Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Dairy Sci ; 107(1): 9-23, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37678791

RESUMO

Milk fat globule epidermal growth factor 8 (MFG-E8) and whey protein have emerged as promising bionutrient supplements for enhancing skeletal muscle mass and function. In the present study, aging-related sarcopenia rat model was employed to elucidate the effects of the combined administration of MFG-E8 and whey protein on the catabolism and anabolism of gastrocnemius protein. Combined intervention led to notable enhancements in the antioxidative stress status and mitochondrial biogenesis capacity of gastrocnemius muscle fibers in the aging rats, concomitant with a significant inhibition of lipid accumulation. Moreover, the synergistic effect of MFG-E8 and whey protein was found to exert modulatory effects on key signaling pathways, including PI3K/Akt/PGC-1α pathway and MAPK/ERK signaling pathways in the gastrocnemius muscle of the aging rats. Specifically, this combined intervention was observed to promote mitochondrial biogenesis and regulate the expression of protein anabolism and catabolism-related regulators, thereby facilitating the alleviation of mitochondrial oxidative stress and enhancing biogenesis in gastrocnemius tissues. The findings of our study provide compelling evidence for the potential of MFG-E8 as a promising dietary supplement with antisarcopenic properties to ameliorate muscle protein metabolism disorders and mitigate mitochondrial-mediated myoblast apoptosis induced by oxidative stress.


Assuntos
Glicolipídeos , Glicoproteínas , Gotículas Lipídicas , Sarcopenia , Animais , Ratos , Fator VIII/farmacologia , Galactose/farmacologia , Proteínas do Leite/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sarcopenia/prevenção & controle , Sarcopenia/veterinária , Transdução de Sinais , Proteínas do Soro do Leite/farmacologia
2.
Molecules ; 29(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675723

RESUMO

Silibinin is a flavonoid compound extracted from the seeds of Silybum marianum (L.) Gaertn. It has the functions of liver protection, blood-lipid reduction and anti-tumor effects. However, the potential molecular mechanism of silibinin against tumors is still unknown. This study aimed to assess the anti-tumor effects of silibinin in adenoid cystic carcinoma (ACC2) cells and Balb/c nude mice, and explore its potential mechanism based on network pharmacology prediction and experimental verification. A total of 347 targets interacting with silibinin were collected, and 75 targets related to the tumor growth process for silibinin were filtrated. Based on the PPI analysis, CASP3, SRC, ESR1, JAK2, PRKACA, HSPA8 and CAT showed stronger interactions with other factors and may be the key targets of silibinin for treating tumors. The predicted target proteins according to network pharmacology were verified using Western blot analysis in ACC2 cells and Balb/c nude mice. In the pharmacological experiment, silibinin was revealed to significantly inhibit viability, proliferation, migration and induce the apoptosis of ACC2 cells in vitro, as well as inhibit the growth and development of tumor tissue in vivo. Western blot analysis showed that silibinin affected the expression of proteins associated with cell proliferation, migration and apoptosis, such as MMP3, JNK, PPARα and JAK. The possible molecular mechanism involved in cancer pathways, PI3K-Akt signaling pathway and viral carcinogenesis pathway via the inhibition of CASP3, MMP3, SRC, MAPK10 and CDK6 and the activation of PPARα and JAK. Overall, our results provided insight into the pharmacological mechanisms of silibinin in the treatment of tumors. These results offer a support for the anti-tumor uses of silibinin.


Assuntos
Apoptose , Proliferação de Células , Farmacologia em Rede , Silibina , Silibina/farmacologia , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C , Movimento Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos/farmacologia
3.
J Sci Food Agric ; 104(3): 1702-1712, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37851615

RESUMO

BACKGROUND: Paraprobiotics and postbiotics have shown potential in the treatment of ulcerative colitis (UC). However, their in vivo application is still in its infancy and their mechanisms of action are not well understood. RESULTS: Here, we investigated the mitigation effects of Limosilactobacillus fermentum HF06-derived paraprobiotic (6-PA) and postbiotic (6-PS) on dextran sulfate sodium induced UC and the potential mechanisms. Results indicated that the administration of 6-PA and 6-PS resulted in the inhibition of weight loss and colon shortening in mice with UC. Furthermore, they led to a significant reduction in both fecal moisture content and the levels of proinflammatory cytokines and oxidative stress in the intestine of the mice. 6-PA and 6-PS treatment strengthened the intestinal mucosal barrier by dramatically upregulating the levels of zonula occludens-1 and occludin proteins. In addition, 6-PA and 6-PS restored intestinal dysbiosis by regulating abundances of certain bacteria, such as Bifidobacterium, Faecalibaculum, Muribaculaceae, Corynebacterium, Escherichia-Shigella and Clostridium_sensu_stricto_1, and regulated the level of short-chain fatty acids. CONCLUSION: These findings illustrated for the first time that L. fermentum HF06-derived paraprobiotic and postbiotic enhanced the intestinal barrier function, and restored gut microbiota alterations. © 2023 Society of Chemical Industry.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Limosilactobacillus fermentum , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Intestinos , Mucosa Intestinal , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo
4.
Crit Rev Food Sci Nutr ; 63(19): 3959-3979, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34708681

RESUMO

More than two billion people around the world are affected by zinc deficiency, mainly due to the inadequate intake and absorption of zinc. Based on recent research findings, the bioactive peptides could potentially be used to combat zinc deficiency particularly due to their Zinc chelating ability. The main aim of this review was to present current findings, supporting the potential use of bioactive peptides based on their ability to enhance zinc absorption. In-vivo, in-vitro, and ex-vivo studies have demonstrated that zinc chelating peptides can enhance the retention, transportation, and absorption of zinc. Comparative studies on zinc bioavailability from protein hydrolysates and zinc salts have demonstrated that the protein hydrolysates-zinc complexes are more bioavailable than the zinc salts. Data from the structure-function relationship of zinc chelating peptides suggest that the zinc chelating capacities of peptides increase in the following order; the position of zinc chelator > zinc chelator strength > abundance of zinc chelators > net charge > molecular weight. In addition, the transport mechanism of peptide-zinc complex is hypothesized, and the potential use of bioactive peptides based on their safety and taste and limitations to their commercialization are also discussed.


Assuntos
Hidrolisados de Proteína , Zinco , Humanos , Zinco/metabolismo , Hidrolisados de Proteína/química , Sais , Peptídeos/química , Quelantes/metabolismo
5.
Crit Rev Food Sci Nutr ; : 1-13, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37310013

RESUMO

Diabetes is one of the fastest-growing and most widespread diseases worldwide. Approximately 90% of diabetic patients have type 2 diabetes. In 2019, there were about 463 million diabetic patients worldwide. Inhibiting the dipeptidyl peptidase IV (DPP-IV) and α-glucosidase activity is an effective strategy for the treatment of type 2 diabetes. Currently, various anti-diabetic bioactive peptides have been isolated and identified. This review summarizes the preparation methods, structure-effect relationships, molecular binding sites, and effectiveness validation of DPP-IV and α-glucosidase inhibitory peptides in cellular and animal models. The analysis of peptides shows that the DPP-IV inhibitory peptides, containing 2-8 amino acids and having proline, leucine, and valine at their N-terminal and C-terminal, are the highly active peptides. The more active α-glucosidase inhibitory peptides contain 2-9 amino acids and have valine, isoleucine, and proline at the N-terminal and proline, alanine, and serine at the C-terminal.

6.
J Dairy Sci ; 106(5): 3109-3122, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37002142

RESUMO

The centrifugation presterilizing UHT (C-UHT) sterilization method removes 90% of the microorganism and somatic cells from raw milk using high-speed centrifugation following UHT treatment. This study aimed to study the changes in protein composition and plasmin in the UHT and C-UHT milk. The digestive characteristics, composition, and peptide spectrum of milk protein sterilized with the 2 technologies were studied using a dynamic digestive system of a simulated human stomach. The Pierce bicinchoninic acid assay, laser scanning confocal microscope, liquid chromatography-tandem mass spectrometry, and AA analysis were used to study the digestive fluid at different time points of gastric digestion in vitro. The results demonstrated that C-UHT milk had considerably higher protein degradation than UHT milk. Different processes resulted during the cleavage of milk proteins at different sites during digestion, resulting in different derived peptides. The results showed there was no significant effect of UHT and C-UHT on the peptide spectrum of milk proteins, but C-UHT could release relatively more bioactive peptides and free AA.


Assuntos
Temperatura Alta , Leite , Humanos , Animais , Leite/química , Proteínas do Leite/análise , Peptídeos/metabolismo , Digestão
7.
J Dairy Sci ; 106(4): 2271-2288, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36797178

RESUMO

The objective of this study was to investigate the mechanism by which the α-lactalbumin peptides Gly-Ile-Asn-Tyr (GINY) and Asp-Gln-Trp (DQW) ameliorate free fatty acid-induced lipid deposition in HepG2 cells. The results show that GINY and DQW reduced triglyceride, total cholesterol, and free fatty acid levels significantly in free fatty acid-treated HepG2 cells. Based on proteomic analysis, GINY and DQW alleviated lipid deposition and oxidative stress mainly through the peroxisome proliferator-activated receptor (PPAR) pathway, fatty acid metabolism, oxidative phosphorylation, and response to oxidative stress. In vitro experiments confirmed that GINY and DQW upregulated the mRNA and protein expression of fatty acid ß-oxidation-related and oxidative stress-related genes, and downregulated the mRNA and protein expression of lipogenesis-related genes by activating peroxisome proliferator-activated receptor α (PPARα). Meanwhile, GINY and DQW reduced free fatty acid-induced lipid droplet accumulation and reactive oxygen species generation, and enhanced the mitochondrial membrane potential and ATP levels. Furthermore, GINY and DQW enhanced carnitine palmitoyl-transferase 1a (CPT-1a) and superoxide dismutase activities, and diminished acetyl-coenzyme A carboxylase 1 (ACC1) and fatty acid synthase (FASN) activities in a PPARα-dependent manner. Interestingly, GW6471 (a PPARα inhibitor) weakened the effects of GINY and DQW on the PPARα pathway. Hence, our findings suggest that GINY and DQW have the potential to alleviate nonalcoholic fatty liver disease by activating the PPARα pathway.


Assuntos
Lactalbumina , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Células Hep G2 , Lactalbumina/farmacologia , Lactalbumina/metabolismo , PPAR alfa/genética , Ácidos Graxos não Esterificados/metabolismo , Proteômica , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/veterinária , Estresse Oxidativo , Metabolismo dos Lipídeos , Peptídeos/farmacologia , Peptídeos/metabolismo , RNA Mensageiro/metabolismo , Fígado/metabolismo
8.
J Dairy Sci ; 106(11): 7367-7381, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37562644

RESUMO

Pro-Glu-Trp (PEW) and Leu-Leu-Trp (LLW) are peptides derived from whey protein digestive products; both peptides exhibit xanthine oxidase inhibitory activity in vitro. However, it remains unclear whether these peptides can alleviate hyperuricemia (HUA) in vivo. In this study, we investigated the roles of PEW and LLW, both individually and in combination, in alleviating HUA induced by potassium oxonate and hypoxanthine. Together, PEW and LLW exhibited synergistic effects in reducing the serum levels of uric acid (UA), creatinine, and blood urea nitrogen, as well as increasing the fractional excretion of UA. The combined treatment with PEW and LLW inhibited UA synthesis, promoted UA excretion, and restored renal oxidative stress and mitochondrial damage. Moreover, the combined treatment alleviated dysbiosis of the gut microbiota, characterized by increased helpful microbial abundance, decreased harmful bacterial abundance, and increased production of short-chain fatty acids. Taken together, these results indicate that the combination of PEW and LLW mitigate HUA and kidney injury by rebalancing UA synthesis and excretion, modulating gut microbiota composition, and improving oxidative stress.

9.
J Hum Genet ; 67(4): 197-201, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34815526

RESUMO

OBJECTIVE: Primary ciliary dyskinesia (PCD) is a heterogeneous disease characterized by the failure of mucociliary clearance. Dynein regulatory complex subunit 1 (DRC1) variants can cause PCD by disrupting the nexin link connecting the outer doublets. In this study, we aimed to investigate the clinical and functional impacts of DRC1 variants on respiratory cilia and sperm. METHODS: We identified and validated the DRC1 variant by using whole-exome and Sanger sequencing. High-speed video microscopy analysis (HSVA) was used to measure the nasal ciliary beating frequency and pattern in a patient and a healthy control. Hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM) were applied to analyze the morphological and ultrastructural sperm defects resulting from the DRC1 variant. RESULTS: NM_145038.5:c.1296 G>A, p.(Trp432*), a novel homozygous DRC1 nonsense variant, was identified in a patient from a consanguineous Chinese family. The patient exhibited bronchiectasis, chronic sinusitis, situs solitus, and male infertility. The markedly reduced nasal nitric oxide production rate (3.0 nL/min) was consistent with PCD diagnosis. HSVA showed reduced bending capacity and higher beating frequency of nasal cilia in the patient compared with those in healthy control. The diagnosis of multiple morphological abnormalities of the sperm flagella (MMAF) was confirmed through sperm HE staining and TEM analysis. Following the intracytoplasmic sperm injection treatment, the patient fathered a healthy daughter. CONCLUSION: This report is the first to describe a novel DRC1 variant in a patient with PCD and MMAF, and in vitro fertilization was effective for treating infertility in this male patient. Our findings expand the genetic spectrum of PCD and MMAF, and provide a detailed clinical summary and functional analysis of patients with DRC1 variants.


Assuntos
Transtornos da Motilidade Ciliar , Infertilidade Masculina , China , Transtornos da Motilidade Ciliar/genética , Humanos , Infertilidade Masculina/genética , Masculino , Proteínas Associadas aos Microtúbulos/genética , Mutação , Cauda do Espermatozoide , Espermatozoides
10.
Bioorg Chem ; 128: 106097, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35985156

RESUMO

As the development of hyperuricemia (HUA) and gout continues to accelerate worldwide, there is increasing interest in the use of xanthine oxidase (XO) inhibitors as therapeutic agents for the management of HUA and gout. In the present study, XO inhibitory peptides were identified from whey protein isolate (WPI) hydrolysates, and the underlying inhibitory mechanism and in vivo activities was investigated. WPI hydrolysates were isolated and purified, and two peptides (ALPM and LWM) with lower binding energy were screened by molecular docking. The result showed that these two peptides interacted with residues around the active site of XO through hydrogen bond and hydrophobic interaction. The IC50 values of ALPM and LWM were 7.23 ± 0.22 and 5.01 ± 0.31 mM, respectively. According to the Lineweaver-Burk curve, the inhibition types of ALPM and LWM were non-competitive inhibition. Circular dichroism (CD) spectra indicated ALPM and LWM could change the secondary structure of XO. Molecular dynamics simulations revealed that XO-peptide complexes were more stable and compact than XO. Moreover, animal studies have shown that ALPM and LWM have anti-hyperuricemia effects in vivo. This study suggested that ALPM and LWM can be considered as natural XO inhibitors for the treatment of HUA.


Assuntos
Gota , Hiperuricemia , Animais , Inibidores Enzimáticos/química , Gota/tratamento farmacológico , Hiperuricemia/tratamento farmacológico , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Proteínas do Soro do Leite/farmacologia , Proteínas do Soro do Leite/uso terapêutico , Xantina Oxidase
11.
Pestic Biochem Physiol ; 188: 105259, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36464364

RESUMO

Sanguinarine, a plant-derived phytoalexin, displays various biological activities, such as insecticidal, antimicrobial, anti-inflammatory, anti-angiogenesis and antitumor effects. But its potential neurotoxicity and the underlying mechanisms has rarely been investigated. Therefore, we aimed to assess the neurotoxicity of sanguinarine using zebrafish model and PC12 cells in this study. The results showed that sanguinarine induced the reduction of the length of dopamine neurons and inhibited the blood vessel in the head area of the zebrafish. Further studies demonstrated that the behavioral phenotype of the larval zebrafish was changed by sanguinarine. In addition, there were more apoptotic cells in the larval zebrafish head area. The mRNA expression levels of ß-syn, th, pink1 and parkin, closely related to the nervous function, were changed after sanguinarine treatment. The in vitro studies show that notably increases of ROS and apoptosis levels in PC12 cells were observed after sanguinarine treatment. Moreover, the protein expression of Caspase3, Parp, Bax, Bcl2, α-Syn, Th, PINK1 and Parkin were also altered by sanguinarine. Our data indicated that the inhibition of mitophagy, ROS elevation and apoptosis were involved in the neurotoxicity of sanguinarine. These findings will be useful to understand the toxicity induced by sanguinarine.


Assuntos
Mitofagia , Peixe-Zebra , Animais , Ratos , Células PC12 , Espécies Reativas de Oxigênio , Apoptose , Ubiquitina-Proteína Ligases , Larva , Proteínas Quinases
12.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(1): 116-122, 2022 Jan 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-35545371

RESUMO

Primary ciliary dyskinesia (PCD) is a hereditary disease characterized by airway mucociliary clearance dysfunction. The estimated prevalence of PCD is 1꞉10 000 to 1꞉20 000. The main respiratory manifestations in children are cough, expectoration, chronic rhinitis, sinusitis, and chronic otitis media, while the most common symptoms in adults are chronic sinusitis, bronchiectasis, and infertility. About 50% of patients with certain PCD-related gene variants are combined with situs inversus, and the incidence of congenital heart disease is also high. The pathogenesis behind PCD is that gene variants cause structural or functional disorders of respiratory cilia and motile cilia of other organs, leading to a series of heterogeneous clinical manifestations, which makes it difficult to identify and diagnose PCD. Combining different disease screening tools and understanding the relationship between genotypes and phenotypes may facilitate early diagnosis and treatment for PCD.


Assuntos
Síndrome de Kartagener , Sinusite , Doença Crônica , Cílios/patologia , Humanos , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/genética , Fenótipo
13.
Hum Genet ; 140(5): 761-773, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33389130

RESUMO

Genetics-associated asthenoteratozoospermia is often seen in patients with multiple morphological abnormalities of the sperm flagella (MMAF). Although 24 causative genes have been identified, these explain only approximately half of patients with MMAF. Since sperm flagella and motile cilia (especially respiratory cilia) have similar axonemal structures, many patients with MMAF also exhibit respiratory symptoms, such as recurrent airway infection, chronic sinusitis, and bronchiectasis, which are frequently associated with primary ciliary dyskinesia (PCD), another recessive disorder. Here, exome sequencing was conducted to evaluate the genetic cause in 53 patients with MMAF and classic PCD/PCD-like symptoms. Two homozygous missense variants and a compound-heterozygous variant in the BRWD1 gene were identified in three unrelated individuals. BRWD1 staining was detected in the whole flagella and respiratory cilia of normal controls but was absent in BRWD1-mutated individuals. Transmission electron microscopy and immunostaining demonstrated that BRWD1 deficiency in human affected respiratory cilia and sperm flagella differently, as the absence of outer and inner dynein arms in sperm flagellum and respiratory cilia, while with a decreased number and outer doublet microtubule defects of respiratory cilia. To our knowledge, this is the first report of a BRWD1-variant-related disease in humans, manifesting as an autosomal recessive form of MMAF and PCD/PCD-like symptoms. Our data provide a basis for further exploring the molecular mechanism of BRWD1 gene during spermatogenesis and ciliogenesis.


Assuntos
Astenozoospermia/genética , Transtornos da Motilidade Ciliar/genética , Proteínas Nucleares/genética , Cauda do Espermatozoide/patologia , Espermatogênese/genética , Alelos , Humanos , Masculino , Análise do Sêmen , Sequenciamento do Exoma
14.
Protein Expr Purif ; 178: 105720, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32771447

RESUMO

Four high-molecular-weight protein fractions of milk fat globule membrane (MFGM) were isolated from bovine milk. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), MALDI-TOF/TOF™ and Liquid chromatography electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) were used to measure the molecular sizes of the MFGM. Fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD) were performed to determine the conformations of the MFGM. The results showed that the main protein (98.33%) in MFGM protein fraction 2 was Milk fat globule epidermal growth factor-VIII (MFG-E8), with a molecular weight of 47.82 kDa. The secondary structural component measurements showed that the MFG-E8 consisted of 5% helix, 70% sheet and 25% random coil, and the results matched well with the prediction by SSPro 5.1 bioinformatic analysis. The thermograms analysis revealed that Td and△H of MFG-E8 were 60.50°Cand 132.29 kJ/mol. The in vitro digestibility of MFG-E8 showed that it can be enzymatically hydrolyzed in the stomach and relatively stable in the intestinal fluid. The in vitro C2C12 and Caco2 cell activity tests indicated that MFG-E8 promoted the proliferation of C2C12 myoblast cells without cytotoxicity. The biological functional properties of MFG-E8 may be related to the fact that MFG-E8 possesses a high level of ß-sheet structure. Our results suggested that MFG-E8 possesses broad prospects not only for use in functional food products but also as a source of natural anti-sarcopenia drugs.


Assuntos
Antígenos de Superfície/toxicidade , Proteínas do Leite/toxicidade , Mioblastos/metabolismo , Animais , Antígenos de Superfície/química , Células CACO-2 , Humanos , Camundongos , Proteínas do Leite/química , Mioblastos/citologia , Conformação Proteica em Folha beta
15.
Analyst ; 146(17): 5264-5270, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34337624

RESUMO

Peroxynitrite (ONOO-) is a highly reactive substance, and plays an essential part in maintaining cellular homeostasis. It is crucial to monitor the ONOO- level in cells in normal and abnormal states. We introduced a p-dimethylaminophenylether-based fluorescent probe PDPE-PN, which could be synthesized readily. The new probe had prominent sensitivity and specificity, and a fast response towards ONOO-. The spectral performance of probe PDPE-PN was outstanding and the limit of detection was 69 nM. Probe PDPE-PN with low toxicity was applied to detect endogenous/exogenous ONOO- in RAW 264.7 macrophages and zebrafish. Importantly, successful application of the new receptor opens up new ideas for the design of ONOO- probes.


Assuntos
Corantes Fluorescentes , Peixe-Zebra , Animais , Corantes Fluorescentes/toxicidade , Macrófagos , Ácido Peroxinitroso/toxicidade
16.
Mar Drugs ; 19(2)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572212

RESUMO

Chemical investigation of secondary metabolites from the marine-derived fungus Aspergillus austroafricanus Y32-2 resulted in the isolation of two new prenylated indole alkaloid homodimers, di-6-hydroxydeoxybrevianamide E (1) and dinotoamide J (2), one new pteridine alkaloid asperpteridinate A (3), with eleven known compounds (4-14). Their structures were elucidated by various spectroscopic methods including HRESIMS and NMR, while their absolute configurations were determined by ECD calculations. Each compound was evaluated for pro-angiogenic, anti-inflammatory effects in zebrafish models and cytotoxicity for HepG2 human liver carcinoma cells. As a result, compounds 2, 4, 5, 7, 10 exhibited pro-angiogenic activity in a PTK787-induced vascular injury zebrafish model in a dose-dependent manner, compounds 7, 8, 10, 11 displayed anti-inflammatory activity in a CuSO4-induced zebrafish inflammation model, and compound 6 showed significant cytotoxicity against HepG2 cells with an IC50 value of 30 µg/mL.


Assuntos
Aspergillus/metabolismo , Alcaloides Indólicos/isolamento & purificação , Pteridinas/isolamento & purificação , Microbiologia da Água , Indutores da Angiogênese/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Células Hep G2 , Humanos , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacologia , Espectroscopia de Ressonância Magnética , Pteridinas/química , Pteridinas/farmacologia , Peixe-Zebra
17.
J Sci Food Agric ; 101(12): 4916-4924, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33543494

RESUMO

BACKGROUND: Hyperuricemia (HUA) is a serious public health concern globally that needs to be solved. It is closely related to gout and other metabolic diseases. To develop a safe and effective dietary supplementation for alleviating HUA, we investigated the effects of whey protein hydrolysate (WPH) on HUA and associated renal dysfunction and explored their underlying mechanism. RESULTS: Potassium oxonate was used to induce HUA in model rats, who were then administered WPH for 21 days. The results showed that WPH significantly inhibited xanthine oxidase and adenosine deaminase activity in serum and liver, decreased uric acid (UA), creatinine, and blood urea nitrogen levels in serum, and increased the UA excretion in urine. In addition, WPH downregulated the expression of urate transporter 1 and upregulated the expression of organic anion transporter 1, adenosine triphosphate binding cassette subfamily G member 2, organic cation/carnitine transporters 1 and 2, and organic cation transporter 1 in kidneys. CONCLUSION: These findings demonstrated for the first time that WPH could alleviate HUA by inhibiting UA production and promoting UA excretion, and improve the renal dysfunction caused by HUA. Thus, WPH may be a potential functional ingredient for the prevention and treatment of HUA and associated renal dysfunction. © 2021 Society of Chemical Industry.


Assuntos
Hiperuricemia/dietoterapia , Proteínas do Soro do Leite/metabolismo , Adenosina Desaminase/metabolismo , Animais , Creatinina/sangue , Humanos , Hiperuricemia/induzido quimicamente , Hiperuricemia/metabolismo , Rim/metabolismo , Fígado/metabolismo , Masculino , Ácido Oxônico/efeitos adversos , Hidrolisados de Proteína/administração & dosagem , Ratos , Ratos Sprague-Dawley , Ácido Úrico/sangue , Soro do Leite/química , Xantina Oxidase/metabolismo
18.
J Biol Chem ; 294(18): 7472-7487, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30885942

RESUMO

A critical function of the PTEN-induced kinase 1 (PINK1)-Parkin pathway is to mediate the clearing of unhealthy or damaged mitochondria via mitophagy. Loss of either PINK1 or Parkin protein expression is associated with Parkinson's disease. Here, using a high-throughput screening approach along with recombinant protein expression and kinase, immunoblotting, and immunofluorescence live-cell imaging assays, we report that celastrol, a pentacyclic triterpenoid isolated from extracts of the medicinal plant Tripterygium wilfordii, blocks recruitment pof Parkin to mitochondria, preventing mitophagy in response to mitochondrial depolarization induced by carbonyl cyanide m-chlorophenylhydrazone or to gamitrinib-induced inhibition of mitochondrial heat shock protein 90 (HSP90). Celastrol's effect on mitophagy was independent of its known role in microtubule disruption. Instead, we show that celastrol suppresses Parkin recruitment by inactivating PINK1 and preventing it from phosphorylating Parkin and also ubiquitin. We also observed that PINK1 directly and strongly associates with TOM20, a component of the translocase of outer mitochondrial membrane (TOM) machinery and relatively weak binding to another TOM subunit, TOM70. Moreover, celastrol disrupted binding between PINK1 and TOM20 both in vitro and in vivo but did not affect binding between TOM20 and TOM70. Using native gel analysis, we also show that celastrol disrupts PINK1 complex formation upon mitochondrial depolarization and sequesters PINK1 to high-molecular-weight protein aggregates. These results reveal that celastrol regulates the mitochondrial quality control pathway by interfering with PINK1-TOM20 binding.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Mitofagia/efeitos dos fármacos , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Tripterygium/química , Triterpenos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Células HeLa , Humanos , Hidrazonas/antagonistas & inibidores , Hidrazonas/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microtúbulos/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Triterpenos Pentacíclicos , Polimerização , Ligação Proteica , Ubiquitina-Proteína Ligases/metabolismo
19.
Fish Physiol Biochem ; 46(3): 1025-1038, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31993854

RESUMO

Type 1 diabetes is characterized by an increase in blood glucose levels resulting from damage to ß cells in pancreatic islets and the consequent absolute insufficiency of insulin. Animal models of type 1 diabetes were usually established using drugs toxic to ß cells, such as streptozotocin (STZ). To assess the application of zebrafish larvae in diabetes research, we explore the effects of STZ on pancreatic islets and glucose metabolism in zebrafish larvae. STZ was microinjected into the pericardial cavity of zebrafish larvae on alternate days for three times. At 2 days after the whole series of STZ injection (12 dpf), free-glucose level in larvae tissue shows a significant increase, and the fluorescence signal in immunohistochemistry, which indicates the insulin expression, was significantly weaker compared with the solution-injected control. Obvious apoptosis signals were also observed in the location of pancreatic islet, and insulin content decreased to be undetectable in STZ-injected larvae. Gene expression level of ins decreased to half of the solution injection control and that of casp3a was upregulated by 2.20-fold. Expression level of glut2 and gck decreased to 0.312-fold and 0.093-fold, respectively. pck1 was upregulated by 2.533-fold in STZ-injected larvae. By tracking detection, we found the free-glucose level in STZ-injected larvae gradually approached the level of the solution injection control and the insulin content recovered at 6 days post-STZ injection (16 dpf). Consistent with the change of the glucose level, the regeneration rate of the caudal fin in the STZ-injected group decreased initially, but recovered and accelerated gradually finally at 8 days post-amputation (20 dpf). These results indicate the generation of a transient hyperglycemia model due to ß-cell apoptosis caused by STZ, which is abated by the vigorous regeneration ability of ß cells in zebrafish larvae.


Assuntos
Glucose/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Estreptozocina/farmacologia , Nadadeiras de Animais/efeitos dos fármacos , Nadadeiras de Animais/fisiologia , Animais , Apoptose/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Feminino , Hiperglicemia/induzido quimicamente , Hiperglicemia/metabolismo , Insulina/metabolismo , Larva , Masculino , Regeneração/efeitos dos fármacos , Peixe-Zebra
20.
Artigo em Inglês | MEDLINE | ID: mdl-30858204

RESUMO

Isoniazid (INH) is a first-line antituberculosis drug. The incidence of adverse reactions accompanied by inflammation in the liver during drug administration to tuberculosis patients is high and severely affects clinical treatment. To better understand the mechanism of hepatotoxicity induced by INH under the inflammatory state, we compared the differences in levels of hepatotoxicity from INH between normal zebrafish and zebrafish in an inflammatory state to elucidate the hepatotoxic mechanism using different endpoints such as mortality, malformation, inflammatory effects, liver morphology, histological changes, transaminase analysis, and expression levels of certain genes. The results showed that the toxic effect of INH in zebrafish in an inflammatory state was more obvious than that in normal zebrafish, that liver size was significantly decreased as measured by liver fatty acid binding protein (LFABP) reporter fluorescence and intensity, and that alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were significantly increased. Hematoxylin and eosin (HE) staining and electron microscopy showed that hepatocyte injury was more obvious in the inflammatory state. In the inflammatory state, INH significantly increased the expression levels of endoplasmic reticulum stress (ERS)-related factors (GRP78, ATF6, PERK, IRE1, XBP1s, GRP94, and CHOP), autophagy-related factors (beclin 1, LC3, Atg3, and Atg12), and apoptosis-related factors (caspase-3, caspase-8, caspase-9, Bax, p53, and Cyt) in larvae. Correlational analyses indicated that the transcription levels of the inflammatory factors interleukin-1b (IL-1b), tumor necrosis factor beta (TNF-ß), cyclooxygenase 2 (COX-2), and TNF-ɑ were strongly positively correlated with ALT and AST. Furthermore, the ERS inhibitor sodium 4-phenylbutyrate (4-PBA) could ameliorate the hepatotoxicity of INH-lipopolysaccharide (LPS) in zebrafish larvae. These results indicated that INH hepatotoxicity was enhanced in the inflammatory state. ERS and its mediated autophagy and apoptosis pathways might be involved in INH-induced liver injury promoted by inflammation.


Assuntos
Antituberculosos/efeitos adversos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Isoniazida/efeitos adversos , Lipopolissacarídeos/toxicidade , Alanina Transaminase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Aspartato Aminotransferases/metabolismo , Feminino , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA