Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 570
Filtrar
1.
Cell ; 184(7): 1724-1739.e16, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33667348

RESUMO

Divergence of gene function is a hallmark of evolution, but assessing functional divergence over deep time is not trivial. The few alleles available for cross-species studies often fail to expose the entire functional spectrum of genes, potentially obscuring deeply conserved pleiotropic roles. Here, we explore the functional divergence of WUSCHEL HOMEOBOX9 (WOX9), suggested to have species-specific roles in embryo and inflorescence development. Using a cis-regulatory editing drive system, we generate a comprehensive allelic series in tomato, which revealed hidden pleiotropic roles for WOX9. Analysis of accessible chromatin and conserved cis-regulatory sequences identifies the regions responsible for this pleiotropic activity, the functions of which are conserved in groundcherry, a tomato relative. Mimicking these alleles in Arabidopsis, distantly related to tomato and groundcherry, reveals new inflorescence phenotypes, exposing a deeply conserved pleiotropy. We suggest that targeted cis-regulatory mutations can uncover conserved gene functions and reduce undesirable effects in crop improvement.


Assuntos
Genes de Plantas , Pleiotropia Genética/genética , Proteínas de Homeodomínio/genética , Proteínas de Plantas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Alelos , Arabidopsis/genética , Sistemas CRISPR-Cas/genética , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Inflorescência/genética , Solanum lycopersicum/genética , Mutagênese , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Solanaceae/genética , Solanaceae/crescimento & desenvolvimento
2.
Plant Cell ; 34(2): 867-888, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34865154

RESUMO

Plants respond to wounding stress by changing gene expression patterns and inducing the production of hormones including jasmonic acid. This wounding transcriptional response activates specialized metabolism pathways such as the glucosinolate pathways in Arabidopsis thaliana. While the regulatory factors and sequences controlling a subset of wound-response genes are known, it remains unclear how wound response is regulated globally. Here, we how these responses are regulated by incorporating putative cis-regulatory elements, known transcription factor binding sites, in vitro DNA affinity purification sequencing, and DNase I hypersensitive sites to predict genes with different wound-response patterns using machine learning. We observed that regulatory sites and regions of open chromatin differed between genes upregulated at early and late wounding time-points as well as between genes induced by jasmonic acid and those not induced. Expanding on what we currently know, we identified cis-elements that improved model predictions of expression clusters over known binding sites. Using a combination of genome editing, in vitro DNA-binding assays, and transient expression assays using native and mutated cis-regulatory elements, we experimentally validated four of the predicted elements, three of which were not previously known to function in wound-response regulation. Our study provides a global model predictive of wound response and identifies new regulatory sequences important for wounding without requiring prior knowledge of the transcriptional regulators.


Assuntos
Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Ciclopentanos/farmacologia , Redes e Vias Metabólicas , Modelos Biológicos , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas , Sequências Reguladoras de Ácido Nucleico , Reprodutibilidade dos Testes , Fatores de Transcrição/genética
3.
Nature ; 569(7757): 537-541, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31068693

RESUMO

The discovery of the quantum Hall effect (QHE)1,2 in two-dimensional electronic systems has given topology a central role in condensed matter physics. Although the possibility of generalizing the QHE to three-dimensional (3D) electronic systems3,4 was proposed decades ago, it has not been demonstrated experimentally. Here we report the experimental realization of the 3D QHE in bulk zirconium pentatelluride (ZrTe5) crystals. We perform low-temperature electric-transport measurements on bulk ZrTe5 crystals under a magnetic field and achieve the extreme quantum limit, where only the lowest Landau level is occupied, at relatively low magnetic fields. In this regime, we observe a dissipationless longitudinal resistivity close to zero, accompanied by a well-developed Hall resistivity plateau proportional to half of the Fermi wavelength along the field direction. This response is the signature of the 3D QHE and strongly suggests a Fermi surface instability driven by enhanced interaction effects in the extreme quantum limit. By further increasing the magnetic field, both the longitudinal and Hall resistivity increase considerably and display a metal-insulator transition, which represents another magnetic-field-driven quantum phase transition. Our findings provide experimental evidence of the 3D QHE and a promising platform for further exploration of exotic quantum phases and transitions in 3D systems.

4.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38741271

RESUMO

This study investigates abnormalities in cerebellar-cerebral static and dynamic functional connectivity among patients with acute pontine infarction, examining the relationship between these connectivity changes and behavioral dysfunction. Resting-state functional magnetic resonance imaging was utilized to collect data from 45 patients within seven days post-pontine infarction and 34 normal controls. Seed-based static and dynamic functional connectivity analyses identified divergences in cerebellar-cerebral connectivity features between pontine infarction patients and normal controls. Correlations between abnormal functional connectivity features and behavioral scores were explored. Compared to normal controls, left pontine infarction patients exhibited significantly increased static functional connectivity within the executive, affective-limbic, and motor networks. Conversely, right pontine infarction patients demonstrated decreased static functional connectivity in the executive, affective-limbic, and default mode networks, alongside an increase in the executive and motor networks. Decreased temporal variability of dynamic functional connectivity was observed in the executive and default mode networks among left pontine infarction patients. Furthermore, abnormalities in static and dynamic functional connectivity within the executive network correlated with motor and working memory performance in patients. These findings suggest that alterations in cerebellar-cerebral static and dynamic functional connectivity could underpin the behavioral dysfunctions observed in acute pontine infarction patients.


Assuntos
Infartos do Tronco Encefálico , Cerebelo , Imageamento por Ressonância Magnética , Vias Neurais , Ponte , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Cerebelo/fisiopatologia , Cerebelo/diagnóstico por imagem , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Ponte/diagnóstico por imagem , Ponte/fisiopatologia , Infartos do Tronco Encefálico/fisiopatologia , Infartos do Tronco Encefálico/diagnóstico por imagem , Idoso , Adulto , Córtex Cerebral/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem
5.
Proc Natl Acad Sci U S A ; 119(40): e2203783119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161901

RESUMO

ASPM is a protein encoded by primary microcephaly 5 (MCPH5) and is responsible for ensuring spindle position during mitosis and the symmetrical division of neural stem cells. We recently reported that ASPM promotes homologous recombination (HR) repair of DNA double strand breaks. However, its potential role in DNA replication and replication stress response remains elusive. Interestingly, we found that ASPM is dispensable for DNA replication under unperturbed conditions. However, ASPM is enriched at stalled replication forks in a RAD17-dependent manner in response to replication stress and promotes RAD9 and TopBP1 loading onto chromatin, facilitating ATR-CHK1 activation. ASPM depletion results in failed fork restart and nuclease MRE11-mediated nascent DNA degradation at the stalled replication fork. The overall consequence is chromosome instability and the sensitization of cancer cells to replication stressors. These data support a role for ASPM in loading RAD17-RAD9/TopBP1 onto chromatin to activate the ATR-CHK1 checkpoint and ultimately ensure genome stability.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Quinase 1 do Ponto de Checagem , Replicação do DNA , Proteínas do Tecido Nervoso , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Cromatina/genética , Reparo do DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Camundongos , Microcefalia/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Proteínas Nucleares/metabolismo
6.
J Biol Chem ; 299(8): 105055, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37454738

RESUMO

Post-translational modifications including protein ubiquitination regulate a plethora of cellular processes in distinct manners. RNA N6-methyladenosine is the most abundant post-transcriptional modification on mammalian mRNAs and plays important roles in various physiological and pathological conditions including hematologic malignancies. We previously determined that the RNA N6-methyladenosine eraser ALKBH5 is necessary for the maintenance of acute myeloid leukemia (AML) stem cell function, but the post-translational modifications involved in ALKBH5 regulation remain elusive. Here, we show that deubiquitinase ubiquitin-specific peptidase 9X (USP9X) stabilizes ALKBH5 and promotes AML cell survival. Through the use of mass spectrometry as an unbiased approach, we identify USP9X and confirm that it directly binds to ALKBH5. USP9X stabilizes ALKBH5 by removing the K48-linked polyubiquitin chain at K57. Using human myeloid leukemia cells and a murine AML model, we find that genetic knockdown or pharmaceutical inhibition of USP9X inhibits leukemia cell proliferation, induces apoptosis, and delays AML development. Ectopic expression of ALKBH5 partially mediates the function of USP9X in AML. Overall, this study uncovers deubiquitinase USP9X as a key for stabilizing ALKBH5 expression and reveals the important role of USP9X in AML, which provides a promising therapeutic strategy for AML treatment in the clinic.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Leucemia Mieloide Aguda , Ubiquitina Tiolesterase , Animais , Humanos , Camundongos , Homólogo AlkB 5 da RNA Desmetilase/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Leucemia Mieloide Aguda/genética , RNA , Ubiquitina Tiolesterase/genética , Ubiquitinação
7.
BMC Genomics ; 25(1): 418, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679745

RESUMO

BACKGROUND: Plant specialized (or secondary) metabolites (PSM), also known as phytochemicals, natural products, or plant constituents, play essential roles in interactions between plants and environment. Although many research efforts have focused on discovering novel metabolites and their biosynthetic genes, the resolution of metabolic pathways and identified biosynthetic genes was limited by rudimentary analysis approaches and enormous number of candidate genes. RESULTS: Here we integrated state-of-the-art automated machine learning (ML) frame AutoGluon-Tabular and multi-omics data from Arabidopsis to predict genes encoding enzymes involved in biosynthesis of plant specialized metabolite (PSM), focusing on the three main PSM categories: terpenoids, alkaloids, and phenolics. We found that the related features of genomics and proteomics were the top two crucial categories of features contributing to the model performance. Using only these key features, we built a new model in Arabidopsis, which performed better than models built with more features including those related with transcriptomics and epigenomics. Finally, the built models were validated in maize and tomato, and models tested for maize and trained with data from two other species exhibited either equivalent or superior performance to intraspecies predictions. CONCLUSIONS: Our external validation results in grape and poppy on the one hand implied the applicability of our model to the other species, and on the other hand showed enormous potential to improve the prediction of enzymes synthesizing PSM with the inclusion of valid data from a wider range of species.


Assuntos
Arabidopsis , Genômica , Aprendizado de Máquina , Arabidopsis/genética , Arabidopsis/metabolismo , Genômica/métodos , Alcaloides/biossíntese , Alcaloides/metabolismo , Terpenos/metabolismo , Proteômica/métodos , Metabolômica/métodos , Genes de Plantas , Plantas/genética , Plantas/metabolismo , Fenóis/metabolismo , Multiômica
8.
Am J Physiol Renal Physiol ; 326(5): F768-F779, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38450435

RESUMO

Mitochondria are essential organelles in the human body, serving as the metabolic factory of the whole organism. When mitochondria are dysfunctional, it can affect all organs of the body. The kidney is rich in mitochondria, and its function is closely related to the development of kidney diseases. Studying the relationship between mitochondria and kidney disease progression is of great interest. In the past decade, scientists have made inspiring progress in investigating the role of mitochondria in the pathophysiology of renal diseases. This article discusses various mechanisms for maintaining mitochondrial quality, including mitochondrial energetics, mitochondrial biogenesis, mitochondrial dynamics, mitochondrial DNA repair, mitochondrial proteolysis and the unfolded protein response, mitochondrial autophagy, mitochondria-derived vesicles, and mitocytosis. The article also highlights the cross talk between mitochondria and other organelles, with a focus on kidney diseases. Finally, the article concludes with an overview of mitochondria-related clinical research.


Assuntos
Nefropatias , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Nefropatias/fisiopatologia , Nefropatias/metabolismo , Nefropatias/patologia , Animais , Rim/metabolismo , Rim/fisiopatologia , Rim/patologia , Metabolismo Energético , Autofagia , Dinâmica Mitocondrial , Mitofagia , Resposta a Proteínas não Dobradas , Biogênese de Organelas
9.
Opt Express ; 32(6): 9634-9643, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571193

RESUMO

Cylindrical vector beams (CVBs) exhibit great potential for multiplexing communication, owing to their mode orthogonality and compatibility with conventional wavelength multiplexing techniques. However, the practical application of CVB multiplexing communication faces challenges due to the lack of effective spatial polarization manipulation technologies for (de)multiplexing multi-dimensional physical dimensions of CVBs. Herein, we introduce a wavelength- and polarization-sensitive cascaded phase modulation strategy that utilizes multiple coaxial metasurfaces for multi-dimensional modulation of CVBs. By leveraging the spin-dependent phase modulation mechanism, these metasurfaces enable the independent transformation of the two orthogonal polarization components of CVB modes. Combined with the wavelength sensitivity of Fresnel diffraction in progressive phase modulation, this approach establishes a high-dimensional mapping relationship among CVB modes, wavelengths, spatial positions, and Gaussian fundamental modes, thereby facilitating multi-dimensional (de)multiplexing involving CVB modes and wavelengths. As a proof of concept, we theoretically demonstrate a 9-channel multi-dimensional multiplexing system, successfully achieving joint (de)multiplexing of 3 CVB modes (1, 2, and 3) and 3 wavelengths (1550 nm, 1560 nm, and 1570 nm) with a diffraction efficiency exceeding 80%. Additionally, we show the transmission of 16-QAM signals across 9 channels with the bit-error-rates below 10-5. By combining the integrability of metasurfaces with the high-dimensional wavefront manipulation capabilities of multilevel modulation, our strategy can effectively address the diverse demands of different wavelengths and CVB modes in optical communication.

10.
Virol J ; 21(1): 97, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671522

RESUMO

BACKGROUND: Despite the existence of available therapeutic interventions for HIV-1, this virus remains a significant global threat, leading to substantial morbidity and mortality. Within HIV-1-infected cells, the accessory viral protein r (Vpr) exerts control over diverse biological processes, including cell cycle progression, DNA repair, and apoptosis. The regulation of gene expression through DNA methylation plays a crucial role in physiological processes, exerting its influence without altering the underlying DNA sequence. However, a thorough examination of the impact of Vpr on DNA methylation in human CD4 + T cells has not been conducted. METHODS: In this study, we employed base-resolution whole-genome bisulfite sequencing (WGBS), real-time quantitative RCR and western blot to explore the effect of Vpr on DNA methylation of host cells under HIV-1 infection. RESULTS: We observed that HIV-1 infection leads to elevated levels of global DNA methylation in primary CD4 + T cells. Specifically, Vpr induces significant modifications in DNA methylation patterns, particularly affecting regions within promoters and gene bodies. These alterations notably influence genes related to immune-related pathways and olfactory receptor activity. Moreover, Vpr demonstrates a distinct ability to diminish the levels of methylation in histone genes. CONCLUSIONS: These findings emphasize the significant involvement of Vpr in regulating transcription through the modulation of DNA methylation patterns. Together, the results of this investigation will considerably enhance our understanding of the influence of HIV-1 Vpr on the DNA methylation of host cells, offer potential avenues for the development of more effective treatments.


Assuntos
Linfócitos T CD4-Positivos , Metilação de DNA , Infecções por HIV , HIV-1 , Produtos do Gene vpr do Vírus da Imunodeficiência Humana , Humanos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , HIV-1/genética , HIV-1/fisiologia , HIV-1/imunologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Infecções por HIV/virologia , Infecções por HIV/imunologia , Infecções por HIV/genética , Regiões Promotoras Genéticas , Regulação da Expressão Gênica
11.
Pediatr Res ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710942

RESUMO

BACKGROUND: This study aims to investigate the role of endoplasmic reticulum stress (ER stress) in human dermal lymphatic endothelial cells (HDLECs) and lymphatic malformations (LMs) and its relationship with aerobic glycolysis and inflammation. METHODS: The proliferation and apoptosis of HDLECs were examined with lipopolysaccharide (LPS) treatment. ER stress-associated proteins and glycolysis-related markers were detected by western blot. Glycolysis indexes were detected by seahorse analysis and lactic acid production assay kits. Immunohistochemistry was used to reveal the ER stress state of lymphatic endothelial cells (LECs) in LMs. RESULTS: LPS induced ER stress in HDLECs but did not trigger detectable apoptosis. Intriguingly, LPS-treated HDLECs also showed increased glycolysis flux. Knockdown of Hexokinase 2, a key enzyme for aerobic glycolysis, significantly inhibited the ability of HDLECs to resist ER stress-induced apoptosis. Moreover, compared to normal skin, glucose-regulated protein 78 (GRP78/BIP), and phosphorylation protein kinase R-like kinase (p-PERK), two key ER stress-associated markers, were upregulated in LECs of LMs, which was correlated with the inflected state. In addition, excessively activated ER stress inhibited the progression of LMs in rat models. CONCLUSIONS: These data indicate that glycolysis could rescue activated ER stress in HDLECs, which is required for the accelerated development of LMs. IMPACT: Inflammation enhances both ER stress and glycolysis in LECs while glycolysis is required to attenuate the pro-apoptotic effect of ER stress. Endoplasmic reticulum (ER) stress is activated in lymphatic endothelial cells (LECs) of LMs, especially in inflammatory condition. The expression of ER stress-related proteins is increased in LMs and correlated with Hexokinase 2 expression. Pharmacological activation of ER stress suppresses the formation of LM lesions in the rat model. ER stress may be a promising and effective therapeutic target for the treatment of LMs.

12.
J Nucl Cardiol ; 34: 101823, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360262

RESUMO

OBJECTIVES: This study assessed the imaging characteristics, pharmacokinetics and safety of XTR004, a novel 18F-labeled Positron Emission Tomography (PET) myocardial perfusion imaging tracer, after a single injection at rest in humans. METHODS: Eleven healthy subjects (eight men and three women) received intravenous XTR004 (239-290 megabecquerel [MBq]). Safety profiles were monitored on the dosing day and three follow-up visits. Multiple whole-body PET scans were conducted over 4.7 h to evaluate biodistribution and radiation dosimetry. Blood and urine samples collected for 7.25 h were metabolically corrected to characterize pharmacokinetics. RESULTS: In the first 0-12 min PET images of ten subjects, liver (26.81 ± 4.01), kidney (11.43 ± 2.49), lung (6.75 ± 1.76), myocardium (4.72 ± 0.67) and spleen (3.1 ± 0.84) exhibited the highest percentage of the injected dose (%ID). Myocardial uptake of XTR004 in the myocardium initially reached 4.72 %ID and 7.06 g/mL, and negligibly changed within an hour (Δ: 7.20%, 5.95%). The metabolically corrected plasma peaked at 2.5 min (0.0013896 %ID/g) and halved at 45.2 min. Whole-body effective dose was 0.0165 millisievert (mSv)/MBq. Cumulative urine excretion was 8.18%. Treatment-related adverse events occurred in seven out of eleven subjects (63.6%), but no severe adverse event was reported. CONCLUSIONS: XTR004 demonstrated a favorable safety profile, rapid, high, and stable myocardial uptake and excellent potential for PET myocardial perfusion imaging (MPI). Further exploration of XTR004 PET MPI for detecting myocardial ischemia is warranted.


Assuntos
Tomografia por Emissão de Pósitrons , Radiometria , Masculino , Humanos , Feminino , Distribuição Tecidual , Radiometria/métodos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Perfusão
13.
Acta Pharmacol Sin ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627462

RESUMO

Despite the effectiveness of antiretroviral therapy (ART) in prolonging the lifespan of individuals infected with HIV-1, it does not offer a cure for acquired immunodeficiency syndrome (AIDS). The "block and lock" approach aims to maintain the provirus in a state of extended transcriptional arrest. By employing the "block and lock" strategy, researchers endeavor to impede disease progression by preventing viral rebound for an extended duration following patient stops receiving ART. The crux of this strategy lies in the utilization of latency-promoting agents (LPAs) that are suitable for impeding HIV-1 provirus transcription. However, previously documented LPAs exhibited limited efficacy in primary cells or samples obtained from patients, underscoring the significance of identifying novel LPAs that yield substantial outcomes. In this study, we performed high-throughput screening of FDA-approved compound library in the J-Lat A2 cell line to discover more efficacious LPAs. We discovered ripretinib being an LPA candidate, which was validated and observed to hinder proviral activation in cell models harboring latent infections, as well as CD4+ T cells derived from infected patients. We demonstrated that ripretinib effectively impeded proviral activation through inhibition of the PI3K-AKT-mTOR signaling pathway in the HIV-1 latent cells, thereby suppressing the opening states of cellular chromatin. The results of this research offer a promising drug candidate for the implementation of the "block and lock" strategy in the pursuit of an HIV-1 cure.

14.
Acta Pharmacol Sin ; 45(6): 1276-1286, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38438580

RESUMO

Telomere repeat binding factor 2 (TRF2), a critical element of the shelterin complex, plays a vital role in the maintenance of genome integrity. TRF2 overexpression is found in a wide range of malignant cancers, whereas its down-regulation could cause cell death. Despite its potential role, the selectively small-molecule inhibitors of TRF2 and its therapeutic effects on liver cancer remain largely unknown. Our clinical data combined with bioinformatic analysis demonstrated that TRF2 is overexpressed in liver cancer and that high expression is associated with poor prognosis. Flavokavain B derivative FKB04 potently inhibited TRF2 expression in liver cancer cells while having limited effects on the other five shelterin subunits. Moreover, FKB04 treatment induced telomere shortening and increased the amounts of telomere-free ends, leading to the destruction of T-loop structure. Consequently, FKB04 promoted liver cancer cell senescence without modulating apoptosis levels. In corroboration with these findings, FKB04 inhibited tumor cell growth by promoting telomeric TRF2 deficiency-induced telomere shortening in a mouse xenograft tumor model, with no obvious side effects. These results demonstrate that TRF2 is a potential therapeutic target for liver cancer and suggest that FKB04 may be a selective small-molecule inhibitor of TRF2, showing promise in the treatment of liver cancer.


Assuntos
Senescência Celular , Neoplasias Hepáticas , Encurtamento do Telômero , Proteína 2 de Ligação a Repetições Teloméricas , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/antagonistas & inibidores , Proteína 2 de Ligação a Repetições Teloméricas/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Animais , Encurtamento do Telômero/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Masculino , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Mol Ther ; 31(2): 398-408, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36433649

RESUMO

Limb-girdle muscular dystrophy type R25 (LGMDR25) is caused by recessive mutations in BVES encoding a cAMP-binding protein, characterized by progressive muscular dystrophy with deteriorating muscle function and impaired cardiac conduction in patients. There is currently no therapeutic treatment for LGMDR25 patients. Here we report the efficacy and safety of recombinant adeno-associated virus 9 (AAV9)-mediated systemic delivery of human BVES driven by a muscle-specific promoter MHCK7 (AAV9.BVES) in BVES-knockout (BVES-KO) mice. AAV9.BVES efficiently transduced the cardiac and skeletal muscle tissues when intraperitoneally injected into neonatal BVES-KO mice. AAV9.BVES dramatically improved body weight gain, muscle mass, muscle strength, and exercise performance in BVES-KO mice regardless of sex. AAV9.BVES also significantly ameliorated the histopathological features of muscular dystrophy. The heart rate reduction was also normalized in BVES-KO mice under exercise-induced stress following systemic AAV9.BVES delivery. Moreover, intravenous AAV9.BVES administration into adult BVES-KO mice after the disease onset also resulted in substantial improvement in body weight, muscle mass, muscle contractility, and stress-induced heart rhythm abnormality. No obvious toxicity was detected. Taken together, these results provide the proof-of-concept evidence to support the AAV9.BVES gene therapy for LGMDR25.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Camundongos , Animais , Humanos , Dependovirus/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Músculo Esquelético/metabolismo , Proteínas/metabolismo , Camundongos Knockout , Proteínas Musculares/genética , Moléculas de Adesão Celular/metabolismo
16.
Appl Microbiol Biotechnol ; 108(1): 380, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888634

RESUMO

Obstructive sleep apnea (OSA) can lead to intestinal injury, endotoxemia, and disturbance of intestinal flora. Additionally, as a crucial component of the endocannabinoid system, some studies have demonstrated that cannabinoid 1 (CB1) receptors are closely linked to the multiple organ dysfunction triggered by OSA. However, the role of the CB1 receptor in alleviating OSA-induced colon injury remains unclear. Here, through the construction of the OSA classic model, we found that the colon tissue of chronic intermittent hypoxia (CIH)-induced mice exhibited an overexpression of the CB1 receptor. The results of hematoxylin-eosin staining and transmission electron microscopy revealed that inhibition of the CB1 receptor could decrease the gap between the mucosa and muscularis mucosae, alleviate mitochondrial swelling, reduce microvilli shedding, and promote the recovery of tight junctions of CIH-induced mice. Furthermore, CB1 receptor inhibition reduced the levels of metabolic endotoxemia and inflammatory responses, exhibiting significant protective effects on the colon injury caused by CIH. At the molecular level, through western blotting and real-time polymerase chain reaction techniques, we found that inhibiting the CB1 receptor can significantly increase the expression of ZO-1 and Occludin proteins, which are closely related to the maintenance of intestinal mucosal barrier function. Through 16S rRNA high-throughput sequencing and short-chain fatty acid (SCFA) determination, we found that inhibition of the CB1 receptor increased the diversity of the microbial flora and controlled the makeup of intestinal flora. Moreover, butyric acid concentration and the amount of SCFA-producing bacteria, such as Ruminococcaceae and Lachnospiraceae, were both markedly elevated by CB1 receptor inhibition. The results of the spearman correlation study indicated that Lachnospiraceae showed a positive association with both ZO-1 and Occludin but was negatively correlated with the colon CB1 receptor, IL-1ß, and TNF-α. According to this study, we found that inhibiting CB1 receptor can improve CIH-induced colon injury by regulating gut microbiota, reducing mucosal damage and promoting tight junction recovery. KEY POINTS: •CIH leads to overexpression of CB1 receptor in colon tissue. •CIH causes intestinal flora disorder, intestinal mucosal damage, and disruption of tight junctions. •Inhibition of CB1 receptor can alleviate the colon injury caused by CIH through regulating the gut microbiota, reducing mucosal injury, and promoting tight junction recovery.


Assuntos
Colo , Modelos Animais de Doenças , Mucosa Intestinal , Receptor CB1 de Canabinoide , Animais , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/genética , Camundongos , Colo/patologia , Colo/microbiologia , Colo/metabolismo , Masculino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Hipóxia/metabolismo , Camundongos Endogâmicos C57BL , Proteína da Zônula de Oclusão-1/metabolismo , Ocludina/metabolismo , Ocludina/genética , Microbioma Gastrointestinal , Junções Íntimas/metabolismo
17.
Arch Toxicol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955863

RESUMO

5F-EDMB-PICA is a newly emerged synthetic cannabinoid which has been characterized in relevant literature in recent years. Although phase-I metabolites of 5F-EDMB-PICA have been partly reported, the phase-II metabolism of this synthetic cannabinoid has not been studied yet. In this study, we established a phase-I and phase-II metabolism model in vitro by using pooled human liver microsomes, NADPH regeneration system, and UGT incubation system, with 1 mg/ml 5F-EDMB-PICA added and incubated at 37 °C for 60 min. The metabolites were analyzed by Q Exactive™ Hybrid Quadrupole-Orbitrap™ Mass Spectrometer, via which we discovered and identified 14 phase-I metabolites and 4 phase-II metabolites of 5F-EDMB-PICA, involving pathways such as ester hydrolysis, dehydrogenation, hydrolytic defluorination, hydroxylation, dihydroxylation, glucuronidation, and combinations of the pathways mentioned above. We recommend considering the monohydroxylation metabolites (M9, M10) with higher content and intact ester and 5-fluoropentyl structures as potential biomarkers of 5F-EDMB-PICA.

18.
Sleep Breath ; 28(1): 133-149, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37428351

RESUMO

PURPOSE: This study evaluated the effects of chronic intermittent hypoxia (CIH) at different times on the mitochondria of mouse hearts and H9C2 cardiomyocytes to determine the role of the cannabinoid receptor 1 (CB1R)/adenosine 5'-monophosphate-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) signaling pathway. METHODS: Animal and cellular CIH models were prepared in an intermittent hypoxia chamber at different times. The cardiac function of mice was determined, and heart tissue and ultrastructural changes were observed. Apoptosis, reactive oxygen species (ROS), and mitochondrial membrane potential were detected, and MitoTracker™ staining was performed to observe cardiomyocyte mitochondria. Western blot, immunohistochemistry, and cellular immunofluorescence were also performed. RESULTS: In the short-term CIH group, increases in mouse ejection fraction (EF) and heart rate (HR); mitochondrial division; ROS and mitochondrial membrane potential; and the expression levels of CB1R, AMPK, and PGC-1α were observed in vivo and in vitro. In the long-term CIH group, the EF and HR increased, the myocardial injury and mitochondrial damage were more severe, mitochondrial synthesis decreased, the apoptosis percentage and ROS increased, mitochondrial fragmentation increased, membrane potential decreased, CB1R expression increased, and AMPK and PGC-1α expression levels decreased. Targeted blocking of CB1R can increase AMPK and PGC-1α, reduce damage attributed to long-term CIH in mouse hearts and H9C2 cells, and promote mitochondrial synthesis. CONCLUSION: Short-term CIH can directly activate the AMPK/PGC-1α pathway, promote mitochondrial synthesis in cardiomyocytes, and protect cardiac structure and function. Long-term CIH can increase CB1R expression and inhibit the AMPK/PGC-1α pathway, resulting in structural damage, the disturbance of myocardial mitochondria synthesis, and further alterations in the cardiac structure. After targeted blocking of CB1R, levels of AMPK and PGC-1α increased, alleviating damage to the heart and cardiomyocytes caused by long-term CIH.


Assuntos
Proteínas Quinases Ativadas por AMP , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Hipóxia/metabolismo
19.
Aging Clin Exp Res ; 36(1): 46, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381262

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a major postoperative consequence, affecting prognosis of older patients. Effective prediction or intervention to predict or prevent the incidence of AKI is currently unavailable. AIMS: Dynamic changes of renal tissue oxygen saturation (RSO2) during surgery process are understudied and we intended to explore the distinct trajectories and associations with postoperative AKI. METHODS: This was a secondary analysis including data for older patients who underwent open hepatectomy surgery with informed consent. Latent class mixed models (LCMM) method was conducted to generate trajectories of intraoperative renal tissue RSO2 through different time points. The primary outcome was postoperative 7-day AKI. The univariate and multivariate regression analysis were performed to identify the relationship between distinct trajectories of renal tissue RSO2 and the risk of AKI. Meanwhile, the prediction efficacy of renal tissue RSO2 at different time points was compared to find potential intervention timing. RESULTS: Postoperative AKI occurred in 14 (15.2%) of 92 patients. There are two distinct renal tissue RSO2 trajectories, with 44.6% generating "high-downwards" trajectory and 55.4% generating "consistently-high" trajectory. Patients with "high-downwards" trajectory had significantly higher risk of postoperative AKI than another group (Unadjusted OR [Odds Ratio] = 3.790, 95% CI [Confidence Interval]: 1.091-13.164, p = 0.036; Adjusted OR = 3.973, 95% CI 1.020-15.478, p = 0.047, respectively). Predictive performance was 71.4% sensitivity and 60.3% specificity for "high-downwards" trajectory of renal tissue RSO2 to identify AKI. Furthermore, the renal tissue RSO2 exhibited the lowest level and the best results in terms of the sensitivity during the hepatic occlusion period, may be considered as a "time of concern". CONCLUSIONS: Older patients undergoing hepatectomy may show high-downwards trajectory of renal tissue RSO2, indicating a higher risk of AKI, and the lowest level was identified during the hepatic occlusion period. These findings may help to provide potential candidates for future early recognition of deterioration of kidney function and guide interventions.


Assuntos
Injúria Renal Aguda , Saturação de Oxigênio , Humanos , Estudos Prospectivos , Injúria Renal Aguda/etiologia , Rim/cirurgia , Consentimento Livre e Esclarecido
20.
Brain Inj ; 38(9): 716-726, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-38661324

RESUMO

OBJECTIVE: This study aimed to establish a permanent middle cerebral artery occlusion (pMCAO) model in rats to simulate the pathological process of stroke patients with no reperfusion. And screen highly sensitive items that could be used to detect long-term behavioral abilities in rat of intraluminal suture models. METHOD: Established the pMCAO model then tested the rats for the bilateral asymmetry, modified neurological severity score, grid-walking, cylinder, rotating, and water maze test from week 1 to week 16. RESULTS: The infarct volume of the model rats was stable (26.72% ±1.86%). The sensorimotor test of bilateral asymmetry, grid-walking, cylinder, and mNSS test showed significant differences from week 1 to week 16 after injury. The water maze test at week 16 showed significant differences in spatial exploration and learning ability between the two groups. We confirmed that there was no significant difference between MRI and TTC staining in detecting the degree of brain injury, which facilitated the diversity of subsequent detection methods. We also confirmed that at multiple time points, grid, cylinder and water maze test were significantly positively correlated with rat brain infarct volume. CONCLUSION: They are suitable for the long-term observation of behaviors in the sequela stage of stroke in rat.


Assuntos
Modelos Animais de Doenças , Infarto da Artéria Cerebral Média , Aprendizagem em Labirinto , Ratos Sprague-Dawley , Animais , Ratos , Masculino , Aprendizagem em Labirinto/fisiologia , Comportamento Animal/fisiologia , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA