Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
1.
Nature ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806060

RESUMO

Asymmetric catalysis allows the synthesis of optically active compounds, often requiring the differentiation between two substituents on prochiral substrates1. Despite decades of development of mainly noble metal catalysts, achieving differentiation between substituents with similar steric and electronic properties remains a significant challenge2,3. Here, we introduce a class of earth-abundant manganese catalysts for the asymmetric hydrogenation of dialkyl ketimines to give a range of chiral amine products. These catalysts distinguish between pairs of minimally differentiated alkyl groups bound to the ketimine, such as methyl and ethyl, and even subtler distinctions, like ethyl and n-propyl. The degree of enantioselectivity can be adjusted by modifying the components of the chiral manganese catalyst. This reaction demonstrates a wide substrate scope and achieves a turnover number (TON) of up to 107,800. Our mechanistic studies indicate that the exceptional stereoselectivity arises from the modular assembly of confined chiral catalysts and cooperative non-covalent interactions between the catalyst and the substrate.

2.
Gastroenterology ; 166(1): 139-154, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37739089

RESUMO

BACKGROUND & AIMS: The dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) is linked to the presence of pancreatic cancer stem-like cells (CSCs) that respond poorly to current chemotherapy regimens. The epigenetic mechanisms regulating CSCs are currently insufficiently understood, which hampers the development of novel strategies for eliminating CSCs. METHODS: By small molecule compound screening targeting 142 epigenetic enzymes, we identified that bromodomain-containing protein BRD9, a component of the BAF histone remodeling complex, is a key chromatin regulator to orchestrate the stemness of pancreatic CSCs via cooperating with the TGFß/Activin-SMAD2/3 signaling pathway. RESULTS: Inhibition and genetic ablation of BRD9 block the self-renewal, cell cycle entry into G0 phase and invasiveness of CSCs, and improve the sensitivity of CSCs to gemcitabine treatment. In addition, pharmacological inhibition of BRD9 significantly reduced the tumorigenesis in patient-derived xenografts mouse models and eliminated CSCs in tumors from pancreatic cancer patients. Mechanistically, inhibition of BRD9 disrupts enhancer-promoter looping and transcription of stemness genes in CSCs. CONCLUSIONS: Collectively, the data suggest BRD9 as a novel therapeutic target for PDAC treatment via modulation of CSC stemness.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Proteínas que Contêm Bromodomínio , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/patologia , Gencitabina , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteína Smad2/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
J Virol ; 98(6): e0053124, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38709106

RESUMO

Human coronavirus (hCoV) OC43 is endemic to global populations and usually causes asymptomatic or mild upper respiratory tract illness. Here, we demonstrate the neutralization efficacy of isolated nanobodies from alpacas immunized with the S1B and S1C domain of the hCoV-OC43 spike glycoprotein. A total of 40 nanobodies bound to recombinant OC43 protein with affinities ranging from 1 to 149 nM. Two nanobodies WNb 293 and WNb 294 neutralized virus at 0.21 and 1.79 nM, respectively. Intranasal and intraperitoneal delivery of WNb 293 fused to an Fc domain significantly reduced nasal viral load in a mouse model of hCoV-OC43 infection. Using X-ray crystallography, we observed that WNb 293 bound to an epitope on the OC43 S1B domain, distal from the sialoglycan-binding site involved in host cell entry. This result suggests that neutralization mechanism of this nanobody does not involve disruption of glycan binding. Our work provides characterization of nanobodies against hCoV-OC43 that blocks virus entry and reduces viral loads in vivo and may contribute to future nanobody-based therapies for hCoV-OC43 infections. IMPORTANCE: The pandemic potential presented by coronaviruses has been demonstrated by the ongoing COVID-19 pandemic and previous epidemics caused by severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus. Outside of these major pathogenic coronaviruses, there are four endemic coronaviruses that infect humans: hCoV-OC43, hCoV-229E, hCoV-HKU1, and hCoV-NL63. We identified a collection of nanobodies against human coronavirus OC43 (hCoV-OC43) and found that two high-affinity nanobodies potently neutralized hCoV-OC43 at low nanomolar concentrations. Prophylactic administration of one neutralizing nanobody reduced viral loads in mice infected with hCoV-OC43, showing the potential for nanobody-based therapies for hCoV-OC43 infections.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Camelídeos Americanos , Infecções por Coronavirus , Coronavirus Humano OC43 , Anticorpos de Domínio Único , Glicoproteína da Espícula de Coronavírus , Carga Viral , Animais , Anticorpos de Domínio Único/imunologia , Camundongos , Anticorpos Neutralizantes/imunologia , Coronavirus Humano OC43/imunologia , Humanos , Anticorpos Antivirais/imunologia , Camelídeos Americanos/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Feminino , Epitopos/imunologia , Cristalografia por Raios X , Internalização do Vírus/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
4.
Nano Lett ; 24(1): 165-171, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38010996

RESUMO

The inherent zero-band gap nature of graphene and its fast photocarrier recombination rate result in poor optical gain and responsivity when graphene is used as the light absorption medium in photodetectors. Here, semiconducting graphene nanoribbons with a direct bandgap of 1.8 eV are synthesized and employed to construct a vertical heterojunction photodetector. At a bias voltage of -5 V, the photodetector exhibits a responsivity of 1052 A/W, outperforming previous graphene-based heterojunction photodetectors by several orders of magnitude. The achieved detectivity of 3.13 × 1013 Jones and response time of 310 µs are also among the best values for graphene-based heterojunction photodetectors reported until date. Furthermore, even under zero bias, the photodetector demonstrates a high responsivity and detectivity of 1.04 A/W and 2.45 × 1012 Jones, respectively. The work shows a great potential of graphene nanoribbon-based photodetection technology.

5.
J Cell Mol Med ; 28(8): e18257, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526033

RESUMO

This study aims to investigate the mechanism of the anti-atherosclerosis effect of Huayu Qutan Recipe (HYQT) on the inhibition of foam cell formation. In vivo, the mice were randomly divided into three groups: CTRL group, MOD group and HYQT group. The HYQT group received HYQT oral administration twice a day (20.54 g/kg/d), and the plaque formation in ApoE-/- mice was observed using haematoxylin-eosin (HE) staining and oil red O (ORO) staining. The co-localization of aortic macrophages and lipid droplets (LDs) was examined using fluorescent labelling of CD11b and BODIPY fluorescence probe. In vitro, RAW 264.7 cells were exposed to 50 µg/mL ox-LDL for 48 h and then treated with HYQT for 24 h. The accumulation of LDs was evaluated using ORO and BODIPY. Cell viability was assessed using the CCK-8 assay. The co-localization of LC3b and BODIPY was detected via immunofluorescence and fluorescence probe. LysoTracker Red and BODIPY 493/503 were used as markers for lysosomes and LDs, respectively. Autophagosome formation were observed via transmission electron microscopy. The levels of LC3A/B II/LC3A/B I, p-mTOR/mTOR, p-4EBP1/4EBP1, p-P70S6K/P70S6K and TFEB protein level were examined via western blotting, while SQSTM1/p62, Beclin1, ABCA1, ABCG1 and SCARB1 were examined via qRT-PCR and western blotting. The nuclear translocation of TFEB was detected using immunofluorescence. The components of HYQT medicated serum were determined using Q-Orbitrap high-resolution MS analysis. Molecular docking was employed to identify the components of HYQT medicated serum responsible for the mTOR signalling pathway. The mechanism of taurine was illustrated. HYQT has a remarkable effect on atherosclerotic plaque formation and blood lipid level in ApoE-/- mice. HYQT decreased the co-localization of CD11b and BODIPY. HYQT (10% medicated serum) reduced the LDs accumulation in RAW 264.7 cells. HYQT and RAPA (rapamycin, a mTOR inhibitor) could promote cholesterol efflux, while chloroquine (CQ, an autophagy inhibitor) weakened the effect of HYQT. Moreover, MHY1485 (a mTOR agonist) also mitigated the effects of HYQT by reduced cholesterol efflux. qRT-PCR and WB results suggested that HYQT improved the expression of the proteins ABCA1, ABCG1 and SCARB1.HYQT regulates ABCA1 and SCARB1 protein depending on the mTORC1/TFEB signalling pathway. However, the activation of ABCG1 does not depend on this pathway. Q-Orbitrap high-resolution MS analysis results demonstrated that seven core compounds have good binding ability to the mTOR protein. Taurine may play an important role in the mechanism regulation. HYQT may reduce cardiovascular risk by promoting cholesterol efflux and degrading macrophage-derived foam cell formation. It has been observed that HYQT and ox-LDL regulate lipophagy through the mTOR/TFEB signalling pathway, rather than the mTOR/4EBP1/P70S6K pathway. Additionally, HYQT is found to regulate cholesterol efflux through the mTORC1/TFEB/ABCA1-SCARB1 signal axis, while taurine plays a significant role in lipophagy.


Assuntos
Aterosclerose , Compostos de Boro , Proteínas Quinases S6 Ribossômicas 70-kDa , Animais , Camundongos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Colesterol/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Simulação de Acoplamento Molecular , Células Espumosas/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Taurina/metabolismo
6.
Breast Cancer Res ; 26(1): 100, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867307

RESUMO

BACKGROUND: Immunohistochemistry (IHC) and in situ hybridization (ISH) remain standard biomarkers for therapeutic decisions in human epidermal growth factor 2 (HER2)-positive breast cancers (BCs); however, they are insufficient to explain the heterogeneous anti-HER2 response. METHODS: We aimed to investigate the correlation of in situ HER2 RNA expression (isHRE), using RNAscope, with HER2 biomarkers and the impact of isHRE on the pathological complete response (pCR) rates of 278 patients with HER2 IHC/fluorescence ISH (FISH)-positive BC receiving neoadjuvant chemotherapy and anti-HER2 targeted treatment (NCTT). RESULTS: We validated HER2 RNAscope scoring as a semiquantitative method to determine isHRE and showed a positive correlation between RNAscope scores and pCR rates, with particularly different rates between patients with a score of 5 versus 1-4 BCs (66.7% vs. 15.9%, p < 0.0001). There were higher RNAscope scores and pCR rates in patients with HER2 IHC 3 + versus IHC 2+/FISH + BCs and HER2 RNAscope scores and pCR rates showed similar non-linear positive correlations with HER2 copy numbers and HER2/centromere 17 ratios. Moreover, in each HER2-positive IHC/FISH category, higher pCR rates were observed in patients with RNAscope scores of 5 versus 1-4 BC. Patients achieving pCR had BCs with notably higher HER2 RNAscope scores. Multivariate analysis identified HER2 RNAscope 5 as a strong pCR predictor [odds ratio = 10.865, p < 0.001]. The combined impact of multivariate analysis-defined pCR predictors demonstrated that a higher pCR rate was observed in patients with a score of 5 versus a score of 1-4 BCs regardless of the status of hormone receptor and mono-or dual anti-HER2 blockade. CONCUSIONS: Our results demonstrated that high isHRE (RNAscope score 5) is a strong pCR predictor in patients with HER2-positive BCs receiving NCTT, highlighting the complementary role of isHRE in stratifying HER2 status in tissue. Such stratification is relevant to anti-HER2 therapeutic efficacy, particularly using the cutoff of score 1-4 versus 5.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Hibridização in Situ Fluorescente , Terapia Neoadjuvante , Receptor ErbB-2 , Humanos , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Terapia Neoadjuvante/métodos , Pessoa de Meia-Idade , Adulto , Biomarcadores Tumorais/metabolismo , Idoso , Resultado do Tratamento , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Terapia de Alvo Molecular , Imuno-Histoquímica , Prognóstico , Trastuzumab/uso terapêutico , Resposta Patológica Completa
7.
Anal Chem ; 96(24): 10064-10073, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38842443

RESUMO

The global spread of monkeypox has become a worldwide public healthcare issue. Therefore, there is an urgent need for accurate and sensitive detection methods to effectively control its spreading. Herein, we screened by phage display two peptides M4 (sequence: DPCGERICSIAL) and M6 (sequence: SCSSFLCSLKVG) with good affinity and specificity to monkeypox virus (MPXV) B21R protein. To simulate the state of the peptide in the phage and to avoid spatial obstacles of the peptide, GGGSK was added at the C terminus of M4 and named as M4a. Molecular docking shows that peptide M4a and peptide M6 are bound to different epitopes of B21R by hydrogen bonds and salt-bridge interactions, respectively. Then, peptide M4a was selected as the capture probe, phage M6 as the detection probe, and carbonized polymer dots (CPDs) as the fluorescent probe, and a colorimetric and fluorescent double-signal capture peptide/antigen/signal peptide-displayed phage sandwich ELISA triggered by horseradish peroxidase (HRP) through a simple internal filtration effect (IFE) was constructed. HRP catalyzes H2O2 to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to generate blue oxidized TMB, which can further quench the fluorescence of CPDs through IFE, enabling to detect MPXV B21R in colorimetric and fluorescent modes. The proposed simple immunoassay platform shows good sensitivity and reliability in MPXV B21R detection. The limit of detection for colorimetric and fluorescent modes was 27.8 and 9.14 pg/mL MPXV B21R, respectively. Thus, the established double-peptide sandwich-based dual-signal immunoassay provides guidance for the development of reliable and sensitive antigen detection capable of mutual confirmation, which also has great potential for exploring various analytical strategies for other respiratory virus surveillance.


Assuntos
Ensaio de Imunoadsorção Enzimática , Peptídeos , Ensaio de Imunoadsorção Enzimática/métodos , Peptídeos/química , Antígenos Virais/imunologia , Antígenos Virais/análise , Antígenos Virais/química , Simulação de Acoplamento Molecular , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Limite de Detecção , Corantes Fluorescentes/química , Biblioteca de Peptídeos , Benzidinas/química , Colorimetria/métodos
8.
Artigo em Inglês | MEDLINE | ID: mdl-38969945

RESUMO

PURPOSE: In East Asia, the incidence of breast cancer has been increasing rapidly, particularly among premenopausal women. An elevated ratio of estrogen-DNA adducts was linked to a higher risk of breast cancer. The present study explored the influence of the interaction between base excision repair (BER) gene polymorphisms and estrogen-DNA adducts on breast cancer risk. METHODS: We conducted a case-control study comprising healthy volunteers and individuals with benign breast disease (control arm, n = 176) and patients with invasive carcinoma or carcinoma in situ (case arm, n = 177). Genotyping for BER-related genes, including SMUG1, OGG1, ERCC5, and APEX1, was performed. A logistic regression model, incorporating interactions between gene polymorphisms, estrogen-DNA adduct ratio, and clinical variables, was used to identify the risk factors for breast cancer. RESULTS: Univariate analysis indicated marginal associations between breast cancer risk and APEX1 rs1130409 T > G (P = 0.057) and APEX1 rs1760944 T > G (P = 0.065). Multivariate regression analysis revealed significant associations with increased breast cancer risk for APEX1_rs1130409 (GT/GG versus TT) combined with a natural logarithmic value of the estrogen-DNA adduct ratio (estimated OR 1.164, P = 0.023) and premenopausal status with an estrogen-DNA adduct ratio > 2.93 (estimated OR 2.433, P = 0.001). CONCLUSION: APEX1_rs1130409 (GT/GG versus TT) polymorphisms, which are related to decreased BER activity, combined with an increased ratio of estrogen-DNA adducts, increase the risk of breast cancer in East Asian women.

9.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34929743

RESUMO

Recently, deep learning (DL)-based de novo drug design represents a new trend in pharmaceutical research, and numerous DL-based methods have been developed for the generation of novel compounds with desired properties. However, a comprehensive understanding of the advantages and disadvantages of these methods is still lacking. In this study, the performances of different generative models were evaluated by analyzing the properties of the generated molecules in different scenarios, such as goal-directed (rediscovery, optimization and scaffold hopping of active compounds) and target-specific (generation of novel compounds for a given target) tasks. In overall, the DL-based models have significant advantages over the baseline models built by the traditional methods in learning the physicochemical property distributions of the training sets and may be more suitable for target-specific tasks. However, both the baselines and DL-based generative models cannot fully exploit the scaffolds of the training sets, and the molecules generated by the DL-based methods even have lower scaffold diversity than those generated by the traditional models. Moreover, our assessment illustrates that the DL-based methods do not exhibit obvious advantages over the genetic algorithm-based baselines in goal-directed tasks. We believe that our study provides valuable guidance for the effective use of generative models in de novo drug design.


Assuntos
Desenho de Fármacos , Descoberta de Drogas/métodos , Algoritmos , Aprendizado Profundo
10.
Opt Express ; 32(6): 8537-8554, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571111

RESUMO

A theoretical channel impulse response (CIR) model of short-range non-line-of-sight (NLOS) ultraviolet communications (UVC) in noncoplanar geometry under the single-scatter condition is proposed. Simulation results obtained from the widely accepted Monte-Carlo (MC)-based channel model of NLOS UVC are provided to verify corresponding theoretical results obtained from the proposed theoretical single-scatter CIR model. Additionally, an outdoor experiment with a light-emitting diode (LED) as the light source is first designed to measure the channel step response of NLOS UVC and to further validate the proposed theoretical single-scatter CIR model. By varying the different parameters of the transmitter and the receiver, such as the baseline range, the inclination angle, the azimuth angle, the beam divergence angle, and the field-of-view angle, the results of the proposed theoretical single-scatter CIR model and the MC-based channel model are exhibited and further analyzed in detail. Results indicate that the computational time cost by the proposed theoretical single-scatter CIR model is decreased to less than 0.6% of the MC-based one with comparable accuracy in assessing the temporal characteristics of NLOS UVC channels. Additionally, theoretical results obtained from the proposed theoretical single-scatter CIR model manifest satisfactory agreement with corresponding experimental measurements.

11.
BMC Cancer ; 24(1): 121, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267903

RESUMO

BACKGROUND: Programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) are the two most common immune checkpoints targeted in triple-negative breast cancer (BC). Refining patient selection for immunotherapy is non-trivial and finding an appropriate digital pathology framework for spatial analysis of theranostic biomarkers for PD-1/PD-L1 inhibitors remains an unmet clinical need. METHODS: We describe a novel computer-assisted tool for three-dimensional (3D) imaging of PD-L1 expression in immunofluorescence-stained and optically cleared BC specimens (n = 20). The proposed 3D framework appeared to be feasible and showed a high overall agreement with traditional, clinical-grade two-dimensional (2D) staining techniques. Additionally, the results obtained for automated immune cell detection and analysis of PD-L1 expression were satisfactory. RESULTS: The spatial distribution of PD-L1 expression was heterogeneous across various BC tissue layers in the 3D space. Notably, there were six cases (30%) wherein PD-L1 expression levels along different layers crossed the 1% threshold for admitting patients to PD-1/PD-L1 inhibitors. The average PD-L1 expression in 3D space was different from that of traditional immunohistochemistry (IHC) in eight cases (40%). Pending further standardization and optimization, we expect that our technology will become a valuable addition for assessing PD-L1 expression in patients with BC. CONCLUSION: Via a single round of immunofluorescence imaging, our approach may provide a considerable improvement in patient stratification for cancer immunotherapy as compared with standard techniques.


Assuntos
Antígeno B7-H1 , Neoplasias da Mama , Humanos , Feminino , Imageamento Tridimensional , Inibidores de Checkpoint Imunológico , Ligantes , Receptor de Morte Celular Programada 1 , Corantes , Computadores
12.
Hematol Oncol ; 42(1): e3232, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37793012

RESUMO

Recurrence following allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the major cause of treatment failure in patients with myeloid malignancy. Azacytidine (AZA) maintenance is a promising therapy to prevent relapse and improve survival. We conducted a prospective, one-arm study involving 78 patients with myeloid malignancy at a high risk of recurrence who were enrolled between September 2019 and April 2022. Furthermore, 102 matched historical controls were selected using propensity score matching. With a median follow-up time of 19.6 (3.5-91.7) months, AZA maintenance therapy significantly improved relapse-free survival (RFS; log-rank test, p = 0.01). The AZA and control groups had a 1-year RFS of 87.7% (95% confidence interval [CI], 0.80-0.96) and 72.2% (95% CI, 0.64-0.82), respectively, with a hazard ratio (HR) of 0.21 (95% CI, 0.09-0. 47; p < 0.01). There were no grade 4 adverse effects or deaths related to AZA. Refractory patients with favorable/intermediate-risk acute myeloid leukemia (AML) benefited more from AZA maintenance therapy than those with adverse-risk AML according to the European Leukemia Net guidelines (RFS in favorable/intermediate-risk AML, HR = 0.29, 95% CI, 0.11-0.79; RFS in adverse-risk AML, HR = 0.57, 95% CI, 0.21-1.6; p for interaction = 0.03). Our findings suggest that AZA maintenance therapy following allo-HSCT was safe and could reduce the incidence of relapse, particularly for refractory patients with favorable/intermediate-risk AML.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Azacitidina/uso terapêutico , Estudos Prospectivos , Transplante Homólogo , Leucemia Mieloide Aguda/tratamento farmacológico , Doença Crônica , Recidiva , Estudos Retrospectivos
13.
Hematol Oncol ; 42(1): e3230, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37752767

RESUMO

Autologous hematopoietic stem cell transplantation (auto-HSCT), matched sibling donor HSCT (MSD-HSCT), and alternative donor HSCT (AD-HSCT) are viable post-remission treatment options for acute myeloid leukemia (AML). A total of 283 de novo favorable- and intermediate-risk AML patients, based on the ELN 2022 criteria, in first complete remission were initially included for propensity score matching. Following the matching process, 126 patients were selected for further analysis, with 42 patients in each of the auto-HSCT, MSD-HSCT, and AD-HSCT groups. Among the AD-HSCT group, 38 of 42 (90.5%) patients received haploidentical HSCT. In patients with persistent undetectable measurable residual disease (uMRD) before transplant (n = 83), overall survival (OS) was similar across the groups. However, auto-HSCT showed a trend of increased disease-free survival (DFS) compared to AD-HSCT (HR 2.85, P = 0.09), resulting in a 3-year DFS and OS of 79.1% and 82.8%, respectively. In the non-persistent uMRD group (n = 38), auto-HSCT exhibited a tendency to increase the risk of relapse, particularly when compared to AD-HSCT (HR 0.24, P = 0.07), but this did not result in inferior OS. The monthly direct medical cost per patient within the first 2 years after HSCT was significantly lower in auto-HSCT compared to MSD-HSCT (P = 0.015) and AD-HSCT (P < 0.001). Our results provide evidence for the use of auto-HSCT as a viable therapeutic option for favorable- and intermediate-risk de novo AML patients in first complete remission with persistent uMRD. Additionally, our findings demonstrated a notable cost advantage associated with auto-HSCT compared to MSD-HSCT and AD-HSCT.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Irmãos , Pontuação de Propensão , Doadores de Tecidos , Transplante de Células-Tronco , Leucemia Mieloide Aguda/terapia , Transplante de Células-Tronco Hematopoéticas/métodos , Estudos Retrospectivos
14.
Ann Hematol ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38969929

RESUMO

Wilms tumor 1 (WT1) gene mutations are infrequent in myelodysplastic syndrome (MDS), but MDS with WT1 mutations (WT1mut) is considered high risk for acute myeloid leukemia (AML) transformation. The influence of WT1 mutations in patients with MDS after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is unclear. We performed a retrospective analysis of 136 MDS with excess blasts 2 (MDS-EB2) patients with available WT1 status who underwent their first allo-HSCT between 2017 and 2022 in our center. There were 20 (20/136, 15%) cases in the WT1mut group and 116 (116/136, 85%) cases in the WT1 wild-type (WT1wt) group. WT1mut patients had a higher 2-year cumulative incidence of relapse (CIR) than WT1wt cases (26.2% vs. 9.4%, p = 0.037) after allo-HSCT. Multivariate analysis of relapse showed that WT1 mutations (HR, 6.0; p = 0.002), TP53 mutations (HR, 4.2; p = 0.021), and ≥ 5% blasts in bone marrow (BM) at transplantation (HR, 6.6; p = 0.004) were independent risk factors for relapse. Patients were stratified into three groups according to the risk factors. Two-year CIR differed significantly in high-, intermediate-, and low-risk groups (31.8%, 11.6%, and 0%, respectively). Hence, WT1 mutations may be related to post-transplant relapse in patients with MDS-EB2, which warrants further study.

15.
J Cardiovasc Pharmacol ; 83(1): 33-42, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890084

RESUMO

ABSTRACT: Regulated cell death is a controlled form of cell death that protects cells by adaptive responses in pathophysiological states. Ferroptosis has been identified as a novel method of controlling cell death in recent years. Several cardiovascular diseases (CVDs) are shown to be profoundly influenced by ferroptosis, and ferroptosis is directly linked to the majority of cardiovascular pathological alterations. Despite this, it is still unclear how ferroptosis affects the pathogenic alterations that take place in CVDs. Based on a review of the mechanisms that regulate ferroptosis, this review explores the most recent research on the role of ferroptosis in the major pathological changes associated with CVDs, to provide new perspectives and strategies for cardiovascular research and clinical treatment.


Assuntos
Doenças Cardiovasculares , Ferroptose , Humanos , Morte Celular
16.
Neuroimmunomodulation ; 31(1): 126-141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843787

RESUMO

INTRODUCTION: Dimethyl fumarate (DMF) has shown potential for protection in various animal models of neurological diseases. However, the impact of DMF on changes in peripheral immune organs and the central nervous system (CNS) immune cell composition after ischemic stroke remains unclear. METHODS: Eight-week-old C57BL/6J mice with photothrombosis ischemia and patients with acute ischemic stroke (AIS) were treated with DMF. TTC staining, flow cytometry, and immunofluorescence staining were used to evaluate the infarct volume and changes in immune cells in the periphery and the CNS. RESULTS: DMF reduced the infarct volume on day 1 after PT. DMF reduced the percentages of peripheral immune cells, such as neutrophils, dendritic cells, macrophages, and monocytes, on day 1, followed by NK cells on day 3 and B cells on day 7 after PT. In the CNS, DMF significantly reduced the percentage of monocytes in the brain on day 3 after PT. In addition, DMF increased the number of microglia in the peri-infarct area and reduced the number of neurons in the peri-infarct area in the acute and subacute phases after PT. In AIS patients, B cells decreased in patients receiving alteplase in combination with DMF. CONCLUSION: DMF can change the immune environment of the periphery and the CNS, reduce infarct volume in the acute phase, promote the recruitment of microglia and preserve neurons in the peri-infarct area after ischemic stroke.


Assuntos
Fumarato de Dimetilo , AVC Isquêmico , Camundongos Endogâmicos C57BL , Animais , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , AVC Isquêmico/imunologia , AVC Isquêmico/tratamento farmacológico , Camundongos , Masculino , Humanos , Feminino , Prognóstico , Pessoa de Meia-Idade , Idoso , Modelos Animais de Doenças
17.
J Chem Inf Model ; 64(4): 1213-1228, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38302422

RESUMO

Deep learning-based de novo molecular design has recently gained significant attention. While numerous DL-based generative models have been successfully developed for designing novel compounds, the majority of the generated molecules lack sufficiently novel scaffolds or high drug-like profiles. The aforementioned issues may not be fully captured by commonly used metrics for the assessment of molecular generative models, such as novelty, diversity, and quantitative estimation of the drug-likeness score. To address these limitations, we proposed a genetic algorithm-guided generative model called GARel (genetic algorithm-based receptor-ligand interaction generator), a novel framework for training a DL-based generative model to produce drug-like molecules with novel scaffolds. To efficiently train the GARel model, we utilized dense net to update the parameters based on molecules with novel scaffolds and drug-like features. To demonstrate the capability of the GARel model, we used it to design inhibitors for three targets: AA2AR, EGFR, and SARS-Cov2. The results indicate that GARel-generated molecules feature more diverse and novel scaffolds and possess more desirable physicochemical properties and favorable docking scores. Compared with other generative models, GARel makes significant progress in balancing novelty and drug-likeness, providing a promising direction for the further development of DL-based de novo design methodology with potential impacts on drug discovery.


Assuntos
Desenho de Fármacos , RNA Viral , Ligantes , Algoritmos , Descoberta de Drogas
18.
J Chem Inf Model ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920405

RESUMO

Artificial intelligence (AI)-aided drug design has demonstrated unprecedented effects on modern drug discovery, but there is still an urgent need for user-friendly interfaces that bridge the gap between these sophisticated tools and scientists, particularly those who are less computer savvy. Herein, we present DrugFlow, an AI-driven one-stop platform that offers a clean, convenient, and cloud-based interface to streamline early drug discovery workflows. By seamlessly integrating a range of innovative AI algorithms, covering molecular docking, quantitative structure-activity relationship modeling, molecular generation, ADMET (absorption, distribution, metabolism, excretion and toxicity) prediction, and virtual screening, DrugFlow can offer effective AI solutions for almost all crucial stages in early drug discovery, including hit identification and hit/lead optimization. We hope that the platform can provide sufficiently valuable guidance to aid real-word drug design and discovery. The platform is available at https://drugflow.com.

19.
J Craniofac Surg ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38810248

RESUMO

AIMS: Constructing orbital finite element models capable of simulating the development process and analyzing the biomechanical mechanism. METHODS: Four normal orbits from 1-month-old New Zealand white rabbits were used in this study. Toshiba Aquilion Prime was used to determine the computed tomography scan and direct orbital pressure manometry using an improved manometer based on the TSD104 pressure sensor transducer. The finite element analysis was conducted using the ANSYS Workbench platform. RESULTS: The biomechanics of each orbital wall improved to varying degrees as the rabbit orbit grew and developed. The von Mises stress in both rabbits initially concentrated at the lower edge of the posterior orbital wall, expanded to the entire orbit, and ultimately became more significant in the biomechanics of the region that consisted of the posterior orbital and superior orbital walls. During the expansion phase, the biomechanics of both rabbits gradually developed from the nasal side to the occipital side for radial displacement. It is evident that the finite element model is a good fit for simulating the physiological development of the rabbit orbit. The maximum radial displacement and maximum von Mises stress appeared 2 intermissions during the development of the orbit, at about 50 to 60 days and 80 to 90 days. CONCLUSION: This study establishes a theoretical foundation for the creation of a biomechanical model of human orbital development by offering the first finite element model to simulate orbital development and analyze the biomechanical mechanism of orbital pressure on orbital development.

20.
Sensors (Basel) ; 24(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474924

RESUMO

In this study, a controllable equal-gap large-area silicon drift detector (L-SDD) is designed. The surface leakage current is reduced by reducing the SiO2-Si interface through the new controllable equal-gap design. The design of the equal gap also solves the problem whereby the gap widens due to the larger detector size in the previous SDD design, which leads to a large invalid area of the detector. In this paper, a spiral hexagonal equal-gap L-SDD of 1 cm radius is selected for design calculation, and we implement 3D modeling and simulation of the device. The simulation results show that the internal potential gradient distribution of the L-SDD is uniform and forms a drift electric field, with the direction of electron drift pointing towards the collecting anode. The L-SDD has an excellent electron drift channel inside, and this article also analyzes the electrical performance of the drift channel to verify the correctness of the design method of the L-SDD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA