to insufficient sample mass. For phases A2, Bm, Em, and C the anisotropic uncertainties in the COOH hydrogen atom positions are established using a Monte Carlo sampling scheme. Sampled points are retained or rejected at the ±1σ level based upon agreement of DFT computed 13COOH tensors with experimental values. The collection of retained hydrogen positions bear a remarkable resemblance to the anisotropic displacement parameters (i.e. thermal ellipsoids) from diffraction studies. We posit that this similarity is no mere coincidence and that the two are fundamentally related. The volumes of NMR-derived anisotropic displacement ellipsoids for phases with localized OH hydrogens are 4.1 times smaller than those derived from single crystal X-ray diffraction and 1.8 times smaller than the volume of benchmark single crystal neutron diffraction values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA