Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
1.
Crit Rev Food Sci Nutr ; : 1-23, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622873

RESUMO

Chia seeds have gained significant attention due to their unique composition and potential health benefits, including high dietary fibers, omega-3 fatty acids, proteins, and phenolic compounds. These components contribute to their antioxidant, anti-inflammatory effects, as well as their ability to improve glucose metabolism and dyslipidemia. Germination is recognized as a promising strategy to enhance the nutritional value and bioavailability of chia seeds. Chia seed sprouts have been found to exhibit increased essential amino acid content, elevated levels of dietary fiber and total phenols, and enhanced antioxidant capability. However, there is limited information available concerning the dynamic changes of bioactive compounds during the germination process and the key factors influencing these alterations in biosynthetic pathways. Additionally, the influence of various processing conditions, such as temperature, light exposure, and duration, on the nutritional value of chia seed sprouts requires further investigation. This review aims to provide a comprehensive analysis of the nutritional profile of chia seeds and the dynamic changes that occur during germination. Furthermore, the potential for tailored germination practices to produce chia sprouts with personalized nutrition, targeting specific health needs, is also discussed.

2.
Crit Rev Food Sci Nutr ; : 1-23, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36919601

RESUMO

Seed mucilages are potential sources of natural polysaccharides. They are biodegradable, biocompatible, sustainable, renewable, and safe for human consumption. Due to the desirable physicochemical and functional properties (e.g. gelling, thickening, stabilizing, and emulsifying), seed mucilages have attracted extensive attention from researchers for utilization as a promising material for the development of advanced carrier systems. Seed mucilages have been utilized as natural polymers to improve the properties of various carrier systems (e.g. complex coacervates, beads, nanofibers, and gels) and for the delivery of diverse hydrophilic and lipophilic compounds (e.g. vitamins, essential oils, antioxidants, probiotics, and antimicrobial agents) to achieve enhanced stability, bioavailability, bioactivity of the encapsulated molecules, and improved quality attributes of food products. This review highlights the recent progress in seed mucilage-based carrier systems for food and nutraceutical applications. The main contents include (1) sources, extraction methods, and physicochemical and functional characteristics of seed mucilages, (2) application of seed mucilages for the development of advanced carrier systems, (3) major issues associated with carrier fabrication, and (4) mechanisms of carrier development, latest improvements in carrier formulation, carrier efficiency in the delivery of bioactive agents, and application in food and nutraceuticals. Furthermore, major challenges and future perspectives of seed mucilage-based carriers for a commercial application are discussed.

3.
Crit Rev Food Sci Nutr ; 63(24): 7091-7107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35199615

RESUMO

Prunus mume Sieb. Et Zucc (P. mume) is an acidic fruit native to China (named Chinese Mei or greengage plum). It is currently cultivated in several Asian countries, including Japan ("Ume"), Korea (Maesil), and Vietnam (Mai or Mo). Due to its myriad nutritional and functional properties, it is accepted in different countries, and its characteristics account for its commercialization. In this review, we summarize the information on the bioactive compounds from the fruit of P. mume and their structure-activity relationships (SAR); the pulp has the highest enrichment of bioactive chemicals. The nutritional properties of P. mume and the numerous uses of its by-products make it a potential functional food. P. mume extracts exhibit antioxidant, anticancer, antimicrobial, and anti-hyperuricaemic properties, cardiovascular protective effects, and hormone regulatory properties in various in vitro and in vivo assays. SAR shows that the water solubility, molecular weight, and chemical conformation of P. mume extracts are closely related to their biological activity. However, further studies are needed to evaluate the fruit's potential nutritional and functional therapeutic mechanisms. The industrial process of large-scale production of P. mume and its extracts as functional foods or nutraceuticals needs to be further optimized.


Assuntos
Prunus , Prunus/química , Frutas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/análise , Relação Estrutura-Atividade , Suplementos Nutricionais
4.
Crit Rev Food Sci Nutr ; 63(16): 2773-2789, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34554029

RESUMO

As a major ubiquitous secondary metabolite, flavonoids are widely distributed in planta. Among flavonoids, kaempferol is a typical natural flavonol in diets and medicinal plants with myriad bioactivities, such as anti-inflammatory activity, anti-cancer activity, antioxidant activity, and anti-diabetic activity. However, the natural sources, absorption and metabolism as well as the bioactivities of kaempferol have not been reviewed comprehensively and systematically. This review highlights the latest research progress and the effect of kaempferol in the prevention and treatment of various chronic diseases, as well as its protective health effects, and provides a theoretical basis for future research to be used in nutraceuticals. Further, comparison of the different extraction and analytical methods are presented to highlight the most optimum for PG recovery and its detection in plasma and body fluids. Such review aims at improving the value-added applications of this unique dietary bioactive flavonoids at commercial scale and to provide a reference for its needed further development.


Assuntos
Flavonoides , Quempferóis , Quempferóis/farmacologia , Quempferóis/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo , Polifenóis , Antioxidantes/farmacologia , Suplementos Nutricionais
5.
Crit Rev Food Sci Nutr ; 63(5): 657-673, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34278850

RESUMO

Tartary buckwheat belongs to the family Polygonaceae, which is a traditionally edible and medicinal plant. Due to its various bioactive compounds, the consumption of Tartary buckwheat is correlated to a wide range of health benefits, and increasing attention has been paid to its potential as a functional food. This review summarizes the main bioactive compounds and important bioactivities and health benefits of Tartary buckwheat, emphasizing its protective effects on metabolic diseases and relevant molecular mechanisms. Tartary buckwheat contains a wide range of bioactive compounds, such as flavonoids, phenolic acids, triterpenoids, phenylpropanoid glycosides, bioactive polysaccharides, and bioactive proteins and peptides, as well as D-chiro-inositol and its derivatives. Consumption of Tartary buckwheat and Tartary buckwheat-enriched products is linked to multiple health benefits, e.g., antioxidant, anti-inflammatory, antihyperlipidemic, anticancer, antidiabetic, antiobesity, antihypertensive, and hepatoprotective activities. Especially, clinical studies indicate that Tartary buckwheat exhibits remarkable antidiabetic activities. Various tartary buckwheat -based foods presenting major health benefits as fat and blood glucose-lowering agents have been commercialized. Additionally, to address the safety concerns, i.e., allergic reactions, heavy metal and mycotoxin contaminations, the quality control standards for Tartary buckwheat and its products should be drafted and completed in the future.


Assuntos
Fagopyrum , Plantas Medicinais , Fagopyrum/química , Flavonoides/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Glicosídeos
6.
Molecules ; 28(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36838778

RESUMO

Kinkéliba (Combretum micranthum, Seh-Haw in Wolof) is a popular bush tea in West African countries. Although the kinkéliba plant's leaves have been widely consumed for its nutritional and medicinal properties, its benefits on skin health potential have been practically untouched. In human epidermal primary keratinocytes, vitexin and isovitexin-rich kinkéliba extract treatment significantly (p < 0.001) enhanced up to 39.6% of the cell survival rate decreased by UV radiation irritation. The treatment of kinkéliba leaf extracts also reduced the production of UV-induced pro-inflammatory cytokines IL-6 and IL-8 by 57.6% and 42.5%, respectively (p < 0.001), which cause skin redness and skin barrier dysfunction, as well as wrinkles and collagen degradation. The anti-inflammation efficacy of kinkéliba leaf extracts might involve significant inhibition on the levels of cellular reactive oxygen species (ROS) (-70.8%, p < 0.001) and nitrotyrosine (-56.9%, p < 0.05). Further topical applications of kinkéliba leaf extract gel were found to reduce sodium lauryl sulfate (SLS)-induced skin inflammation: at D7, the skin trans-epidermal water loss (TEWL) and skin redness (a* value) were both reduced by 59.81% (p < 0.001) and 22.4% (p < 0.001), compared with D0. In vitro and in vivo data support a new topical application of the kinkéliba leaf as an effective active ingredient for the treatment of skin inflammation, as well as subsequent barrier dysfunction and inflammaging.


Assuntos
Combretum , Dermatite , Humanos , Extratos Vegetais/farmacologia , Pele , Queratinócitos
7.
Crit Rev Food Sci Nutr ; 62(13): 3421-3436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33393375

RESUMO

Neurodegenerative diseases are questions that modern therapeutics can still not answer. Great milestones have been achieved regarding liver, heart, skin, kidney and other types of organ transplantations but the greatest drawback is the adequate supply of these organs. Furthermore, there are still a few options available in the treatment of neurodegenerative diseases. With great advances in medical science, many health problems faced by humans have been solved, and their quality of life is improving. Moreover, diseases that were incurable in the past have now been fully cured. Still, the area of regenerative medicine, especially concerning neuronal regeneration, is in its infancy. Presently allopathic drugs, surgical procedures, organ transplantation, stem cell therapy forms the core of regenerative therapy. However, many times, the currently used therapies cannot completely cure damaged organs and neurodegenerative diseases. The current review focuses on the concepts of regeneration, hurdles faced in the path of regenerative therapy, neurodegenerative diseases and the idea of using peptides, cytokines, tissue engineering, genetic engineering, advanced stem cell therapy, and polyphenolic phytochemicals to cure damaged tissues and neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Polifenóis , Humanos , Doenças Neurodegenerativas/terapia , Polifenóis/farmacologia , Qualidade de Vida , Medicina Regenerativa/métodos , Transplante de Células-Tronco/métodos , Engenharia Tecidual
8.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897743

RESUMO

Bioactive peptides are physiologically active peptides produced from proteins by gastrointestinal digestion, fermentation, or hydrolysis by proteolytic enzymes. Bioactive peptides are resorbed in their whole form and have a preventive effect against various disease conditions, including hypertension, dyslipidemia, inflammation, and oxidative stress. In recent years, there has been a growing body of evidence showing that physiologically active peptides may have a function in sports nutrition. The present study aimed to evaluate the synergistic effect of dipeptide (IF) from alcalase potato protein hydrolysates and exercise training in hypertensive (SHR) rats. Animals were divided into five groups. Bioactive peptide IF and swimming exercise training normalized the blood pressure and decreased the heart weight. Cardiac, hepatic, and renal functional markers also normalized in SHR rats. The combined administration of IF peptide and exercise offer better protection in SHR rats by downregulating proteins associated with myocardial fibrosis, hypertrophy, and inflammation. Remarkably, peptide treatment alongside exercise activates the PI3K/AKT cell survival pathway in the myocardial tissue of SHR animals. Further, the mitochondrial biogenesis pathway (AMPKα1, SIRT1, and PGC1α) was synergistically activated by the combinatorial treatment of IF and exercise. Exercise training along with IF administration could be a possible approach to alleviating hypertension.


Assuntos
Hipertensão , Condicionamento Físico Animal , Animais , Pressão Sanguínea , Dipeptídeos/farmacologia , Fibrose , Hipertensão/metabolismo , Hipertrofia/metabolismo , Inflamação/patologia , Miocárdio/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Condicionamento Físico Animal/fisiologia , Ratos , Ratos Endogâmicos SHR , Sirtuína 1/metabolismo , Natação
9.
Molecules ; 27(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35956940

RESUMO

Mayonnaise is a semisolid oil-in-water emulsion comprised of egg yolk, oil, and vinegar. One main problem with mayonnaise is its high fat content, so efforts have been made to develop low-fat sauces with similar characteristics to real mayonnaise. The purpose of this study was to evaluate the effect of medium-chain triglycerides (MCTs) blended with edible oil (soybean and olive oil) on the rheological, physicochemical, and sensory properties of low-fat mayonnaise. The results revealed that the shear viscosity decreased with the increase in medium-chain fatty acid (MCFA) contents and decreased with an increasing shear rate. Tan δ was <1, and a semisolid fluid with shear-thinning behavior was formed. The oscillation frequency test showed that the MCFA-containing mayonnaise was viscoelastic. The particle size and oil droplet analyses revealed that the emulsion droplet size and distribution were not significantly different in the MCT group compared to the control. The sensory evaluation demonstrated that the MCFA-containing mayonnaise was acceptable. This study illustrates that MCTs are a good substitute to produce the proper physicochemical properties of mayonnaise.


Assuntos
Condimentos , Gema de Ovo , Gema de Ovo/química , Emulsões/química , Ácidos Graxos/análise , Alimentos , Triglicerídeos/análise
10.
Molecules ; 27(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431802

RESUMO

Hypertension is a chronic disease related to age, which affects tens of millions of people around the world. It is an important risk factor that causes myocardial infarction, heart failure, stroke, and kidney damage. Bioactive peptide VHVV (VH-4) from soybean has shown several biological activities. Physical exercise is a cornerstone of non-pharmacologic treatment for hypertension and has established itself as an effective and complementary strategy for managing hypertension. The present study evaluates the efficacy of VH-4 supplement and swimming exercise training in preventing hypertension in spontaneously hypertensive rats (SHR). SHR animals were treated with VH-4 (25 mg/kg by intraperitoneal administration) and swimming exercise (1 h daily) for eight weeks, and the hemodynamic parameters, histology, and cell survival pathway protein expression were examined. In SHR rats, increased heart weight, blood pressure, and histological aberrations were observed. Cell survival protein p-PI3K and p-AKT and antiapoptosis proteins Bcl2 and Bcl-XL expression decreased in SHR animals. SIRT1 and FOXO3 were decreased in hypertensive rats. Both bioactive peptide VH-4 treatment and swimming exercise training in hypertensive rats increased the cell survival proteins p-PI3K and p-AKT and AMPKα1, Sirt1, PGC1α, and FoX3α proteins. Soy peptide VH-4, along with exercise, acts synergistically and prevents hypertension by activating cell survival and AMPKα1, Sirt1, PGC1α, and FoX3α proteins.


Assuntos
Fabaceae , Hipertensão , Condicionamento Físico Animal , Ratos , Animais , Sirtuína 1/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Glycine max/metabolismo , Sobrevivência Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Endogâmicos SHR , Peptídeos/farmacologia , Peptídeos/metabolismo , Fabaceae/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
11.
Compr Rev Food Sci Food Saf ; 20(6): 5449-5488, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34668321

RESUMO

Many important food bioactive compounds are plant secondary metabolites that have traditional applications for health promotion and disease prevention. However, the chemical instability and poor bioavailability of these compounds represent major challenges to researchers. In the last decade, therefore, major impetus has been given for the research and development of advanced carrier systems for the delivery of natural bioactive molecules. Among them, stimuli-responsive carriers hold great promise for simultaneously improving stability, bioavailability, and more importantly delivery and on-demand release of intact bioactive phytochemicals to target sites in response to certain stimuli or combination of them (e.g., pH, temperature, oxidant, enzyme, and irradiation) that would eventually enhance therapeutic outcomes and reduce side effects. Hybrid formulations (e.g., inorganic-organic complexes) and multi-stimuli-responsive formulations have demonstrated great potential for future studies. Therefore, this review systematically compiles and assesses the recent advances on the smart delivery of food bioactive compounds, particularly quercetin, curcumin, and resveratrol through stimuli-responsive carriers, and critically reviews their functionality, underlying triggered-release mechanism, and therapeutic potential. Finally, major limitations, contemporary challenges, and possible solutions/future research directions are highlighted. Much more research is needed to optimize the processing parameters of existing formulations and to develop novel ones for lead food bioactive compounds to facilitate their food and nutraceutical applications.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Composição de Medicamentos , Concentração de Íons de Hidrogênio , Temperatura
12.
Molecules ; 24(21)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31689924

RESUMO

Big eye tuna (Thunnus obesus), Atlantic salmon (Salmo salar) and bighead carp (Aristichthys nobilis) are three representative marine and fresh water fishes. In this study, the content of total lipids (TL), triglyceride (TG) fraction, and the fatty acid profiles in the corresponding fish heads were analyzed. Meanwhile, their complicated TG molecular species were further characterized. The results showed that TG was the major lipid in these three fish heads (60.58-86.69%). Compared with other two fish heads, big eye tuna head was the most abundant in polyunsaturated fatty acids, among which eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) accounted for 64.29% and 32.77% in the TL and TG fraction, respectively. It is also worth noting that EPA+DHA/total fatty acid (TFA) value of TL and TG fraction from bighead carp head showed no significant difference with Atlantic salmon head, a typical marine fish. There were 146 TG molecules detected in big eye tuna head, 90 in Atlantic salmon and 87 in bighead carp heads. DHA or EPA accounted for 56.12%, 22.88%, and 5.46% of the total TG molecules in these three fish heads, respectively. According to principal component analysis, orthogonal projection to latent structures-discriminant analysis and the constructed heat map, the three samples could be completely differentiated based on their TG molecule fingerprints. This study is the first to compare marine and fresh water fish from the perspective of their heads' fatty acid and TG molecule profiles.


Assuntos
Carpas/metabolismo , Ácidos Graxos/metabolismo , Salmo salar/metabolismo , Triglicerídeos/metabolismo , Atum/metabolismo , Animais , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/metabolismo
13.
Molecules ; 24(24)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817288

RESUMO

In order to investigate the effects of salt on the nutrients and tastes profiles of big eye tuna head soup, the typical nutrients and taste substances were analyzed. The formation and the morphology of micro/nanoparticles (MNPs) were studied using an inverted optical microscope, and the interactions among components in MNPs were studied using a laser scanning confocal microscope. The results showed that the nutrients were dissolved to the maximum in the soup when salt was added at 150 min of cooking. Comparatively, much smaller MNPs with a more stable bilayer were formed at the same salt addition time. Meanwhile, Cl- was found to permeate throughout the core and Na+ bonded with glycosylated molecules, which were dispersed around much smaller MNPs. These results suggested that in addition to promoting the migration of nutrients and taste substances, NaCl also participated in the formation and stability of MNPs in fish head soups.


Assuntos
Alimentos , Nanopartículas/química , Fenômenos Fisiológicos da Nutrição , Cloreto de Sódio/farmacologia , Animais , Peixes , Paladar , Fatores de Tempo , Triglicerídeos/análise
14.
J Sci Food Agric ; 99(11): 5168-5175, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31056749

RESUMO

BACKGROUND: It is well known that plant essential oils have good antimicrobial activity. However, their strong volatility and intense odor limit their application. Mesoporous silica (MCM-41), a non-toxic mesoporous material with excellent loading capability, is a promising delivery system for different types of food ingredients in the food industry. RESULTS: In this study, we first performed component analysis of pepper fragrant essential oil (PFEO) by gas chromatography - mass spectrometry (GC-MS), then the MCM-41 host was prepared, and the essential oil functionalized nanoparticles (EONs) were formed by embedding PFEO into mesoporous silica particles. Further analysis indicated that the particle size and zeta potential of EONs were 717 ± 13.38 nm and - 43.90 ± 0.67 mV, respectively. Transmission electron microscopy (TEM) images showed that EONs had an inerratic morphology and stable structure. The bactericidal activities of PFEO and EONs against Escherichia coli (E. coli), Salmonella enterica (S. enterica), Staphylococcus aureus (S. aureus) and Listeria monocytogenes (L. monocytogenes) were subsequently tested using the twofold dilution method. Results indicated that, after 48 h incubation, minimum bactericidal concentrations (MBC) of EONs used against gram-negative bacteria were decreased to a greater degree than those of PFEO, suggesting that nanoencapsulation by MCM-41 can improve antimicrobial activity. Atomic force microscopy (AFM) observation also confirmed that EONs showed a notable inhibitory effect against E. coli by disrupting cell membrane structure. CONCLUSION: Pepper fragrant essential oil nanoencapsulation could be a very promising organic delivery system in food industry for antimicrobial activity enhancement. © 2019 Society of Chemical Industry.


Assuntos
Antibacterianos/farmacologia , Nanopartículas/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Antibacterianos/química , Portadores de Fármacos/química , Composição de Medicamentos , Escherichia coli/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Listeria monocytogenes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Odorantes/análise , Dióxido de Silício/química , Staphylococcus aureus/efeitos dos fármacos
15.
Cell Physiol Biochem ; 48(5): 1942-1952, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30092591

RESUMO

BACKGROUND/AIMS: High-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) poses therapeutic challenges in elderly subjects. Due to lack of efficient drug therapy, plant-based bioactive peptides have been studied as alternative strategy in NAFLD and for less toxicity in elderly. To mimic fatty liver in aging conditions, researchers highly commended the genetically engineered strains SAMP8 (senescence-accelerated mice prone 8). However, there is a paucity of reports about the anti-steatosis effects of bioactive peptides against fatty liver development under a combined action of high-fat diet exposure and aging process. This study was conducted to evaluate the activity of DIKTNKPVIF peptide synthesized from alcalase-generated potato protein hydrolysate (PH), on reducing HFD-driven and steatosis-associated proinflammatory reaction in ageing model. METHODS: Five groups of six-month-old SAMP8 mice (n=4, each) were fed either a normal chow (NC group) for 14 weeks upon sacrifice, or induced with a 6-week HFD feeding, then treated without (HCO group) or with an 8-week simultaneous administration of peptide (HPEP group), protein (HPH group) or probucol (HRX group). Liver organs were harvested from each group for histological analysis and immunoblot assay. RESULTS: In contrast to NC, extensive fat accumulation was visualized in the liver slides of HCO. Following the trends of orally administered PH, intraperitoneally injected peptide reduces hepatic fat deposition and causes at protein level, a significant decrease in HFD-induced proinflammatory mediators p-p38 MAPK, FGF-2, TNF-α, IL-6 with concomitant reactivation of AMPK. However, p-Foxo1 and PPAR-α levels were slightly changed. CONCLUSION: Oral supplementation of PH and intraperitoneal injection of derived bioactive peptide alleviate proinflammatory reaction associated with hepatosteatosis development in elderly subjects, through activation of AMPK.


Assuntos
Envelhecimento , Dieta Hiperlipídica , Fígado/efeitos dos fármacos , Peptídeos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Sequência de Aminoácidos , Animais , Proteína Forkhead Box O1/metabolismo , Gotículas Lipídicas/metabolismo , Fígado/metabolismo , Fígado/patologia , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/veterinária , PPAR alfa/metabolismo , Peptídeos/síntese química , Peptídeos/química , Probucol/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Plant Biotechnol J ; 16(3): 784-796, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28881416

RESUMO

3-Hydroxy-3-methylglutaryl-coenzyme A synthase (HMGS) in the mevalonate (MVA) pathway generates isoprenoids including phytosterols. Dietary phytosterols are important because they can lower blood cholesterol levels. Previously, the overexpression of Brassica juncea wild-type (wt) and mutant (S359A) BjHMGS1 in Arabidopsis up-regulated several genes in sterol biosynthesis and increased sterol content. Recombinant S359A had earlier displayed a 10-fold higher in vitro enzyme activity. Furthermore, tobacco HMGS overexpressors (OEs) exhibited improved sterol content, plant growth and seed yield. Increased growth and seed yield in tobacco OE-S359A over OE-wtBjHMGS1 coincided with elevations in NtSQS expression and sterol content. Herein, the overexpression of wt and mutant (S359A) BjHMGS1 in a crop plant, tomato (Solanum lycopersicum), caused an accumulation of MVA-derived squalene and phytosterols, as well as methylerythritol phosphate (MEP)-derived α-tocopherol (vitamin E) and carotenoids, which are important to human health as antioxidants. In tomato HMGS-OE seedlings, genes associated with the biosyntheses of C10, C15 and C20 universal precursors of isoprenoids, phytosterols, brassinosteroids, dolichols, methylerythritol phosphate, carotenoid and vitamin E were up-regulated. In OE-S359A tomato fruits, increased squalene and phytosterol contents over OE-wtBjHMGS1 were attributed to heightened SlHMGR2, SlFPS1, SlSQS and SlCYP710A11 expression. In both tomato OE-wtBjHMGS1 and OE-S359A fruits, the up-regulation of SlGPS and SlGGPPS1 in the MEP pathway that led to α-tocopherol and carotenoid accumulation indicated cross-talk between the MVA and MEP pathways. Taken together, the manipulation of BjHMGS1 represents a promising strategy to simultaneously elevate health-promoting squalene, phytosterols, α-tocopherol and carotenoids in tomato, an edible fruit.


Assuntos
Carotenoides/metabolismo , Frutas/metabolismo , Hidroximetilglutaril-CoA Sintase/metabolismo , Mostardeira/enzimologia , Mostardeira/metabolismo , Fitosteróis/metabolismo , Solanum lycopersicum/enzimologia , Solanum lycopersicum/metabolismo , Esqualeno/metabolismo , alfa-Tocoferol/metabolismo , Frutas/enzimologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Hidroximetilglutaril-CoA Sintase/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Molecules ; 23(5)2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29751609

RESUMO

Pterostilbene (Pte) and 4'-Methoxyresveratrol (4MR) are methylated derivatives of resveratrol. We investigated the anti-inflammatory effect of Pte and 4MR in lipopolysaccharide (LPS)-stimulated RAW264.7 murine macrophages. Both Pte and 4MR significantly reduced LPS-induced nitric oxide release by inhibiting the inducible nitric oxide synthase mRNA expression. Moreover, both of them inhibited LPS-induced mRNA expression of inflammatory cytokines including monocyte chemoattractant protein (MCP)-1, interleukin (IL)-6 and IL-1ß, and tumor necrosis factor α (TNF-α), and attenuated LPS-induced nuclear factor-κB (NF-κB) activation by decreasing p65 phosphorylation. In addition, 4MR but not Pte inhibited LPS-induced the activator protein (AP)-1 pathway in RAW 264.7 macrophages. Further study suggested that Pte had an inhibitory effect on extracellular regulated protein kinases (ERK) and p38 activation, but not on c-Jun N-terminal kinase (JNK), while 4MR had an inhibitory effect on JNK and p38 activation, but not on ERK. Taken together, our data suggested that Pte induced anti-inflammatory activity by blocking mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways, while 4MR showed anti-inflammatory activity through suppression of MAPK, AP-1, and NF-κB signaling pathways in LPS-treated RAW 264.7 macrophages.


Assuntos
Anti-Inflamatórios/farmacologia , Macrófagos/efeitos dos fármacos , Estilbenos/farmacologia , Animais , Anti-Inflamatórios/química , Sobrevivência Celular/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Estilbenos/química , Fator de Transcrição AP-1/metabolismo
18.
Molecules ; 23(6)2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29903983

RESUMO

Advanced glycation end products (AGEs) could interact with the receptor for AGE (RAGE) as a sterile danger signal to induce inflammation. 4'-methoxyresveratrol (4'MR), a polyphenol derived from Dipterocarpaceae, has not been studied for its anti-inflammation effects. In the present study, we sought to explore the protective role of 4'MR in AGEs-induced inflammatory model using RAW264.7 macrophages. 4'MR significantly inhibited gene expression of pro-inflammatory cytokines and chemokines, such as interleukin 1ß (IL-1ß), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α) and monocyte chemoattractant protein-1 (MCP-1), as well as two typical pro-inflammatory enzymes, inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). Besides, 4'MR significantly decreased oxidative stress, demonstrated by levels of ROS production, protein carbonyl and advanced oxidation protein product via down-regulation of NADPH oxidase. Further analysis showed that 4'MR attenuated the RAGE overexpression induced by MGO-BSA. It also blocked the downstream signal of AGE-RAGE, particularly, MAPKs including p38 and JNK, and subsequently reduced NF-κB activation. Additionally, 4'MR significantly abated the activation of NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome including NLRP3 and cleaved caspase-1 and reduced the secretion of mature IL-1ß. Taken together, our results suggest that the anti-inflammatory effect of 4'MR is mainly through suppressing RAGE-mediated MAPK/NF-κB signaling pathway and NLRP3 inflammasome activation. 4'MR could be a novel therapeutic agent for inflammation-related diseases.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Produtos Finais de Glicação Avançada/efeitos adversos , Polifenóis/farmacologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estilbenos/química , Animais , Anti-Inflamatórios não Esteroides/química , Citocinas/metabolismo , Dipterocarpaceae/química , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química , Células RAW 264.7 , Resveratrol
19.
Molecules ; 23(9)2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30200189

RESUMO

Recently, there is a growing interest in fortifying food products with flavonoids to enhance health benefits. Naringenin, naringin, hesperetin, and dihydromyricetin are four typical flavonoids constituting a natural part of our diet. In the present work, they were fortified into a chia oil cookie model to evaluate their thermal stability during baking as well as their impact on antioxidant capacity and toxicant formation. Among them dihydromyricetin was the most unstable one (only 36.1% of which was left after baking at 180 °C for 20 min) and led to a loss of brightness in cookie. However, the antioxidant capacity of cookie fortified with dihydromyricetin was significantly enhanced compared with untreated cookie; on the other hand, dihydromyricetin showed the strongest effect to attenuate lipid and protein oxidation as well as decrease the level of fluorescent advanced glycation endproducts and carboxymethyl lysine in cookie model. Overall, among the four selected flavonoids, dihydromyricetin might be the most promising functional bakery additive enhancing the antioxidant capacity while decreasing the formation of toxicants.


Assuntos
Antioxidantes/farmacologia , Culinária , Flavonóis/farmacologia , Análise de Alimentos , Alimentos , Antioxidantes/química , Sinergismo Farmacológico , Flavonoides/análise , Flavonóis/química , Humanos , Oxirredução/efeitos dos fármacos
20.
Molecules ; 24(1)2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30586844

RESUMO

The present study examined the effect of Lactobacillus plantarum ATCC14917 fermentation on the chemical composition and antioxidant activity of apple juice. Apple juice was fermented and examined of its antioxidant activity using chemical models and cellular antioxidant assay. Furthermore, the chemical composition of fermented apple juice was characterized by LC-MS/MS. Lactobacillus plantarum ATCC14917 fermentation showed an increase in DPPH and ABTS radical scavenging activity as well as cellular antioxidant activity of apple juice. However, fermentation decreased the total phenolic and flavonoid content. Subsequent LC-MS/MS analysis of the phenolic profile indicated that the content of 5-O-caffeoylquinic acid (5-CQA), quercetin, and phloretin with strong antioxidant activity was increased significantly after fermentation. The modified phenolic composition may contribute to the increased antioxidant activity of fermented apple juice. Our findings showed that Lactobacillus plantarum ATCC14917 fermentation may be an efficient way to enhance the bioavailability of phenolic compounds and to protect cells from oxidative stress.


Assuntos
Antioxidantes/farmacologia , Fermentação , Sucos de Frutas e Vegetais , Lactobacillus plantarum/metabolismo , Malus/química , Animais , Benzotiazóis/farmacologia , Compostos de Bifenilo/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Flavonoides/análise , Sequestradores de Radicais Livres/farmacologia , Frutose/análise , Glucose/análise , Concentração de Íons de Hidrogênio , Camundongos , Fenóis/análise , Picratos/farmacologia , Células RAW 264.7 , Ácidos Sulfônicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA