Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Mol Biol ; 108(6): 585-603, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35217965

RESUMO

KEY MESSAGE: Salt tolerance at germination and seedling growth stages was investigated. GWAS revealed nine genomic regions with pleiotropic effects on salt tolerance. Salt tolerant genotypes were identified for future breeding program. With 20% of the irrigated land worldwide affected by it, salinity is a serious threat to plant development and crop production. While wheat is the most stable food source worldwide, it has been classified as moderately tolerant to salinity. In several crop plants; such as barley, maize and rice, it has been shown that salinity tolerance at seed germination and seedling establishment is under polygenic control. As yield was the ultimate goal of breeders and geneticists, less attention has been paid to understanding the genetic architecture of salt tolerance at early stages. Thus, the genetic control of salt tolerance at these stages is poorly understood relative to the late stages. In the current study, 176 genotypes of spring wheat were tested for salinity tolerance at seed germination and seedling establishment. Genome-Wide Association Study (GWAS) has been used to identify the genomic regions/genes conferring salt tolerance at seed germination and seedling establishment. Salinity stress negatively impacted all germination and seedling development parameters. A set of 137 SNPs showed significant association with the traits of interest. Across the whole genome, 33 regions showed high linkage disequilibrium (LD). These high LD regions harbored 15 SNPs with pleiotropic effect (i.e. SNPs that control more than one trait). Nine genes belonging to different functional groups were found to be associated with the pleiotropic SNPs. Noteworthy, chromosome 2B harbored the gene TraesCS2B02G135900 that acts as a potassium transporter. Remarkably, one SNP marker, reported in an early study, associated with salt tolerance was validated in this study. Our findings represent potential targets of genetic manipulation to understand and improve salinity tolerance in wheat.


Assuntos
Germinação , Plântula , Estudo de Associação Genômica Ampla , Germinação/genética , Desequilíbrio de Ligação , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Tolerância ao Sal/genética , Plântula/genética , Triticum/genética
2.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36142672

RESUMO

Climate change is affecting the Earth's environment through temperature fluctuation, rainfall patterns, wind, and radiation [...].


Assuntos
Genes de Plantas , Estresse Fisiológico , Mudança Climática , Estresse Fisiológico/genética
3.
BMC Genomics ; 22(1): 55, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446108

RESUMO

BACKGROUND: During the bread wheat speciation by polyploidization, a series of genome rearrangement and sequence recombination occurred. Simple sequence repeat (SSR) sequences, predominately located in heterochromatic regions of chromosomes, are the effective marker for tracing the genomic DNA sequence variations. However, to date the distribution dynamics of SSRs on chromosomes of bread wheat and its donors, including diploid and tetraploid Triticum urartu, Aegilops speltoides, Aegilops tauschii, Triticum turgidum ssp. dicocoides, reflecting the genome evolution events during bread wheat formation had not been comprehensively investigated. RESULTS: The genome evolution was studied by comprehensively comparing the distribution patterns of (AAC)n, (AAG)n, (AGC)n and (AG)n in bread wheat Triticum aestivum var. Chinese Spring and its progenitors T. urartu, A. speltoides, Ae. tauschii, wild tetroploid emmer wheat T. dicocoides, and cultivated emmer wheat T. dicoccum. Results indicated that there are specific distribution patterns in different chromosomes from different species for each SSRs. They provided efficient visible markers for identification of some individual chromosomes and SSR sequence evolution tracing from the diploid progenitors to hexaploid wheat. During wheat speciation, the SSR sequence expansion occurred predominately in the centromeric and pericentromeric regions of B genome chromosomes accompanied by little expansion and elimination on other chromosomes. This result indicated that the B genome might be more sensitive to the "genome shock" and more changeable during wheat polyplodization. CONCLUSIONS: During the bread wheat evolution, SSRs including (AAC)n, (AAG)n, (AGC)n and (AG)n in B genome displayed the greatest changes (sequence expansion) especially in centromeric and pericentromeric regions during the polyploidization from Ae. speltoides S genome, the most likely donor of B genome. This work would enable a better understanding of the wheat genome formation and evolution and reinforce the viewpoint that B genome was originated from S genome.


Assuntos
Pão , Triticum , Cromossomos , Evolução Molecular , Genoma de Planta , Repetições de Microssatélites/genética , Poliploidia , Triticum/genética
4.
BMC Plant Biol ; 21(1): 129, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663390

RESUMO

BACKGROUND: Thinopyrum intermedium (2n = 6x = 42) is an important wild perennial Triticeae species exhibiting many potentially favorable traits for wheat improvement. Wheat-Th. intermedium partial amphiploids serve as a bridge to transfer desirable genes from Th. intermedium into common wheat. RESULTS: Three octoploid Trititrigia accessions (TE261-1, TE266-1, and TE346-1) with good resistances to stripe rust, powdery mildew and aphids were selected from hybrid progenies between Th. intermedium and the common wheat variety 'Yannong 15' (YN15). Genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH) and multicolor GISH (McGISH) analyses demonstrated that the three octoploid Trititrigia possess 42 wheat chromosomes and 14 Th. intermedium chromosomes. The 14 alien (Th. intermedium) chromosomes belong to a mixed genome consisting of J-, JS- and St-genome chromosomes rather than a single J, JS or St genome. Different types of chromosomal structural variation were also detected in the 1A, 6A, 6B, 2D and 7D chromosomes via FISH, McGISH and molecular marker analysis. The identity of the alien chromosomes and the variationes in the wheat chromosomes in the three Trititrigia octoploids were also different. CONCLUSIONS: The wheat-Th. intermedium partial amphiploids possess 14 alien chromosomes which belong to a mixed genome consisting of J-, JS- and St- chromosomes, and 42 wheat chromosomes with different structural variations. These accessions could be used as genetic resources in wheat breeding for the transfer of disease and pest resistance genes from Th. intermedium to common wheat.


Assuntos
Cromossomos de Plantas , Rearranjo Gênico , Poaceae/genética , Triticum/genética , Resistência à Doença/genética , Genes de Plantas , Hibridização Genética , Melhoramento Vegetal , Doenças das Plantas , Poliploidia
5.
Genome ; 63(9): 445-457, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32384249

RESUMO

Bluebunch wheatgrass (referred to as BBWG) [Pseudoroegneria spicata (Pursh) Á. Löve] is an important rangeland Triticeae grass used for forage, conservation, and restoration. This diploid has the basic St genome that occurs also in many polyploid Triticeae species, which serve as a gene reservoir for wheat improvement. Until now, the St genome in diploid species of Pseudoroegneria has not been mapped. Using a double-cross mapping populations, we mapped 230 expressed sequence tag derived simple sequence repeat (EST-SSR) and 3468 genotyping-by-sequencing (GBS) markers to 14 linkage groups (LGs), two each for the seven homologous groups of the St genome. The 227 GBS markers of BBWG that matched those in a previous study helped identify the unclassified seven LGs of the St sub-genome among 21 LGs of Thinopyrum intermedium (Host) Barkworth & D.R. Dewey. Comparisons of GBS sequences in BBWG to whole-genome sequences in bread wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) revealed that the St genome shared a homology of 35% and 24%, a synteny of 86% and 84%, and a collinearity of 0.85 and 0.86, with ABD and H, respectively. This first-draft molecular map of the St genome will be useful in breeding cereal and forage crops.


Assuntos
Mapeamento Cromossômico , Genômica , Hordeum/genética , Poaceae/genética , Triticum/genética , Cromossomos de Plantas , Diploide , Etiquetas de Sequências Expressas , Ligação Genética , Marcadores Genéticos , Genoma de Planta , Repetições de Microssatélites , Poliploidia , Sintenia
7.
Int J Mol Sci ; 21(1)2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947720

RESUMO

Histone deacetylases (HDACs) play a significant role in a plant's development and response to various environmental stimuli by regulating the gene transcription. However, HDACs remain unidentified in cotton. In this study, a total of 29 HDACs were identified in allotetraploid Gossypium hirsutum, while 15 and 13 HDACs were identified in Gossypium arboretum and Gossypium raimondii, respectively. Gossypium HDACs were classified into three groups (reduced potassium dependency 3 (RPD3)/HDA1, HD2-like, and Sir2-like (SRT) based on their sequences, and Gossypium HDACs within each subgroup shared a similar gene structure, conserved catalytic domains and motifs. Further analysis revealed that Gossypium HDACs were under a strong purifying selection and were unevenly distributed on their chromosomes. Gene expression data revealed that G. hirsutum HDACs were differentially expressed in various vegetative and reproductive tissues, as well as at different developmental stages of cotton fiber. Furthermore, some G. hirsutum HDACs were co-localized with quantitative trait loci (QTLs) and single-nucleotide polymorphism (SNPs) of fiber-related traits, indicating their function in fiber-related traits. We also showed that G. hirsutum HDACs were differentially regulated in response to plant hormones (abscisic acid (ABA) and auxin), DNA damage agent (methyl methanesulfonate (MMS)), and abiotic stresses (cold, salt, heavy metals and drought), indicating the functional diversity and specification of HDACs in response to developmental and environmental cues. In brief, our results provide fundamental information regarding G. hirsutum HDACs and highlight their potential functions in cotton growth, fiber development and stress adaptations, which will be helpful for devising innovative strategies for the improvement of cotton fiber and stress tolerance.


Assuntos
Dano ao DNA , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Histona Desacetilases/genética , Proteínas de Plantas/genética , Diploide , Genes de Plantas , Genoma de Planta , Gossypium/fisiologia , Família Multigênica , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Poliploidia , Estresse Fisiológico
8.
Int J Mol Sci ; 20(21)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731441

RESUMO

Post-translational modifications are involved in regulating diverse developmental processes. Histone acetyltransferases (HATs) play vital roles in the regulation of chromation structure and activate the gene transcription implicated in various cellular processes. However, HATs in cotton, as well as their regulation in response to developmental and environmental cues, remain unidentified. In this study, 9 HATs were identified from Gossypium raimondi and Gossypium arboretum, while 18 HATs were identified from Gossypium hirsutum. Based on their amino acid sequences, Gossypium HATs were divided into three groups: CPB, GNAT, and TAFII250. Almost all the HATs within each subgroup share similar gene structure and conserved motifs. Gossypium HATs are unevenly distributed on the chromosomes, and duplication analysis suggests that Gossypium HATs are under strong purifying selection. Gene expression analysis showed that Gossypium HATs were differentially expressed in various vegetative tissues and at different stages of fiber development. Furthermore, all the HATs were differentially regulated in response to various stresses (salt, drought, cold, heavy metal and DNA damage) and hormones (abscisic acid (ABA) and auxin (NAA)). Finally, co-localization of HAT genes with reported quantitative trait loci (QTL) of fiber development were reported. Altogether, these results highlight the functional diversification of HATs in cotton growth and fiber development, as well as in response to different environmental cues. This study enhances our understanding of function of histone acetylation in cotton growth, fiber development, and stress adaptation, which will eventually lead to the long-term improvement of stress tolerance and fiber quality in cotton.


Assuntos
Ácido Abscísico/farmacologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gossypium , Histona Acetiltransferases , Ácidos Indolacéticos/farmacologia , Metais Pesados/farmacologia , Família Multigênica , Proteínas de Plantas , Estresse Fisiológico , Estudo de Associação Genômica Ampla , Gossypium/enzimologia , Gossypium/genética , Histona Acetiltransferases/biossíntese , Histona Acetiltransferases/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
9.
Genome ; 61(7): 515-521, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29738283

RESUMO

Synthesized oligonucleotides (oligos) can be used as effective probes similar to plasmid clones for chromosome identification in fluorescence in situ hybridization (FISH) analysis, making oligo FISH a simpler and more efficient molecular cytogenetic technique for studying plants. In this study, multiplex oligonucleotide probes, including pSc119.2-1, pAs1-4, (GAA)10, (AAC)6, and pTa71, were combined and used in FISH to identify chromosomes in common wheat, Thinopyrum intermedium, and a wheat - Th. intermedium amphiploid TE256-1. In comparison with general FISH probes, signals generated by the multiplex probes were more abundant, colorful, and characteristic. Combining the results of genomic in situ hybridization (GISH) with FISH, Th. intermedium chromosomes and alien chromosomes in TE256-1 could be classified and identified more precisely, especially the J- and Js-genome chromosomes. Moreover, based on the FISH results using multiplex probes, more structural variations in wheat chromosomes of TE256-1 were detected. The results indicated that multiplex oligo probes would have a wide range of application prospects in the creation and identification of wheat - Th. intermedium germplasms.


Assuntos
Cromossomos de Plantas/genética , Hibridização in Situ Fluorescente/métodos , Sondas de Oligonucleotídeos/genética , Ploidias , Poaceae/genética , Triticum/genética , Análise Citogenética/métodos , Genoma de Planta/genética , Hibridização Genética , Reprodutibilidade dos Testes
10.
BMC Plant Biol ; 17(1): 48, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28222675

RESUMO

BACKGROUND: Oil in the form of triacylglycerols (TAGs) is quantitatively the most important storage form of energy for eukaryotic cells. Diacylglycerol acyltransferase (DGAT) is considered the rate-limiting enzyme for TAG accumulation. Chlorella, a unicellular eukaryotic green alga, has attracted much attention as a potential feedstock for renewable energy production. However, the function of DGAT1 in Chlorella has not been reported. RESULTS: A full-length cDNA encoding a putative diacylglycerol acyltransferase 1 (DGAT1, EC 2.3.1.20) was obtained from Chlorella ellipsoidea. The 2,142 bp open reading frame of this cDNA, designated CeDGAT1, encodes a protein of 713 amino acids showing no more than 40% identity with DGAT1s of higher plants. Transcript analysis showed that the expression level of CeDGAT1 markedly increased under nitrogen starvation, which led to significant triacylglycerol (TAG) accumulation. CeDGAT1 activity was confirmed in the yeast quadruple mutant strain H1246 by restoring its ability to produce TAG. Upon expression of CeDGAT1, the total fatty acid content in wild-type yeast (INVSc1) increased by 142%, significantly higher than that transformed with DGAT1s from higher plants, including even the oil crop soybean. The over-expression of CeDGAT1 under the NOS promoter in wild-type Arabidopsis thaliana and Brassica napus var. Westar significantly increased the oil content by 8-37% and 12-18% and the average 1,000-seed weight by 9-15% and 6-29%, respectively, but did not alter the fatty acid composition of the seed oil. The net increase in the 1,000-seed total lipid content was up to 25-50% in both transgenic Arabidopsis and B. napus. CONCLUSIONS: We identified a gene encoding DGAT1 in C. ellipsoidea and confirmed that it plays an important role in TAG accumulation. This is the first functional analysis of DGAT1 in Chlorella. This information is important for understanding lipid synthesis and accumulation in Chlorella and for genetic engineering to enhance oil production in microalgae and oil plants.


Assuntos
Chlorella/enzimologia , Chlorella/genética , Diacilglicerol O-Aciltransferase/genética , Acil Coenzima A , Arabidopsis , Brassica napus , Diacilglicerol O-Aciltransferase/metabolismo , Genes de Plantas , Metabolismo dos Lipídeos , Mutação , Filogenia , Óleos de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Sementes , Triglicerídeos/metabolismo
11.
Genome ; 60(6): 546-551, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28314108

RESUMO

The genome constitution of tetraploid Roegneria alashanica Keng has been in question for a long time. Most scientific studies have suggested that R. alashanica had two versions of the St genome, St1St2, similar to that of Pseudoroegneria elytrigioides (C. Yen & J.L. Yang) B.R. Lu. A study, however, concluded that R. alashanica had the StY genome formula typical for tetraploid species of Roegneria. For the present study, R. alashanica, Elymus longearistatus (Bioss.) Tzvelev (StY genomes), Pseudoroegneria strigosa (M. Bieb.) Á. Löve (St), Pseudoroegneria libanoctica (Hackel) D.R. Dewey (St), and Pseudoroegneria spicata (Pursh) Á. Löve (St) were screened for the Y-genome specific marker B14(F+R)269. All E. longearistatus plants expressed intense bands specific to the Y genome. Only 6 of 10 R. alashanica plants exhibited relatively faint bands for the STS marker. Previously, the genome in species of Pseudoroegneria exhibiting such faint Y-genome specific marker was designated as StY. Based on these results, R. alashanica lacks the Y genome in E. longearistatus but likely possess two remotely related St genomes, St and StY. According to its genome constitution, R. alashanica should be classified in the genus Pseudoroenera and given the new name Pseudoroegneria alashanica (Keng) R.R.-C. Wang and K.B. Jensen.


Assuntos
Elymus/genética , Genoma de Planta/genética , DNA de Cloroplastos/genética , DNA de Plantas/genética , Evolução Molecular , Filogenia , Análise de Sequência de DNA/métodos , Tetraploidia
12.
Genome ; 60(6): 530-536, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28235186

RESUMO

Simple sequence repeat technology based on expressed sequence tag (EST-SSR) is a useful genomic tool for genome mapping, characterizing plant species relationships, elucidating genome evolution, and tracing genes on alien chromosome segments. EST-SSR primers developed from three perennial diploid species of Triticeae, Pseudoroegneria spicata (Pursh) Á. Löve (having St genome), Thinopyrum bessarabicum (Savul. & Rayss) Á. Löve (Jb = Eb = J), and Thinopyrum elongatum (Host) D.R. Dewey (Je = Ee = E), were used to produce amplicons in these three species to (i) assess relative transferability, (ii) identify polymorphic species-specific markers, and (iii) determine genome relationships among the three species. Because of the close relationship between Jb and Je genomes, EST-SSR primers derived from Th. bessarabicum and Th. elongatum had greater transferability to each other than those derived from the St-genome P. spicata. A large number of polymorphic species- and genome-specific EST-SSR amplicons were identified that will be used for construction of genetic maps of these diploid species, and tracing economically useful genes in breeding or gene transfer programs in various species of Triticeae.


Assuntos
Primers do DNA/genética , Elymus/genética , Repetições de Microssatélites/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Diploide , Etiquetas de Sequências Expressas , Genoma de Planta/genética , Filogenia
13.
Genome ; 60(8): 679-685, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28666092

RESUMO

Genomes of ten species of Elymus, either presumed or known as tetraploid StY, were characterized using fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH). These tetraploid species could be grouped into three categories. Type I included StY genome reported species-Roegneria pendulina, R. nutans, R. glaberrima, R. ciliaris, and Elymus nevskii, and StY genome presumed species-R. sinica, R. breviglumis, and R. dura, whose genome could be separated into two sets based on different GISH intensities. Type I genome constitution was deemed as putative StY. The St genome were mainly characterized with intense hybridization with pAs1, fewer AAG sites, and linked distribution of 5S rDNA and 18S-26S rDNA, while the Y genome with less intense hybridization with pAs1, more varied AAG sites, and isolated distribution of 5S rDNA and 18S-26S rDNA. Nevertheless, further genomic variations were detected among the different StY species. Type II included E. alashanicus, whose genome could be easily separated based on GISH pattern. FISH and GISH patterns suggested that E. alashanicus comprised a modified St genome and an unknown genome. Type III included E. longearistatus, whose genome could not be separated by GISH and was designated as StlYl. Notably, a close relationship between Sl and Yl genomes was observed.


Assuntos
Elymus/genética , Genoma de Planta , Hibridização in Situ Fluorescente , Hibridização In Situ/métodos , Tetraploidia , Cromossomos de Plantas , Sequências Repetitivas de Ácido Nucleico
14.
Genome ; 58(2): 63-70, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26000870

RESUMO

Intermediate wheatgrass (Thinopyrum intermedium (Host) Barkworth & D.R. Dewey), a segmental autoallohexaploid (2n = 6x = 42), is not only an important forage crop but also a valuable gene reservoir for wheat (Triticum aestivum L.) improvement. Throughout the scientific literature, there continues to be disagreement as to the origin of the different genomes in intermediate wheatgrass. Genotypic data obtained from newly developed EST-SSR primers derived from the putative progenitor diploid species Pseudoroegneria spicata (Pursh) Á. Löve (St genome), Thinopyrum bessarabicum (Savul. & Rayss) Á. Löve (J = J(b) = E(b)), and Thinopyrum elongatum (Host) D. Dewey (E = J(e) = E(e)) indicate that the V genome of Dasypyrum (Coss. & Durieu) T. Durand is not one of the three genomes in intermediate wheatgrass. Based on all available information in the literature and findings in this study, the genomic designation of intermediate wheatgrass should be changed to J(vs)J(r)St, where J(vs) and J(r) represent ancestral genomes of present-day J(b) of Th. bessarabicum and J(e) of Th. elongatum, with J(vs) being more ancient. Furthermore, the information suggests that the St genome in intermediate wheatgrass is most similar to the present-day St found in diploid species of Pseudoroegneria from Eurasia.


Assuntos
Evolução Molecular , Etiquetas de Sequências Expressas , Genoma de Planta , Repetições de Microssatélites , Poaceae/genética , Análise por Conglomerados , DNA de Plantas/genética , Diploide , Marcadores Genéticos , Genótipo , Poaceae/classificação , Análise de Sequência de DNA
15.
Planta ; 239(4): 753-63, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24366682

RESUMO

Δ8-sphingolipid desaturase and Δ6-fatty acid desaturase share high protein sequence identity. Thus, it has been hypothesized that Δ6-fatty acid desaturase is derived from Δ8-sphingolipid desaturase; however, there is no direct proof. The substrate recognition regions of Δ6-fatty acid desaturase and Δ8-sphingolipid desaturase, which aid in understanding the evolution of these two enzymes, have not been reported. A blackcurrant Δ6-fatty acid desaturase and a Δ8-sphingolipid desaturase gene, RnD6C and RnD8A, respectively, share more than 80 % identity in their coding protein sequences. In this study, a set of fusion genes of RnD6C and RnD8A were constructed and expressed in yeast. The Δ6- and Δ8-desaturase activities of the fusion proteins were characterized. Our results indicated that (1) the exchange of the C-terminal 172 amino acid residues can lead to a significant decrease in both desaturase activities; (2) amino acid residues 114-174, 206-257, and 258-276 played important roles in Δ6-substrate recognition, and the last two regions were crucial for Δ8-substrate recognition; and (3) amino acid residues 114-276 of Δ6-fatty acid desaturase contained the substrate recognition site(s) responsible for discrimination between ceramide (a substrate of Δ8-sphingolipid desaturase) and acyl-PC (a substrate of Δ6-fatty acid desaturase). Substituting the amino acid residues 114-276 of RnD8A with those of RnD6C resulted in a gain of Δ6-desaturase activity in the fusion protein but a loss in Δ8-sphingolipid desaturase activity. In conclusion, several regions important for the substrate recognition of Δ8-sphingolipid desaturase and Δ6-fatty acid desaturase were identified, which provide clues in understanding the relationship between the structure and function in desaturases.


Assuntos
Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/metabolismo , Oxirredutases/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Ácidos Graxos Dessaturases/genética , Modelos Moleculares , Mutagênese , Oxirredutases/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes de Fusão , Saccharomyces cerevisiae/genética , Especificidade por Substrato
16.
Genome ; 57(9): 473-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25429799

RESUMO

To determine the appropriateness of chromosome painting for identifying genomic elements in rye, we microdissected the 1R and 1RS chromosomes from rye (Secale cereale L. var. King II) and wheat-rye addition line 1RS, respectively. Degenerate oligonucleotide primed - polymerase chain reaction (DOP-PCR) amplification of 1R and 1RS products from dissected chromosomes were used as probes to hybridize to metaphase chromosomes of rye, wheat-rye addition lines 1R and 1RS, translocation line 1RS.1BL, and allohexaploid triticale. The results showed that (i) the hybridization signal distribution patterns on rye chromosomes using 1R-derived DOP-PCR products as the probe were similar to those using 1RS-derived DOP-PCR products as the probe; (ii) 1R and (or) 1RS could not be distinguished from other rye chromosomes solely by the hybridization patterns using 1R- and (or) 1RS-derived DOP-PCR products as the probe; (iii) rye chromosomes and (or) rye chromosome fragments could be clearly identified in wheat-rye hybrids using either 1R- or 1RS-derived DOP-PCR products as the probe and could be more accurate in the nontelomeric region than using genomic in situ hybridization (GISH). Our results suggested that 1R- and (or) 1RS-derived DOP-PCR products contain many repetitive DNA sequences, are similar on different rye chromosomes, are R-genome specific, and can be used to identify rye chromosomes and chromosome fragments in wheat-rye hybrids. Our research widens the application range of chromosome painting in plants.


Assuntos
Coloração Cromossômica/métodos , Cromossomos de Plantas , Reação em Cadeia da Polimerase , Secale/genética , Triticum/genética , Sondas de DNA , Hibridização in Situ Fluorescente , Microdissecção
17.
Biochem Biophys Res Commun ; 431(4): 675-9, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23357423

RESUMO

Δ6-fatty acid desaturase is an important enzyme in the catalytic synthesis of polyunsaturated fatty acids. Using domain swapping and a site-directed mutagenesis strategy, we found that the region of the C-terminal 67 amino acid residues of Δ6-fatty acid desaturase RnD6C from blackcurrant was essential for its catalytic activity and that seven different residues between RnD6C and RnD8A in that region were involved in the desaturase activity. Compared with RnD6C, the activity of the following mutations, V394A, K395I, F411L, S436P, VK3945AI and IS4356VP, was significantly decreased, whereas the activity of I417T was significantly increased. The amino acids N, T and Y in the last four residues also play a certain role in the desaturase activity.


Assuntos
Linoleoil-CoA Desaturase/química , Proteínas de Plantas/química , Ribes/enzimologia , Sequência de Aminoácidos , Linoleoil-CoA Desaturase/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Proteínas de Plantas/genética , Estrutura Terciária de Proteína
18.
Genome ; 56(11): 641-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24299103

RESUMO

The genome compositions and genetic relationships of seven species of Kengyilia were assessed using a sequential fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) technique. Five species, K. kokonorica, K. rigidula, K. hirsuta, K. grandiglumis, and K. thoroldiana, are native to Qinghai (China). The other two, K. alatavica and K. batalinii, are distributed in Xinjiang (China) and Kyrgyzstan, respectively. Each chromosome could be easily identified using chromosome markers (45S rDNA, 5S rDNA, pAs1, and AAG repeats) by FISH and allocated to the St, P, or Y genome by GISH. Molecular karyotype comparison indicated that K. alatavica and K. batalinii were distinct from the Qinghai species in all three genomes. These results support that the species of Kengyilia from Central Asia and the Qinghai-Tibetan plateau have independent origins. Genomic differentiation was still detected among the species of Kengyilia from Qinghai. Specifically, a common species-specific pericentric inversion was identified in both K. grandiglumis and K. thoroldiana, and an identical St-P non-Robertsonian translocation was frequently detected in K. hirsuta. The Qinghai species formed three genetic groups, K. kokonorica-K. rigidula, K. hirsuta, and K. grandiglumis-K. thoroldiana. The possible role of species-specific inversions and translocations in the evolution of StPY species is discussed.


Assuntos
Genoma de Planta , Poaceae/classificação , Poaceae/genética , Inversão Cromossômica , Cromossomos de Plantas , DNA de Plantas/genética , DNA Ribossômico/genética , Evolução Molecular , Variação Genética , Genômica , Hibridização In Situ , Hibridização in Situ Fluorescente , Cariotipagem , Especificidade da Espécie , Repetições de Trinucleotídeos
19.
Chromosome Res ; 20(6): 699-715, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22968763

RESUMO

Thirteen common wheat "Chinese Spring" (CS)-Thinopyrum junceum addition lines and three common wheat "Fukuhokomuji"(Fuku)-Elymus rectisetus addition lines were characterized and verified as disomic additions of a Th. junceum or E. rectisetus chromosome in the wheat backgrounds by fluorescent genomic in situ hybridization. Another Fuku-E. rectisetus addition line, A1048, was found to contain multiple segregating E. rectisetus chromosomes. Seven partial CS-Th. junceum amphiploids were identified to combine 12-16 Th. junceum chromosomes with CS wheat chromosomes. The disomic addition lines AJDAj5, 7, 8, 9, and HD3508 were identified to contain a Th. junceum chromosome in homoeologous group 1. Two of them, AJDAj7 and AJDAj9, had the same Th. junceum chromosome. AJDAj2, 3, and 4 contained a Th. junceum chromosome in group 2, HD3505 in group 4, AJDAj6 and AJDAj11 in group 5, and AJDAj1 probably in group 6. The disomic addition lines A1026 and A1057 were identified to carry an E. rectisetus chromosome in group 1 and A1034 in group 5. E. rectisetus chromosomes in groups 1-6 were detected in A1048. The homoeologous group of the Th. junceum chromosome in HD3515 could not be determined in this study. Several Th. junceum and E. rectisetus chromosomes in the addition lines were found to contain genes for resistance to Fusarium head blight, tan spot, Stagonospora nodorum blotch, and stem rust (Ug99 races). Understanding of the homoeology of the Th. junceum and E. rectisetus chromosomes with wheat will facilitate utilization of the favorable genes on these alien chromosomes in wheat improvement.


Assuntos
Cruzamento/métodos , Cromossomos de Plantas/genética , Resistência à Doença/genética , Elymus/genética , Doenças das Plantas/microbiologia , Triticum/genética , Southern Blotting , Eletroforese em Gel de Poliacrilamida , Hibridização in Situ Fluorescente , Polimorfismo de Fragmento de Restrição , Especificidade da Espécie
20.
Plants (Basel) ; 12(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37960061

RESUMO

The genome composition of intermediate wheatgrass (IWG) is complex and continues to be a subject of investigation. In this study, molecular cytogenetics were used to investigate the karyotype composition of Th. intermedium and its relative diploid species. St2-80 developed from Pseudowroegneria strigose and pDb12H developed from Dasypyrum breviaristatum were used as probes in fluorescence in situ hybridization (FISH) to classify the chromosomes of Th. intermedium into three groups, expressed as JvsJvsJrJrStSt. A combined multiplex oligonucleotide probe, including pSc119.2-1, (GAA)10, AFA-3, AFA-4, pAs1-1, Pas1-3, pAs1-4, and pAs1-6, was used to establish the FISH karyotype of ten accessions of Th. intermedium. Variability among and within the studied accessions of intermediate wheatgrass was observed in their FISH patterns. Results of this study led to the conclusions that Jvs had largely been contributed from Da. breviaristatum, but not the present-day Da. villosum; IWG had only one J genome, Jr, which was related to either Th. elongatum or Th. bessarabicum; and St was contributed from the genus Pseudoroegneria by hybridization with Th. junceiforme or Th. sartorii.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA