Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Plant J ; 118(2): 423-436, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38184843

RESUMO

Upland cotton, the mainly cultivated cotton species in the world, provides over 90% of natural raw materials (fibers) for the textile industry. The development of cotton fibers that are unicellular and highly elongated trichomes on seeds is a delicate and complex process. However, the regulatory mechanism of fiber development is still largely unclear in detail. In this study, we report that a homeodomain-leucine zipper (HD-ZIP) IV transcription factor, GhHOX4, plays an important role in fiber elongation. Overexpression of GhHOX4 in cotton resulted in longer fibers, while GhHOX4-silenced transgenic cotton displayed a "shorter fiber" phenotype compared with wild type. GhHOX4 directly activates two target genes, GhEXLB1D and GhXTH2D, for promoting fiber elongation. On the other hand, phosphatidic acid (PA), which is associated with cell signaling and metabolism, interacts with GhHOX4 to hinder fiber elongation. The basic amino acids KR-R-R in START domain of GhHOX4 protein are essential for its binding to PA that could alter the nuclear localization of GhHOX4 protein, thereby suppressing the transcriptional regulation of GhHOX4 to downstream genes in the transition from fiber elongation to secondary cell wall (SCW) thickening during fiber development. Thus, our data revealed that GhHOX4 positively regulates fiber elongation, while PA may function in the phase transition from fiber elongation to SCW formation by negatively modulating GhHOX4 in cotton.


Assuntos
Gossypium , Fatores de Transcrição , Gossypium/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácidos Fosfatídicos/metabolismo , Fibra de Algodão , Regulação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Cell ; 33(8): 2736-2752, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34043792

RESUMO

Cotton, one of the most important crops in the world, produces natural fiber materials for the textile industry. WRKY transcription factors play important roles in plant development and stress responses. However, little is known about whether and how WRKY transcription factors regulate fiber development of cotton so far. In this study, we show that a fiber-preferential WRKY transcription factor, GhWRKY16, positively regulates fiber initiation and elongation. GhWRKY16-silenced transgenic cotton displayed a remarkably reduced number of fiber protrusions on the ovule and shorter fibers compared to the wild-type. During early fiber development, GhWRKY16 directly binds to the promoters of GhHOX3, GhMYB109, GhCesA6D-D11, and GhMYB25 to induce their expression, thereby promoting fiber initiation and elongation. Moreover, GhWRKY16 is phosphorylated by the mitogen-activated protein kinase GhMPK3-1 at residues T-130 and S-260. Phosphorylated GhWRKY16 directly activates the transcription of GhMYB25, GhHOX3, GhMYB109, and GhCesA6D-D11 for early fiber development. Thus, our data demonstrate that GhWRKY16 plays a crucial role in fiber initiation and elongation, and that GhWRKY16 phosphorylation by GhMPK3-1 is essential for the transcriptional activation on downstream genes during the fiber development of cotton.


Assuntos
Fibra de Algodão , Gossypium/fisiologia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Óvulo Vegetal/crescimento & desenvolvimento , Fosforilação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
3.
BMC Pregnancy Childbirth ; 23(1): 247, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055769

RESUMO

BACKGROUND: Clinical value of tumor necrosis factor (TNF) inhibitors in in vitro fertilization-embryo transfer (IVF-ET) in infertile women with polycystic ovary syndrome (PCOS) was investigated in this study. METHODS: A retrospective analysis was performed on the clinical data of 100 PCOS patients who received IVF-ET for the first time at Hebei Institute of reproductive health science and technology from January 2010 to June 2020. The patients were divided into Inhibitor group and Control group according to whether they were treated with or without TNF inhibitors. Next, the two groups were subject to comparison in terms of the days of gonadotropin (Gn) use, total dosage of Gn, trigger time, hormone level and endometrial condition on the day of human chorionic gonadotropin (HCG) injection, the effects of two different regimens on controlled ovarian hyperstimulation (COH) and pregnancy outcomes. RESULTS: There were no significant differences in baseline characteristics between the two groups, including age, duration of infertility, body mass index (BMI), ovarian volume, antral follicle count, and basal hormone levels. Compared with the Control group, the days of Gn use and trigger time of patients in the Inhibitor group were significantly shortened, and the total Gn dosage was notably reduced. In terms of sex hormone levels on the HCG injection, the Inhibitor group displayed much lower serum estradiol levels while higher serum luteinizing hormone and progesterone (P) levels than the Control group. Notably, the high-quality embryo rate was also significantly increased with the use of TNF inhibitors. However, significant differences were not observed in endometrial thickness (on the day of HCG injection), proportion of endometrial A, B and C morphology (on the day of HCG injection), cycle cancellation rate, number of oocytes retrieved, fertilization rate, and cleavage rate between the two groups. Importantly, the clinical pregnancy rate in the Inhibitor group was significantly higher than that in the Control group, but there was no significant difference in the biochemical pregnancy rate, early abortion rate, multiple birth rate, ectopic pregnancy rate and number of live births between the two groups. CONCLUSION: Collectively, after application of TNF-α inhibitor regimen, superior overall treatment effect can be observed in infertile PCOS patients receiving IVF-ET. Therefore, TNF inhibitors have certain application value in IVF-ET in infertile women with PCOS.


Assuntos
Infertilidade Feminina , Síndrome do Ovário Policístico , Gravidez , Feminino , Humanos , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/tratamento farmacológico , Infertilidade Feminina/tratamento farmacológico , Infertilidade Feminina/etiologia , Inibidores do Fator de Necrose Tumoral , Fertilização in vitro , Estudos Retrospectivos , Transferência Embrionária , Taxa de Gravidez , Gonadotropina Coriônica/uso terapêutico
4.
Gynecol Endocrinol ; 39(1): 2279565, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37935245

RESUMO

OBJECTIVE: Published evidence indicated that the leptin receptor (LEPR) gene polymorphisms are associated with polycystic ovary syndrome (PCOS) risk. However, studies on the association between the polymorphisms of LEPR gene are inconsistent or even controversial. MATERIAL AND METHODS: We conducted this meta-analysis to explore the more precise relationship between LEPR polymorphisms and PCOS risk. Relevant articles were searched with five online databases up to March 1 2023. Odds ratios (OR) with 95% confidence intervals (CI) were selected to examine the statistical strength of each genetic model. Moreover, RNA secondary structure and variant effects of these loci were examined with in silico analysis. RESULTS: Overall, 11 publications were analyzed, and the pooled results did not present any significant association between rs1137101 A/G polymorphism and PCOS risk in general population and some subgroup analysis. But the significant association were observed in Asian population (AG vs. AA: OR = 0.51, 95%CI = 0.32-0.81, p = .01, I2=0%; AG + GG vs. AA: OR = 0.41, 95%CI = 0.26-0.65, p < .01, I2=25.9%). Moreover, similar positive associations were also observed in rs1805096 polymorphism with PCOS risk. CONCLUSION: In summary, our meta-analysis suggested that the LEPR gene polymorphisms might be associated with PCOS susceptibility. Owing to the limited studies and small sample size in our meta-analysis, more well-designed studies from different races were needed to be conducted to verify the current results.


Assuntos
Síndrome do Ovário Policístico , Receptores para Leptina , Feminino , Humanos , Povo Asiático , Predisposição Genética para Doença , Síndrome do Ovário Policístico/genética , Polimorfismo de Nucleotídeo Único , Receptores para Leptina/genética
5.
Zhongguo Dang Dai Er Ke Za Zhi ; 24(4): 392-398, 2022 Apr 15.
Artigo em Chinês | MEDLINE | ID: mdl-35527414

RESUMO

OBJECTIVES: To study the biological processes and functions of serum exosomes in children in the acute stage of Kawasaki disease (KD), so as to provide new biomarkers for the early diagnosis of KD. METHODS: In this prospective study, 13 children with KD who were treated in Children's Hospital of Soochow University from June 2019 to August 2020 were enrolled as the KD group, and 13 children who were hospitalized due to bacterial infection during the same period were enrolled as the control group. Whole blood was collected on the next morning after admission, serum samples were obtained by centrifugation, and exosomes were extracted through ultracentrifugation. Serum exosomes were analyzed by label-free quantitative proteomics, and differentially expressed proteins (DEPs) were screened out for functional enrichment analysis. A protein-protein interaction (PPI) network was plotted, and unique proteins were validated by targeted proteomics. RESULTS: A total of 131 DEPs were screened out for the two groups, among which 27 proteins were detected in both groups. There were 48 unique DEPs in the KD group, among which 23 were upregulated and 25 were downregulated, and these proteins acted on "complement and coagulation cascades" and "the MAPK signaling pathway". Validation by targeted proteomics showed that FGG, SERPING1, C1R, C1QA, IGHG4, and C1QC proteins were quantifiable in the KD group. A total of 29 proteins were only expressed in the control group, among which 12 were upregulated and 17 were downregulated. Four proteins were quantifiable based on targeted proteomics, i.e., VWF, ECM1, F13A1, and TTR. A PPI network was plotted for each group. In the KD group, FGG and C1QC had close interaction with other proteins, while in the control group, VWF had close interaction with other proteins. CONCLUSIONS: The serum exosomes FGG and C1QC in children in the acute stage of KD are expected to become the biomarkers for the early diagnosis of KD. For children with unexplained fever, detection of FGG, C1QC1, and VWF may help with etiological screening.


Assuntos
Exossomos , Síndrome de Linfonodos Mucocutâneos , Biomarcadores , Criança , Proteínas da Matriz Extracelular , Humanos , Síndrome de Linfonodos Mucocutâneos/diagnóstico , Estudos Prospectivos , Proteômica , Fator de von Willebrand
6.
Plant Physiol ; 184(2): 1024-1041, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32663166

RESUMO

Spatiotemporally regulated callose deposition is an essential, genetically programmed phenomenon that promotes pollen development and functionality. Severe male infertility is associated with deficient callose biosynthesis, highlighting the significance of intact callose deposition in male gametogenesis. The molecular mechanism that regulates the crucial role of callose in production of functional male gametophytes remains completely unexplored. Here, we provide evidence that the gradual upregulation of a previously uncharacterized cotton (Gossypium hirsutum) pollen-specific SKS-like protein (PSP231), specifically at the post pollen-mitosis stage, activates callose biosynthesis to promote pollen maturation. Aberrant PSP231 expression levels caused by either silencing or overexpression resulted in late pollen developmental abnormalities and male infertility phenotypes in a dose-dependent manner, highlighting the importance of fine-tuned PSP231 expression. Mechanistic analyses revealed that PSP231 plays a central role in triggering and fine-tuning the callose synthesis and deposition required for pollen development. Specifically, PSP231 protein sequesters the cellular pool of RNA-binding protein GhRBPL1 to destabilize GhWRKY15 mRNAs, turning off GhWRKY15-mediated transcriptional repression of GhCalS4/GhCalS8 and thus activating callose biosynthesis in pollen. This study showed that PSP231 is a key molecular switch that activates the molecular circuit controlling callose deposition toward pollen maturation and functionality and thereby safeguards agricultural crops against male infertility.


Assuntos
Gametogênese/genética , Gametogênese/fisiologia , Glucanos/biossíntese , Gossypium/fisiologia , Proteínas de Plantas/genética , Pólen/crescimento & desenvolvimento , Pólen/genética , Produtos Agrícolas/citologia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glucanos/genética , Gossypium/citologia , Gossypium/genética , Proteínas de Plantas/metabolismo , Pólen/citologia , Pólen/metabolismo
7.
Chin Med Sci J ; 36(1): 66-71, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33853711

RESUMO

In the era of coronavirus disease 2019 (COVID-19) pandemic, imported COVID-19 cases pose great challenges to many countries. Chest CT examination is considered to be complementary to nucleic acid test for COVID-19 detection and diagnosis. We report the first community infected COVID-19 patient by an imported case in Beijing, which manifested as nodular lesions on chest CT imaging at the early stage. Deep Learning (DL)-based diagnostic systems quantitatively monitored the progress of pulmonary lesions in 6 days and timely made alert for suspected pneumonia, so that prompt medical isolation was taken. The patient was confirmed as COVID-19 case after nucleic acid test, for which the community transmission was prevented timely. The roles of DL-assisted diagnosis in helping radiologists screening suspected COVID cases were discussed.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico por imagem , Aprendizado Profundo , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adulto , Pequim , Infecções Comunitárias Adquiridas/diagnóstico por imagem , Humanos , Masculino
8.
Plant Mol Biol ; 103(4-5): 391-407, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32193788

RESUMO

Mitogen-activated protein kinases (MAPKs) are important in regulating plant development as well as stress response. In this study, we genome-widely identified 56 MAPK genes in upland cotton. These MAPK genes unequally distribute on 22 chromosomes of cotton genome, but no MAPK gene is located on At_Chr6, Dt_Chr6, At_Chr13 and Dt_Chr13. The exons and introns in GhMAPK gene family vary widely at the position, number and length. Furthermore, GhMAPK family can be divided into 4 groups (A, B, C and D), and the TEY type of T-loop exists in three groups (A, B and C), but the TDY type of T-loop is only in group D. Further study revealed that some GhMAPK genes (including GhMPK6) are preferentially expressed in elongating fibers. GhMPK6 maintains a high phosphorylation level in elongating fibers, and its phosphorylation was enhanced in fibers by phytohormones brassinosteroid (BR), ethylene and indole-3-acetic acid (IAA). Additionally, GhMPK6 could interact with GhMKK2-2 and GhMKK4, suggesting that GhMKK2-2/4-GhMPK6 module may be involved in phosphorylation of its downstream proteins for regulating fiber elongation of cotton.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Genoma de Planta , Gossypium/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas de Plantas/metabolismo , Fibra de Algodão , Regulação Enzimológica da Expressão Gênica , Estudo de Associação Genômica Ampla , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas de Plantas/genética
9.
New Phytol ; 225(6): 2439-2452, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31667846

RESUMO

Basic helix-loop-helix (bHLH) proteins are involved in transcriptional networks controlling a number of biological processes in plants. However, little information is known on the roles of bHLH proteins in cotton fibre development so far. Here, we show that a cotton bHLH protein (GhFP1) positively regulates fibre elongation. GhFP1 transgenic cotton and Arabidopsis plants were generated to study how GhFP1 regulates fibre cell elongation. Fibre length of the transgenic cotton overexpressing GhFP1 was significantly longer than that of wild-type, whereas suppression of GhFP1 expression hindered fibre elongation. Furthermore, overexpression of GhFP1 in Arabidopsis promoted trichome development. Expression of the brassinosteroid (BR)-related genes was markedly upregulated in fibres of GhFP1 overexpression cotton, but downregulated in GhFP1-silenced fibres. BR content in the transgenic fibres was significantly altered, relative to that in wild-type. Moreover, GhFP1 protein could directly bind to the promoters of GhDWF4 and GhCPD to activate expression of these BR-related genes. Therefore, our data suggest that GhFP1 as a positive regulator participates in controlling fibre elongation by activating BR biosynthesis and signalling. Additionally, homodimerisation of GhFP1 may be essential for its function, and interaction between GhFP1 and other cotton bHLH proteins may interfere with its DNA-binding activity.


Assuntos
Fenômenos Biológicos , Gossypium , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Brassinosteroides , Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Acta Pharmacol Sin ; 41(1): 93-100, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31285534

RESUMO

PARK2, which encodes Parkin, is a disease-causing gene for both neurodegenerative disorders and cancer. Parkin can function as a neuroprotector that plays a crucial role in the regulation of mitophagy, and germline mutations in PARK2 are associated with Parkinson's disease (PD). Intriguingly, recent studies suggest that Parkin can also function as a tumor suppressor and that somatic and germline mutations in PARK2 are associated with various human cancers, including lung cancer. However, it is presently unknown how the tumor suppressor activity of Parkin is affected by these mutations and whether it is associated with mitophagy. Herein, we show that wild-type (WT) Parkin can rapidly translocate onto mitochondria following mitochondrial damage and that Parkin promotes mitophagic clearance of mitochondria in lung cancer cells. However, lung cancer-linked mutations inhibit the mitochondrial translocation and ubiquitin-associated activity of Parkin. Among all lung cancer-linked mutants that we tested, A46T Parkin failed to translocate onto mitochondria and could not recruit downstream mitophagic regulators, including optineurin (OPTN) and TFEB, whereas N254S and R275W Parkin displayed slower mitochondrial translocation than WT Parkin. Moreover, we found that deferiprone (DFP), an iron chelator that can induce mitophagy, greatly increased the death of A46T Parkin-expressing lung cancer cells. Taken together, our results reveal a novel mitophagic mechanism in lung cancer, suggesting that lung cancer-linked mutations in PARK2 are associated with impaired mitophagy and identifying DFP as a novel therapeutic agent for PARK2-linked lung cancer and possibly other types of cancers driven by mitophagic dysregulation.


Assuntos
Genes Supressores de Tumor , Mutação em Linhagem Germinativa/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mitofagia/genética , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células A549 , Morte Celular/efeitos dos fármacos , Deferiprona/farmacologia , Humanos , Quelantes de Ferro/farmacologia , Neoplasias Pulmonares/metabolismo , Mitofagia/efeitos dos fármacos , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases/metabolismo
11.
Appl Opt ; 59(27): 8106-8110, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32976388

RESUMO

We demonstrate a high-power, high-energy chirped-pulse amplification (CPA) system based on three Yb:YAG amplifiers and a chirped-volume Bragg grating (CVBG). With an all-fiber laser as the seed light, a Yb:YAG rod amplifier and two Yb:YAG single-crystal fiber (SCF) amplifiers as the amplification stages, a laser power of 96 W at 200 kHz repetition rate corresponding to a pulse energy of 0.48 mJ has been generated. The stability of different output power has been measured and compared. To the best of our knowledge, this is the first report on a stable 100 W-level laser with sub-mJ pulse energy based on SCF. The beam quality M2 of different output lasers has also been measured, which is below 1.55 when the output power is 92 W. The amplified laser is seeded into the CVBG to be compressed, and a compression efficiency of 0.724 has been obtained with an output power of 67.8 W and pulse duration of 2.5 ps. The ultrafast CPA system delivering high pulse energy (sub-mJ) with hundreds of kHz repetition rate is expected to be used as the driving source of high-flux high-harmonic generation after further compression.

12.
Plant J ; 96(6): 1269-1282, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30256468

RESUMO

LIM domain proteins are cysteine-rich proteins, and are often considered as actin bundlers and transcription factors in plants. However, the roles of XLIM proteins in plants (especially in cotton) remain unexplored in detail so far. In this study, we identified a cotton XLIM protein (GhXLIM6) that is preferentially expressed in cotton fiber during whole elongation stage and early secondary cell wall (SCW) synthesis stage. The GhXLIM6-silenced transgenic cotton produces shorter fibers with thinner cell walls, compared with wild-type (WT). GhXLIM6 protein could directly bind F-actin and promote actin polymerization both in vitro and in vivo. It also acts as a transcription factor to suppress GhKNL1 expression through binding the PAL-box element of GhKNL1 promoter, and subsequently regulate the expression of CesA genes related to cellulose biosynthesis and deposition in SCWs of cotton fibers. The cellulose content in fibers of GhXLIM6RNAi cotton is lower than that in WT. Taken together, these data reveal the dual roles of GhXLIM6 in fiber development. On one hand, GhXLIM6 functions in fiber elongation through binding to F-actin to maintain the dynamic F-actin cytoskeleton. On the other hand, GhXLIM6 fine-tunes fiber SCW formation, probably through directly suppressing transcription of GhKNL1 to promote cellulose biosynthesis.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Celulose/biossíntese , Fibra de Algodão , Gossypium/metabolismo , Proteínas de Plantas/fisiologia , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Proteínas de Plantas/metabolismo
13.
J Cell Biochem ; 119(6): 4692-4710, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29278662

RESUMO

This study aims to investigate the effects of microRNA-335-5p (miR-335-5p) on lower-extremity deep vein thrombosis (LEDVT) by targeting PAI-1 through the TLR4 signaling pathway in rat models. siRNA, mimic, and inhibitor were used for transfection. The miR-335-5p expression was detected by in situ hybridization. CCK-8 assay and flow cytometry were adopted to detect proliferation, cell cycle, and apoptosis, respectively. Scratch test and Matrigel-based tube formation assay were used to detect the effect of miR-335-5p on cell migration ability and tube formation ability. A miR-335-5p lentivirus plasmid was constructed and injected into LEDVT rats. The length and weight of thrombus were measured, changes of thrombus recanalization were observed by CD34 immunohistochemistry, and levels of PAI-1 and inflammatory factors in femoral vein blood were detected by ELISA. LEDVT rats showed a higher AOD value of PAI-1, higher expression of PAI-1, NF-κB, Rac1, IL-1ß, and TLR4 and a lower miR-335-5p expression. PAI-1 and miR-335-5p were negatively correlated. Compared to the blank and siRNA-NC groups, the miR-335-5p mimic and siRNA-PAI-1 groups showed declined expression of PAI-1, TLR4, NF-κB, Rac1, and IL-1ß, increased proliferation and tube formation abilities, less cells in G0/G1 phase, and decreased apoptosis, decreased length and weight of thrombus, organized thrombus, increased new blood vessels, and decreased levels of PAI-1, IL-1, IL-6, and Tnf-a. miR-335-5p may suppress the occurrence and development of LEDVT in rats by repressing the activation of the TLR4 signaling pathway by targeted inhibition of PAI-1.


Assuntos
Membro Posterior/irrigação sanguínea , MicroRNAs/metabolismo , Inibidor 1 de Ativador de Plasminogênio/biossíntese , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Trombose Venosa/metabolismo , Animais , Feminino , Fase G1 , Regulação da Expressão Gênica , Membro Posterior/metabolismo , Membro Posterior/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Fase de Repouso do Ciclo Celular , Trombose Venosa/patologia
14.
Med Sci Monit ; 24: 1581-1587, 2018 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-29549708

RESUMO

BACKGROUND Papillary thyroid cancer (PTC) is currently the most commonly diagnosed endocrine malignancy. In addition, the sex- and age-adjusted incidence of PTC has exhibited a greater increase over the last 2 decades than in many other malignancies. Thus, discovering noninvasive specific serum biomarker to distinguish PTC from cancer-free controls in its early stages remains an important goal. MATERIAL AND METHODS Serum samples from 88 PTC patients and 80 cancer-free controls were randomly allocated into training or validation sets. Serum peptide profiling was performed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) after using weak cation exchange magnetic beads (WCX-MB), and the results were evaluated by use of ClinProTools™ Software. To distinguish PTC from cancer-free controls, quick classifier (QC), supervised neural network (SNN), and genetic algorithm (GA) models were established. The models were blindly validated to verify their diagnostic capabilities. The most discriminative peaks were subsequently identified with a nano-liquid chromatography-electrospray ionization-tandem mass spectrometry system. RESULTS Six peptide ions were identified as the most discriminative peaks between the PTC and cancer-free control samples. The QC model exhibited satisfactory sensitivity and specificity among the 3 models that were validated. Two peaks, at m/z 2671.17 and m/z 1464.68, were identified as fragments of the alpha chain of fibrinogen, while a peak at m/z 1738.92 was a fragment of complement component 4A/B. CONCLUSIONS MS combined with ClinProTools™ software was able to detect peptide biomarkers in PTC patients. In addition, the constructed classification models provided a serum peptidome pattern for distinguishing PTC from cancer-free controls. Both fibrinogen a and complement C4A/B were identified as potential markers for diagnosis of PTC.


Assuntos
Carcinoma Papilar/sangue , Peptídeos/sangue , Neoplasias da Glândula Tireoide/sangue , Algoritmos , Sequência de Aminoácidos , Carcinoma Papilar/diagnóstico , Estudos de Casos e Controles , Humanos , Peptídeos/química , Proteômica , Curva ROC , Reprodutibilidade dos Testes , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/diagnóstico
15.
Metab Brain Dis ; 33(6): 1887-1897, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30187180

RESUMO

To assess whether EGb761 could protect elderly diabetic mice with cognitive disorders and explore the role of beclin-1-mediated autophagy in these protective effects. Two-month-old male db/db-/- mice and wild-type C57/BL6 mice were randomly divided into six groups: db/db-/- control, db/db-/- 50 mg, db/db-/- 100 mg, wild-type (WT) control, WT 50 mg, and WT 100 mg. EGb761 (50 mg/kg or 100 mg/kg of bodyweight) was given by gavage once a day for 1 month from the age of 6 months. Y-maze and social choice tests were performed at 8th months. The blood pressure was measured. The imaging changes in the brain were measured using magnetic resonance imaging (MRI). The expression and distribution of beclin-1, LC3, and NF-κB were detected using immunohistochemistry staining and western blotting. Ultrastructure alterations in the hippocampus were observed using transmission electron microscopy. Compared with WT mice, the learning ability, memory and overall cognitive function of db/db-/- mice decreased (P < 0.05), and EGb761 could significantly improve the learning and memory function of db/db-/- mice (P < 0.05). EGb761 significantly improved systolic blood pressure in db/db-/- mice (P < 0.01). In addition, fMRI-bold showed a decline in the hippocampus of mice in the db/db-/- group compared with WT. EGb761 could improve these above changes. Immunohistochemistry staining and western blotting confirmed that EGb761 significantly increased beclin-1 and reduced LC3-II/I levels in the brains of db/db-/- mice (P < 0.05). NF-κB levels were obviously higher in the db/db-/- group than that in the WT group, and EGb761 significantly reduced NF-κB levels in db/db-/- mice (P < 0.05). There was a trend of increased autophagosomes in db/db-/- mice, but EGb761 did not change obviously the number of autophagosomes. Compared with normal aged WT mice, aging db/db-/- mice had more common complications of cerebral small vessel disease and cognitive dysfunction. EGb761 could significantly improve the cognitive function of aging db/db-/- mice via a mechanism that may involve the regulation of beclin-1, LC3, and NF-κB.


Assuntos
Envelhecimento/metabolismo , Proteína Beclina-1/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/uso terapêutico , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Animais , Proteína Beclina-1/agonistas , Disfunção Cognitiva/genética , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Relação Dose-Resposta a Droga , Ginkgo biloba , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/antagonistas & inibidores , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
16.
Cancer Cell Int ; 17: 35, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28286417

RESUMO

BACKGROUND: Overexpression of cyclin D1 dependent kinases 4 and 6 (CDK4/6) is a common feature of many human cancers including leukemia. LEE011 is a novel inhibitor of both CDK4 and 6. To date, the molecular function of LEE011 in leukemia remains unclear. METHODS: Leukemia cell growth and apoptosis following LEE011 treatment was assessed through CCK-8 and annexin V/propidium iodide staining assays. Cell senescence was assessed by ß-galactosidase staining and p16INK4a expression analysis. Gene expression profiles of LEE011 treated HL-60 cells were investigated using an Arraystar Human LncRNA array. Gene ontology and KEGG pathway analysis were then used to analyze the differentially expressed genes from the cluster analysis. RESULTS: Our studies demonstrated that LEE011 inhibited proliferation of leukemia cells and could induce apoptosis. Hoechst 33,342 staining analysis showed DNA fragmentation and distortion of nuclear structures following LEE011 treatment. Cell cycle analysis showed LEE011 significantly induced cell cycle G1 arrest in seven of eight acute leukemia cells lines, the exception being THP-1 cells. ß-Galactosidase staining analysis and p16INK4a expression analysis showed that LEE011 treatment can induce cell senescence of leukemia cells. LncRNA microarray analysis showed 2083 differentially expressed mRNAs and 3224 differentially expressed lncRNAs in LEE011-treated HL-60 cells compared with controls. Molecular function analysis showed that LEE011 induced senescence in leukemia cells partially through downregulation of the transcriptional expression of MYBL2. CONCLUSIONS: We demonstrate for the first time that LEE011 treatment results in inhibition of cell proliferation and induction of G1 arrest and cellular senescence in leukemia cells. LncRNA microarray analysis showed differentially expressed mRNAs and lncRNAs in LEE011-treated HL-60 cells and we demonstrated that LEE011 induces cellular senescence partially through downregulation of the expression of MYBL2. These results may open new lines of investigation regarding the molecular mechanism of LEE011 induced cellular senescence.

17.
J Clin Lab Anal ; 31(5)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27897324

RESUMO

BACKGROUND: Iodiated contrast-induced nephropathy (CIN) is a serious complication of contrast-enhanced imaging. The aim of this study was to evaluate the diagnostic sensitivities and specificities of serum cystatin C (sCys C) and serum creatinine (sCr) for CIN and to further investigate difference of the incidence, risk factors, and in-hospital and 3-month prognosis of CIN according to sCys C criteria and sCr criteria. METHODS: We prospectively evaluated 213 patients who underwent angiography. The sCr and sCys C concentrations were detected before and at 48 hours, 72 hours after the procedure. The incidence, risk factors, and in-hospital and 3-month prognosis of CIN were analyzed. Receiver operating characteristic curve (ROC) analysis was performed for sCr and sCys C 48 hours after procedure. RESULTS: The incidence of CIN was 24.4% (sCys C criteria) and 8% (sCr criteria). Diabetes mellitus, dehydration, and hypoalbuminemia were independent risk factors for CIN. Area under the ROC of sCys C 48 hours after procedure was not superior to sCr (0.715 vs 0.790, P=.178). The mortality of patients with CIN in sCr criteria increased significantly (P<.05). CONCLUSION: In this study, the incidence and risk factors of CIN were related to diagnostic criteria. The sCys C was not superior to sCr for predicting CIN in the patients who underwent angiography.


Assuntos
Injúria Renal Aguda , Angiografia/efeitos adversos , Meios de Contraste/efeitos adversos , Cistatina C/sangue , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/epidemiologia , Adulto , Idoso , Diagnóstico Precoce , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Curva ROC , Fatores de Risco
18.
Biochem Biophys Res Commun ; 458(2): 441-7, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25677618

RESUMO

Recent evidence suggested that nonirradiated cancer-associated fibroblasts (CAFs) promoted aggressive phenotypes of cancer cells through epithelial-mesenchymal transition (EMT). Hepatoma-derived growth factor (HDGF) is a radiosensitive gene of esophageal squamous cell carcinoma (ESCC). This study aimed to investigate the effect of irradiated fibroblasts on EMT and HDGF expression of ESCC. Our study demonstrated that coculture with nonirradiated fibroblasts significantly increased the invasive ability of ESCC cells and the increased invasiveness was further accelerated when they were cocultured with irradiated fibroblasts. Scattering of ESCC cells was also accelerated by the supernatant from irradiated fibroblasts. Exposure of ESCC cells to supernatant from irradiated fibroblasts resulted in decreased E-cadherin, increased vimentin in vitro and ß-catenin was demonstrated to localize to the nucleus in tumor cells with irradiated fibroblasts in vivo models. The expression of HDGF and ß-catenin were increased in both fibroblasts and ESCC cells of irradiated group in vitro and in vivo models. Interestingly, the tumor cells adjoining the stromal fibroblasts displayed strong nuclear HDGF immunoreactivity, which suggested the occurrence of a paracrine effect of fibroblasts on HDGF expression. These data suggested that irradiated fibroblasts promoted invasion, growth, EMT and HDGF expression of ESCC.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Comunicação Celular/efeitos da radiação , Transição Epitelial-Mesenquimal/efeitos da radiação , Neoplasias Esofágicas/metabolismo , Fibroblastos/efeitos da radiação , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica
19.
Cancer Cell Int ; 15: 44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26136641

RESUMO

BACKGROUND: Wilms' tumor (WT) is one of the most common malignant neoplasms of the urinary tract in children. Anaplastic histology (unfavorable histology) accounts for about 10% of whole WTs, and it is the single most important histologic predictor of treatment response and survival in patients with WT; however, until now the molecular basis of this phenotype is not very clearly. METHODS: A real-time polymerase chain reaction (PCR) array was designed and tested. Next, the gene expression profile of pediatric anaplastic histology WT and normal adjacent tissues were analyzed. These expression data were anlyzed with Multi Experiment View (MEV) cluster software further. Datasets representing genes with altered expression profiles derived from cluster analyses were imported into the Ingenuity Pathway Analysis Tool (IPA). RESULTS: 88 real-time PCR primer pairs for quantitative gene expression analysis of key genes involved in pediatric anaplastic histology WT were designed and tested. The gene expression profile of pediatric anaplastic histology WT is significantly different from adjacent normal controls; we identified 15 genes that are up-regulated and 16 genes that are down-regulated in the former. To investigate biological interactions of these differently regulated genes, datasets representing genes with altered expression profiles were imported into the IPA for further analysis, which revealed three significant networks: Cancer, Hematological Disease, and Gene Expression, which included 27 focus molecules and a significance score of 43. The IPA analysis also grouped the differentially expressed genes into biological mechanisms related to Cell Death and Survival 1.15E(-12), Cellular Development 2.84E(-11), Cellular Growth and Proliferation 2.84E(-11), Gene Expression 4.43E(-10), and DNA Replication, Recombination, and Repair 1.39E(-07). The important upstream regulators of pediatric anaplastic histology WT were TP53 and TGFß1 signaling (P = 1.15E(-14) and 3.79E(-13), respectively). CONCLUSIONS: Our study demonstrates that the gene expression profile of pediatric anaplastic histology WT is significantly different from adjacent normal tissues with real-time PCR array. We identified some genes that are dysregulated in pediatric anaplastic histology WT for the first time, such as HDAC7, and IPA analysis showed the most important pathways for pediatric anaplastic histology WT are TP53 and TGFß1 signaling. This work may provide new clues into the molecular mechanisms behind pediatric anaplastic histology WT.

20.
BMC Cancer ; 15: 756, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26490736

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is the second-most common form of leukemia in children. Aberrant DNA methylation patterns are a characteristic feature of AML. GATA4 has been suggested to be a tumor suppressor gene regulated by promoter hypermethylation in various types of human cancers although the expression and promoter methylation of GATA4 in pediatric AML is still unclear. METHODS: Transcriptional expression levels of GATA4 were evaluated by semi-quantitative and real-time PCR. Methylation status was investigated by methylation-specific PCR (MSP) and bisulfate genomic sequencing (BGS). The prognostic significance of GATA4 expression and promoter methylation was assessed in 105 cases of Chinese pediatric acute myeloid leukemia patients with clinical follow-up records. RESULTS: MSP and BGS analysis showed that the GATA4 gene promoter is hypermethylated in AML cells, such as the HL-60 and MV4-11 human myeloid leukemia cell lines. 5-Aza treatment significantly upregulated GATA4 expression in HL-60 and MV4-11 cells. Aberrant methylation of GATA4 was observed in 15.0 % (3/20) of the normal bone marrow control samples compared to 56.2 % (59/105) of the pediatric AML samples. GATA4 transcript levels were significantly decreased in AML patients (33.06 ± 70.94; P = 0.011) compared to normal bone marrow/idiopathic thrombocytopenic purpura controls (116.76 ± 105.39). GATA4 promoter methylation was correlated with patient leukocyte counts (WBC, white blood cells) (P = 0.035) and minimal residual disease MRD (P = 0.031). Kaplan-Meier survival analysis revealed significantly shorter overall survival time in patients with GATA4 promoter methylation (P = 0.014). CONCLUSIONS: Epigenetic inactivation of GATA4 by promoter hypermethylation was observed in both AML cell lines and pediatric AML samples; our study implicates GATA4 as a putative tumor suppressor gene in pediatric AML. In addition, our findings imply that GATA4 promoter methylation is correlated with WBC and MRD. Kaplan-Meier survival analysis revealed significantly shorter overall survival in pediatric AML with GATA4 promoter methylation but multivariate analysis shows that it is not an independent factor. However, further research focusing on the mechanism of GATA4 in pediatric leukemia is required.


Assuntos
Metilação de DNA/genética , Fator de Transcrição GATA4/genética , Leucemia Mieloide Aguda/genética , Prognóstico , Adolescente , Criança , Pré-Escolar , Ilhas de CpG/genética , Feminino , Fator de Transcrição GATA4/biossíntese , Regulação Leucêmica da Expressão Gênica , Células HL-60 , Humanos , Estimativa de Kaplan-Meier , Leucemia Mieloide Aguda/patologia , Masculino , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA