Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Nucleic Acids Res ; 51(4): 1843-1858, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36688327

RESUMO

The discovery of new, active DNA transposons can expand the range of genetic tools and provide more options for genomic manipulation. In this study, a bioinformatics analysis suggested that Passer (PS) transposons, which are members of the pogo superfamily, show signs of recent and current activity in animals and may be active in some species. Cell-based transposition assays revealed that the native PS transposases from Gasterosteus aculeatus and Danio rerio displayed very high activity in human cells relative to the Sleeping Beauty transposon. A typical overproduction inhibition phenomenon was observed for PS, and transposition capacity was decreased by ∼12% with each kilobase increase in the insertion size. Furthermore, PS exhibited a pronounced integration preference for genes and their transcriptional regulatory regions. We further show that two domesticated human proteins derived from PS transposases have lost their transposition activity. Overall, PS may represent an alternative with a potentially efficient genetic manipulation tool for transgenesis and mutagenesis applications.


Assuntos
Elementos de DNA Transponíveis , Peixes , Técnicas Genéticas , Animais , Humanos , Peixes/genética , Técnicas de Transferência de Genes , Transposases/genética
2.
Proc Natl Acad Sci U S A ; 119(42): e2213718119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215477

RESUMO

Transcription factors (TFs) play critical roles in hematopoiesis, and their aberrant expression can lead to various types of leukemia. The t(8;21) leukemogenic fusion protein AML1-ETO (AE) is the most common fusion protein in acute myeloid leukemia and can enhance hematopoietic stem cell renewal while blocking differentiation. A key question in understanding AE-mediated leukemia is what determines the choice of AE to activate self-renewal genes or repress differentiation genes. Toward the resolution of this problem, we earlier showed that AE resides in the stable AETFC complex and that its components colocalize on up- or down-regulated target genes and are essential for leukemogenesis. In the current study, using biochemical and genomic approaches, we show that AE-containing complexes are heterogeneous, and that assembly of the larger AETFC (containing AE, CBFß, HEB, E2A, LYL1, LMO2, and LDB1) requires LYL1. Furthermore, we provide strong evidence that the LYL1-containing AETFC preferentially binds to active enhancers and promotes AE-dependent gene activation. Moreover, we show that coactivator CARM1 interacts with AETFC and facilitates gene activation by AETFC. Collectively, this study describes a role of oncoprotein LYL1 in AETFC assembly and gene activation by recruiting CARM1 to chromatin for AML cell survival.


Assuntos
Leucemia Mieloide Aguda , Proteínas de Fusão Oncogênica , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas Adaptadoras de Sinalização CARD , Cromatina , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Guanilato Ciclase , Humanos , Proteínas com Homeodomínio LIM/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína-Arginina N-Metiltransferases , Ativação Transcricional
3.
Plant J ; 110(6): 1751-1762, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35404523

RESUMO

Excessive nitrogen fertilizer application is harmful to the environment and reduces the quality of cereal crops. Maintaining crop yields under low nitrogen (LN) conditions and improving quality are important goals for cereal crop breeding. Although the effects of nitrogen assimilation on crop nitrogen-use efficiency (NUE) have been intensively studied, natural variations of the key assimilation genes underlying grain development and quality are largely unclear. Here, we identified an NUE-associated gene, OsGS1;1, encoding glutamine synthase, through genome-wide association analysis, followed by validation experiments and functional analysis. Fifteen single-nucleotide polymorphisms in the OsGS1;1 region led to alternative splicing that generated two functional transcripts: OsGS1;1a and OsGS1;1b. The elite haplotype of OsGS1;1 showed high OsGS1;1b activity, which improved NUE, affected grain development, and reduced amylose content. The results show that OsGS1;1, which is induced under LN conditions, affects grain formation by regulating sugar metabolism and may provide a new avenue for the breeding of high-yield and high-quality rice (Oryza sativa).


Assuntos
Oryza , Processamento Alternativo/genética , Amilose/metabolismo , Grão Comestível/metabolismo , Estudo de Associação Genômica Ampla , Nitrogênio/metabolismo , Oryza/metabolismo , Melhoramento Vegetal
4.
Med Mycol ; 61(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37985734

RESUMO

Although previous studies on the genotypic diversity and antifungal susceptibility of the Cryptococcus neoformans species complex (CNSC) isolates from China revealed ST5 genotype isolates being dominant, the information about the CNSC isolates from Chinese HIV-infected patients is limited. In this study, 171 CNSC isolates from HIV-infected patients in the Chongqing region of Southwest China were genotyped using the International Society for Human and Animal Mycology-multilocus sequence typing consensus scheme, and their antifungal drug susceptibilities were determined following CLSI M27-A3 guidelines. Among 171 isolates, six sequence types (STs) were identified, including the dominant ST5 isolates, the newly reported ST15, and four diploid VNIII isolates (ST632/ST636). Moreover, a total of 1019 CNSC isolates with STs and HIV-status information were collected and analyzed from Mainland China in the present study. A minimum spanning analysis grouped these 1019 isolates into three main subgroups, which were dominated by the ST5 clonal complex (CC5), followed by the ST31 clonal complex (CC31) and ST93 clonal complex (CC93). The trend of resistance or decreasing susceptibility of clinical CNSC isolates to azole agents within HIV-infected patients from the Chongqing region is increasing, especially resistance to fluconazole.


In this paper, novel ST15 and four diploid VNIII isolates (ST632/ST636) were found in 171 CNSC isolates in Southwest China, including evidence for resistance to fluconazole. Moreover, we clustered the 1019 clinical CNSC isolates reported so far from Mainland China into three major subgroups.


Assuntos
Criptococose , Cryptococcus neoformans , Infecções por HIV , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Criptococose/microbiologia , Criptococose/veterinária , Diploide , Testes de Sensibilidade Microbiana/veterinária , Genótipo , China/epidemiologia , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/veterinária
5.
Anal Bioanal Chem ; 415(7): 1371-1383, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36651973

RESUMO

In this study, a novel cell membrane chromatography (CMC) model was developed to investigate cluster of differentiation 147 (CD147) targeted anti-tumor drug leads for specific screening and ligand-receptor interaction analysis by SNAP-tagged CD147 fusion protein conjugation and polystyrene microspheres (PS) modification. Traditional Chinese medicines (TCMs) are widely used in the treatment of cancer. CD147 plays important roles in tumor progression and acts as an attractive target for therapeutic intervention; therapeutic drugs for CD147-related cancers are limited to date. Thus, a screening method for active components in TCMs is crucial for the further research and development of CD147 antagonists. However, improvement is still needed to perform specific and accurate drug lead screening using the CMC-based method. Recently, our group developed a covalently immobilized receptor-SNAP-tag/CMC model using silica gel as carrier. Besides the carboxyl group on multi-step modified silica particles, the amino group of benzyl-guanine (BG, substrate of SNAP-tag) also possesses reactivity towards the carboxyl group on available carboxyl-modified PS. Herein, we used PS as carrier and an extended SNAP-tag with CD147 receptor to construct the PS-BG-CD147/CMC model for active compound investigation coupled with HPLC/MS and applied this coupled PS-BG-CD147/CMC-HPLC/MS two-dimensional system to drug lead screening from Nelumbinis Plumula extract (NPE) sample. In addition, to comprehensively verify the pharmacological effects of screened ingredients, a cell proliferation inhibition assay was performed, and the interaction between the ingredients and CD147 was studied by the frontal analysis method. This study developed a high-throughput PS-based CMC screening platform, which could be widely applied and utilized in chromatographic separation and drug lead discovery.


Assuntos
Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/química , Poliestirenos/análise , Microesferas , Cromatografia Líquida de Alta Pressão/métodos , Membrana Celular/química
6.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37628942

RESUMO

Like other abiotic stresses, salt stress has become a major factor that restricts the growth, distribution and yield of crops. Research has shown that increasing the nitrogen content in soil can improve the salt tolerance of plants and nitrate transporter (NRT) is the primary nitrogen transporter in plants. Suaeda salsa (L.) Pall is a strong halophyte that can grow normally at a salt concentration of 200 mM. The salt stress transcriptome database of S. salsa was found to contain four putative genes that were homologous to NRT, including SsNRT1.1A, SsNRT1.1B, SsNRT1.1C and SsNRT1.1D. The cDNA of SsNRT1.1s was predicted to contain open reading frames of 1791, 1782, 1755 and 1746 bp, respectively. Sequence alignment and structural analysis showed that the SsNRT1.1 amino acids were inducible by salt and have conserved MFS and PTR2 domains. Subcellular localization showed they are on the endoplasmic reticulum. Overexpression of SsNRT1.1 genes in transgenic Arabidopsis improves its salt tolerance and SsNRT1.1C was more effective than others. We constructed a salt-stressed yeast cDNA library and used yeast two-hybrid and BiFC technology to find out that SsHINT1 and SsNRT1.1C have a protein interaction relationship. Overexpression of SsHINT1 in transgenic Arabidopsis also improves salt tolerance and the expressions of Na+ and K+ were increased and reduced, respectively. But the K+/Liratio was up-regulated 11.1-fold compared with the wild type. Thus, these results provide evidence that SsNRT1.1C through protein interactions with SsHINT1 increases the K+/Na+ ratio to improve salt tolerance and this signaling may be controlled by the salt overly sensitive (SOS) pathway.


Assuntos
Arabidopsis , Chenopodiaceae , Arabidopsis/genética , Saccharomyces cerevisiae , Estresse Salino/genética , Chenopodiaceae/genética , Produtos Agrícolas , Proteínas de Plantas/genética , Proteínas de Transporte de Ânions
7.
Small ; 18(23): e2201111, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35534444

RESUMO

The biological nervous system possesses a powerful information processing capability, and only needs a partial signal stimulation to perceive the entire signal. Likewise, the hardware implementation of an information processing system with similar capabilities is of great significance, for reducing the dimensions of data from sensors and improving the processing efficiency. Here, it is reported that indium-gallium-zinc-oxide thin film phototransistors exhibit the optoelectronic switching and light-tunable synaptic characteristics for in-sensor compression and computing. Phototransistor arrays can compress the signal while sensing, to realize in-sensor compression. Additionally, a reservoir computing network can also be implemented via phototransistors for in-sensor computing. By integrating these two systems, a neuromorphic system for high-efficiency in-sensor compression and computing is demonstrated. The results reveal that even for cases where the signal is compressed by 50%, the recognition accuracy of reconstructed signal still reaches ≈96%. The work paves the way for efficient information processing of human-computer interactions and the Internet of Things.


Assuntos
Processamento Eletrônico de Dados , Humanos
8.
Appl Environ Microbiol ; 88(13): e0043722, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35736228

RESUMO

The amino sugar N-acetyl-d-glucosamine (GlcNAc) is the key constituent of cell wall components and plays an important role in pathogenesis in a wide range of fungi. However, catabolism of GlcNAc has not been studied in basidiomycete fungi. In this study, we identified and characterized a gene cluster essential for GlcNAc utilization in Cryptococcus deneoformans, an environmental human fungal pathogen. The C. deneoformans genome contains a GlcNAc transporter (Ngt1), a GlcNAc kinase (Hxk3), a GlcNAc-6-phosphate deacetylase (Dac1), and a glucosamine-6-phosphate deaminase (Nag1). Their expression levels were highly induced in cultures containing GlcNAc as the sole carbon source, and the corresponding mutants showed severe growth defects in the presence of GlcNAc. Functional and biochemical analyses revealed that HXK3 encodes a novel GlcNAc kinase. Site-directed mutations of conserved residues of Hxk3 indicated that ATP binding and GlcNAc binding are essential for GlcNAc kinase activities. Taken together, the results from this study provide crucial insights into basidiomycete GlcNAc catabolism. IMPORTANCEN-Acetylglucosamine (GlcNAc) is recognized as not only the building block of chitin but also an important signaling molecule in fungi. The catabolic pathway of GlcNAc also plays an important role in vital biological processes in fungi. However, the utilization pathway of GlcNAc in the phylum Basidiomycota, which contains more than 41,000 species, remains unknown. Cryptococcus deneoformans is a representative basidiomycetous pathogen that causes life-threatening meningitis. In this study, we characterized a gene cluster essential for GlcNAc utilization in C. deneoformans and identified a novel GlcNAc kinase. The results of this study provide important insights into basidiomycete GlcNAc catabolism and offer a starting point for revealing its role in pathogenesis.


Assuntos
Candida albicans , Cryptococcus , Acetilglucosamina/metabolismo , Parede Celular/metabolismo , Quitina/metabolismo , Humanos
9.
Anal Bioanal Chem ; 414(19): 5741-5753, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35697810

RESUMO

Pseudo-allergic reactions (PARs) are IgE-independent hypersensitivity reactions. Mas-related G protein-coupled receptor-X2 (MrgX2) was proved the key receptor of PAR. The anti-pseudo-allergic compound discovery based on MrgX2 was of great value. Cell membrane chromatography (CMC) based on MrgX2 provides a convenient and effective tool in anti-pseudo-allergic compound screening and discovery, and further improvements of this method are still needed. In this work, SNAP-tag was introduced at C-terminal of Mas-related G protein-coupled receptor (MrgX2-SNAP-tag), and an MrgX2-SNAP-tag/CMC model was then conducted using CMC technique. Comparative experiments showed that the new model not only satisfied the good selectivity and specificity of screening but also exhibited more stable and longer life span than traditional MrgX2/CMC model. By coupling with HPLC-MS, two compounds were screened out from Arnebiae Radix and identified as shikonin and acetylshikonin. Nonlinear chromatography was performed to study the interactions between two screened compounds and MrgX2, and binding constant (KA) of shikonin and acetylshikonin with MrgX2 were 2075.67 ± 0.34 M-1 and 32201.36 ± 0.35 M-1, respectively. Furthermore, ß-hexosaminidase and histamine release assay in vitro demonstrated that shikonin (1-5 µM) and acetylshikonin (2.5-10 µM) could both antagonize C48/80-induced allergic reaction. In conclusion, the MrgX2-SNAP-tag/CMC could be a reliable model for screening pseudo-allergy-related components from complex systems.


Assuntos
Antialérgicos , Receptores de Neuropeptídeos , Antialérgicos/análise , Antialérgicos/metabolismo , Antialérgicos/farmacologia , Membrana Celular/metabolismo , Cromatografia Líquida , Espectrometria de Massas , Mastócitos/química , Mastócitos/metabolismo , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/análise , Receptores de Neuropeptídeos/química , Receptores de Neuropeptídeos/metabolismo
10.
J Sep Sci ; 45(14): 2498-2507, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35561141

RESUMO

Cell membrane chromatography is an effective method for screening bioactive components acting on specific receptors in complex systems, which maintains the biological activity of the membrane receptors and improves screening efficiency. However, traditional cell membrane chromatography suffers from poor stability, resulting in a limited life span and low reproducibility, greatly limiting the application of this method. To address this problem, cyanuric chloride-decorated silica gel was used for the covalent immobilization of the cell membranes. Cyanuric chloride reacts with amino groups on the cell membranes and membrane receptors to form covalent bonds. In this way, the cell membranes are not easy to fall off. The column life of the cyanuric chloride-decorated epidermal growth factor receptor/cell membrane chromatography column was extended to more than 8 days, whereas the column life of the normal cell membrane chromatography column dropped sharply in the first 3 days. A cyanuric chloride-decorated epidermal growth factor receptor/cell membrane chromatography online HPLC-IT-TOF-MSn system was applied for screening drug leads from Trifolium pratense L. One potential drug lead, formononetin, which acts on the epidermal growth factor receptor, was screened. Our strategy of covalently immobilizing cell membrane receptors also improved the stability of cell membrane chromatography.


Assuntos
Medicamentos de Ervas Chinesas , Receptores ErbB , Membrana Celular/química , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Receptores ErbB/metabolismo , Reprodutibilidade dos Testes
11.
J Sep Sci ; 45(2): 456-467, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34729910

RESUMO

Chloroquine and hydroxychloroquine have been studied since the early clinical treatment of SARS-CoV-2 outbreak. Considering these two chiral drugs are currently in use as the racemate, high-expression angiotensin-converting enzyme 2 cell membrane chromatography was established for investigating the differences of two paired enantiomers binding to angiotensin-converting enzyme 2 receptor. Molecular docking assay and detection of SARS-CoV-2 spike pseudotyped virus entry into angiotensin-converting enzyme 2-HEK293T cells were also conducted for further investigation. Results showed that each single enantiomer could bind well to angiotensin-converting enzyme 2, but there were differences between the paired enantiomers and corresponding racemate in frontal analysis. R-Chloroquine showed better angiotensin-converting enzyme 2 receptor binding ability compared to S-chloroquine/chloroquine (racemate). S-Hydroxychloroquine showed better angiotensin-converting enzyme 2 receptor binding ability than R-hydroxychloroquine/hydroxychloroquine. Moreover, each single enantiomer was proved effective compared with the control group; compared with S-chloroquine or the racemate, R-chloroquine showed better inhibitory effects at the same concentration. As for hydroxychloroquine, R-hydroxychloroquine showed better inhibitory effects than S-hydroxychloroquine, but it slightly worse than the racemate. In conclusion, R-chloroquine showed better angiotensin-converting enzyme 2 receptor binding ability and inhibitory effects compared to S-chloroquine/chloroquine (racemate). S-Hydroxychloroquine showed better angiotensin-converting enzyme 2 receptor binding ability than R-hydroxychloroquine/hydroxychloroquine (racemate), while the effect of preventing SARS-CoV-2 pseudovirus from entering cells was weaker than R-hydroxychloroquine/hydroxychloroquine (racemate).


Assuntos
Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/efeitos dos fármacos , Cloroquina/química , Cloroquina/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Hidroxicloroquina/química , Hidroxicloroquina/farmacologia , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Antivirais/química , Antivirais/farmacologia , COVID-19/virologia , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/virologia , Células HEK293 , Humanos , Técnicas In Vitro , Simulação de Acoplamento Molecular , Receptores Virais/antagonistas & inibidores , Receptores Virais/química , Receptores Virais/efeitos dos fármacos , SARS-CoV-2/química , SARS-CoV-2/efeitos dos fármacos , Solventes , Estereoisomerismo , Pseudotipagem Viral , Internalização do Vírus , Tratamento Farmacológico da COVID-19
12.
Curr Microbiol ; 79(2): 66, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35059843

RESUMO

Plant growth-promoting (PGP) bacteria are an environmental-friendly alternative to chemical fertilizers for promoting plant development. We isolated and characterized a PGP endophyte, YSD J2, from the leaves of Cyperus esculentus L. var. sativus. Specific PGP characteristics of this strain, such as phosphate solubilization ability, potassium-dissolving ability, siderophore and indole-3-acetic acid (IAA) production, and salt tolerance, were determined in vitro. In addition, positive mutants were screened using the atmospheric and room-temperature plasma (ARTP) technology, with IAA level and organic phosphorus solubility as indices. Furthermore, the effect of the positive mutant on biomass production and antioxidant abilities of greengrocery seedling was evaluated and the genome was mined to explore the underlying mechanisms. The strain YSD J2 showed a good performance of PGP characteristics, such as the production of indole acetic acid and siderophores, solubilization ability of phosphate, and potassium-dissolving ability. It was recognized through 16S rRNA sequencing together with morphological and physiological tests and confirmed as Pantoea sp. The strain exposed to a mutation time of 125 s by ARTP had the highest IAA and organic phosphate (lecithin) concentrations of 10.34 mg/L and 16.52 mg/L, 42.06% and 34.15% higher than those of the initial strain. Inoculation of mutant strain YSD J2 significantly increased plant growth attributes and the activities of peroxidase and superoxide dismutase, respectively, but decreased the content of malondialdehyde significantly compared with the control. Furthermore, genome annotation and functional analysis were performed through whole-genome sequencing and PGP-related genes were identified. Our results indicated that the YSD J2 with PGP characteristics is a potential candidate for the development of biofertilizers.


Assuntos
Cyperus , Pantoea , Pantoea/genética , Desenvolvimento Vegetal , Folhas de Planta , RNA Ribossômico 16S/genética
13.
Can J Infect Dis Med Microbiol ; 2022: 2703635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35449601

RESUMO

Background: Bedaquiline (Bdq) exerts bactericidal effects against drug-susceptible and drug-resistant Mycobacterium tuberculosis strains, including multidrug-resistant M. tuberculosis strains (MDR-MTBs). However, few reported investigations exist regarding Bdq effects on MDR-MTBs-infected macrophages activities and cytokine secretion. Here, Bdq bactericidal activities against MDR-MTBs and related cellular immune mechanisms were explored. Methods: Macrophages infected with MDR-MTBs or H37Rv received Bdq treatments (4 h/8 h/24 h/48 h) at 1 × the minimum inhibitory concentration (1 × MIC), 10 × MIC and 20 × MIC. Intracellular colony-forming units (CFUs) and culture supernatant IL-12/23 p40, TNF-α, IL-6, and IL-10 were determined using the Luminex® 200TM system. Normally distributed continuous data (mean ± standard deviation) were analyzed using t-test or F-test (SPSS 25.0, P < 0.05 deemed statistically significant). Results: (1) 100% of Bdq-treated macrophages (all doses applied over 4-48 h) survived with 0% inhibition of proliferation observed. (2) Intracellular CFUs of Bdq-treated MDR-MTBs-infected macrophages decreased over 4-48 h of treatment, were lower than preadministration and control CFUs, decreased with increasing Bdq dose, and resembled H37Rv-infected group CFUs (48 h). (3) For MDR-MTBs-infected macrophages (various Bdq doses), IL-12/23 p40 levels resembled preadministration group levels and exceeded controls (4 h); TNF-α levels exceeded preadministration group levels (24 h/48 h) and controls (24 h); IL-12/23 p40 and TNF-α levels resembled H37Rv-infected group levels (4 h/8 h/24 h/48 h); IL-6 levels exceeded preadministration and H37Rv-infected group levels (24 h/48 h) and controls (24 h); IL-10 levels resembled preadministration and H37Rv-infected group levels (4 h/8 h/24 h/48 h) and were lower than controls (24 h/48 h); IL-12/23 p40 and IL-10 levels remained unchanged as intracellular CFUs changed, with IL-12/23 p40 levels exceeding controls (4 h) and IL-10 levels remaining lower than controls (24 h/48 h); TNF-α and IL-6 levels increased as intracellular CFUs decreased (24 h/48 h) and exceed controls (24 h). Conclusion: Bdq was strongly bactericidal against intracellular MDR-MTBs and H37Rv in a time-dependent, concentration-dependent manner. Bdq potentially exerted immunomodulatory effects by inducing high-level Th1 cytokine expression (IL-12/23 p40, TNF-α) and low-level Th2 cytokine expression (IL-10).

14.
Br J Cancer ; 125(7): 994-1002, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34331023

RESUMO

BACKGROUND: Colorectal neuroendocrine carcinomas (CRNECs) are highly aggressive tumours with poor prognosis and low incidence. To date, the genomic landscape and molecular pathway alterations have not been elucidated. METHODS: Tissue sections and clinical information of CRNEC (n = 35) and CR neuroendocrine tumours (CRNETs) (n = 25) were collected as an in-house cohort (2010-2020). Comprehensive genomic and expression panels (AmoyDx® Master Panel) were applied to identify the genomic and genetic alterations of CRNEC. Through the depiction of the genomic landscape and transcriptome profile, we compared the difference between CRNEC and CRNET. Reverse transcription-polymerase chain reaction and immunofluorescence staining were performed to confirm the genetic alterations. RESULTS: High tumour mutation load was observed in CRNEC compared with CRNET. CRNECs showed a "cold" immune landscape and increased endothelial cell activity compared with NETs. Importantly, PAX5 was aberrantly expressed in CRNEC and predicted a poor prognosis of CRNECs. CCL5, a factor that is considered an immunosuppressive factor in several tumour types, was strongly expressed in CRNEC patients with long-term survival and correlated with high CD8+ T cell infiltration. CONCLUSION: Through the depiction of the genomic landscape and transcriptome profile, we demonstrated alterations in molecular pathways and potential targets for immunotherapy in CRNEC.


Assuntos
Carcinoma Neuroendócrino/genética , Quimiocina CCL5/genética , Neoplasias Colorretais/genética , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Tumores Neuroendócrinos/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD8-Positivos/imunologia , Carcinoma Neuroendócrino/imunologia , Neoplasias Colorretais/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Tumores Neuroendócrinos/imunologia , Prognóstico , Análise de Sobrevida , Microambiente Tumoral , Adulto Jovem
15.
Anal Chem ; 93(34): 11719-11728, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34415741

RESUMO

Membrane protein immobilization is particularly significant in in vitro drug screening and determining drug-receptor interactions. However, there are still some problems in the immobilization of membrane proteins with controllable direction and high conformational stability, activity, and specificity. Cell membrane chromatography (CMC) retains the complete biological structure of membrane proteins. However, conventional CMC has the limitation of poor stability, which results in its limited life span and low reproducibility. To overcome this limitation, we propose a method for the specific covalent immobilization of membrane proteins in cell membranes. We used the SNAP-tag as an immobilization tag fused to the epidermal growth factor receptor (EGFR), and Cys145 located at the active site of the SNAP-tag reacted with the benzyl group of O6-benzylguanine (BG). The SNAP-tagged EGFR was expressed in HEK293 cells. We captured the SNAP-tagged EGFR from the cell membrane suspension onto a BG-derivative-modified silica gel. Our immobilization strategy improved the life span and specificity of CMC and minimized loss of activity and nonspecific attachment of proteins. Next, a SNAP-tagged EGFR/CMC online HPLC-IT-TOF-MS system was established to screen EGFR antagonists from Epimedii folium. Icariin, magnoflorine, epimedin B, and epimedin C were retained in this model, and pharmacological assays revealed that magnoflorine could inhibit cancer cell growth by targeting the EGFR. This EGFR immobilization method may open up possibilities for the immobilization of other membrane proteins and has the potential to serve as a useful platform for screening receptor-binding leads from natural medicinal herbs.


Assuntos
Receptores ErbB , Tecnologia , Membrana Celular , Receptores ErbB/genética , Células HEK293 , Humanos , Reprodutibilidade dos Testes
16.
Mol Phylogenet Evol ; 161: 107143, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33713798

RESUMO

DNA transposons play a significant role in shaping the size and structure of eukaryotic genomes. The Tc1/mariner transposons are the most diverse and widely distributed superfamily of DNA transposons and the structure and distribution of several Tc1/mariner families, such as DD35E/TR, DD36E/IC, DD37E/TRT, and DD41D/VS, have been well studied. Nonetheless, a greater understanding of the structure and diversity of Tc1/mariner transposons will provide insight into the evolutionary history of eukaryotic genomes. Here, we conducted further analysis of DD37D/maT and DD39D (named Guest, GT), which were identified by the specific catalytic domains DD37D and DD39D. Most transposons of the maT family have a total length of approximately 1.3 kb and harbor a single open reading frame encoding a ~ 346 amino acid (range 302-398 aa) transposase protein, flanked by short terminal inverted repeats (TIRs) (13-48 base pairs, bp). In contrast, GTs transposons were longer (2.0-5.8 kb), encoded a transposase protein of ~400 aa (range 140-592 aa), and were flanked by short TIRs (19-41 bp). Several conserved motifs, including two helix-turn-helix (HTH) motifs, a GRPR (GRKR) motif, a nuclear localization sequence, and a DDD domain, were also identified in maT and GT transposases. Phylogenetic analyses of the DDD domain showed that the maT and GT families each belong to a monophyletic clade and appear to be closely related to DD41D/VS and DD34D/mariner. In addition, maTs are mainly distributed in invertebrates (144 species), whereas GTs are mainly distributed in land plants through a small number of GTs are present in Chromista and animals. Sequence identity and phylogenetic analysis revealed that horizontal transfer (HT) events of maT and GT might occur between kingdoms and phyla of eukaryotes; however, pairwise distance comparisons between host genes and transposons indicated that HT events involving maTs might be less frequent between invertebrate species and HT events involving GTs may be less frequent between land plant species. Overall, the DD37D/maT and DD39D/GT families display significantly different distribution and tend to be identified in more ancient evolutionary families. The discovery of intact transposases, perfect TIRs, and target site duplications (TSD) of maTs and GTs illustrates that the DD37D/maT and DD39D/GT families may be active. Together, these findings improve our understanding of the diversity of Tc1/mariner transposons and their impact on eukaryotic genome evolution.


Assuntos
Elementos de DNA Transponíveis/genética , Eucariotos/genética , Evolução Molecular , Transposases/genética , Animais , Invertebrados/genética , Filogenia
17.
Bioorg Med Chem ; 30: 115940, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33340937

RESUMO

In the present work, a novel series of pyridinethiazole bearing benzylpiperidine hybrids were designed and synthesized as dual-target inhibitors of GSK-3ß/AChE. Among them, GD29 was the most promising candidate, with an IC50 value of 0.3 µM for hAChE and an IC50 value of 0.003 µM for hGSK-3ß, respectively. The compounds exhibited good drug-like properties with optimal inhibitory enzyme activities. Moreover, GD29 showed anti-inflammatory properties at micromolar concentrations and displayed interesting neuroprotective profiles in an in vitro model of oxidative stress-induced neuronal death. Notably, the compounds also exhibited good permeability across the blood-brain-barrier (BBB) both in vitro. Central cholinomimetic activity was confirmed using a scopolamine-induced cognition impairment model in Institute of Cancer Research (ICR) mice upon oral administration. The current work identified optimized compounds and explored the therapeutic potential of glycogen synthase kinase 3/cholinesterase inhibition for the treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Fármacos Neuroprotetores/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Tiazóis/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química , Células Tumorais Cultivadas
18.
Anal Bioanal Chem ; 413(7): 1917-1927, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33506335

RESUMO

A novel stability-enhanced graphene quantum dot (GQD)-decorated epidermal growth factor receptor (EGFR) cell membrane chromatography was constructed to study the potential application of GQDs in bioaffinity chromatography, and to screen active components acting on EGFR from traditional Chinese medicine (TCM). The carboxyl groups on the surface of GQDs reacted with the amino groups of the amino-silica gel (SiO2-NH2) to form a covalent bond, thereby preparing the GQD-decorated silica gel (SiO2-GQDs). The EGFR cell membrane was further immobilized on the SiO2-GQDs through the same covalent binding method to obtain the GQD-decorated cell membrane stationary phase (SiO2-GQDs-CMSP). In this way, the cell membrane was firmly immobilized on the decorated silica carrier. The life span and stability of the GQD-decorated cell membrane chromatographic (SiO2-GQDs-CMC) column were both enhanced, and the optimal immobilization conditions of the EGFR cell membrane were also determined. This model was then verified by establishing a SiO2-GQDs-CMC online liquid chromatography-ion trap-time-of-flight (LC-IT-TOF) system to screen possible active components in Peucedanum praeruptorum Dunn. As a result, praeruptorin B (Pra-B) was screened out, and its inhibitory effect against EGFR cell growth was evaluated by the cell counting kit-8 (CCK-8) assay. Molecular docking assay was also conducted to further estimate the interaction between Pra-B and EGFR. Overall, this research indicated that GQDs may be a promising nanomaterial to be used in prolonging the life span of the CMC column, and Pra-B could be a potential EGFR inhibitor so as to treat cancer.


Assuntos
Apiaceae/metabolismo , Cromatografia/métodos , Receptores ErbB/análise , Pontos Quânticos , Antineoplásicos/análise , Membrana Celular/metabolismo , Química Farmacêutica/métodos , Desenho de Fármacos , Gefitinibe/análise , Grafite/química , Células HEK293 , Humanos , Medicina Tradicional Chinesa , Microscopia Eletrônica de Varredura , Simulação de Acoplamento Molecular , Neoplasias/metabolismo , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Anal Bioanal Chem ; 413(11): 2995-3004, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33608752

RESUMO

Traditional Chinese medicines played an important role in the treatment of COVID-19 in 2020. Ephedra sinica, one of the major constituent herbs of multi-component herbal formula, has been widely used to treat COVID-19 in China. However, its active components are still unclear. The objectives of this study are to screen and evaluate active components from the traditional Chinese medicine Ephedra sinica for the treatment of COVID-19. In our study, we established an ACE2/CMC bioaffinity chromatography model, and then developed an ACE2/CMC-HPLC-IT-TOF-MS system for the active compounds screening and identification from Ephedra sinica extract. We performed molecular docking and surface plasmon resonance (SPR) assays to assess the binding characteristics (binding mode and KD value). We used CCK-8 staining to assess the toxicity of screened compounds, and also used SARS-CoV-2 pseudovirus to observe the viropexis effect of screened compounds in ACE2h cells. In this current work, one fraction was fished out, separated and identified as ephedrine (EP), pseudoephedrine (PEP), and methylephedrine (MEP). Binding assays showed that the three compounds could bind with ACE2 in a special way to some amino acid residues, similar to the way SARS-CoV-2 bound with ACE2. Additionally, the three compounds, especially EP, can inhibit the entrance of SARS-CoV-2 spike pseudovirus into ACE2h cells because they can reduce the entrance ratio of pseudovirus in the pseudovirus model. Overall, the ACE2/CMC-HPLC-IT-TOF-MS system was established and verified to be suitable for ACE2-targeted bioactive compound screening. EP, PEP, and MEP with ACE2-binding features were screened out from Ephedra sinica, and acted as blockers inhibiting SARS-CoV-2 spike pseudovirus entering ACE2h cells.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas/farmacologia , Ephedra sinica , SARS-CoV-2/efeitos dos fármacos , Antivirais/química , Antivirais/isolamento & purificação , COVID-19/metabolismo , China , Cromatografia Líquida de Alta Pressão , Descoberta de Drogas , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Ephedra sinica/química , Efedrina/análogos & derivados , Efedrina/isolamento & purificação , Efedrina/farmacologia , Células HEK293 , Humanos , Espectrometria de Massas , Simulação de Acoplamento Molecular , SARS-CoV-2/fisiologia , Internalização do Vírus/efeitos dos fármacos
20.
J Sep Sci ; 44(7): 1421-1429, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33491300

RESUMO

Adverse drug reactions of traditional Chinese medicine injection mainly manifested as pseudo-allergic reactions. In the present study, ginsenoside Rd, Ro, and Rg3 were identified as pseudo-allergic components in Shengmai injection by a high-expression Mas-related G protein-coupled receptor X2 cell membrane chromatography coupled online with high-performance liquid chromatography and mass spectrometry. Their pseudo-allergic activities were evaluated by in vitro and in vivo assay. The three compounds were further found to induce pseudo-allergic reaction through Mas-related G protein-coupled receptor X2. Therefore, we concluded that ginsenoside Rd, Ro and Rg3 may be potential allergens that cause pseudo-allergic reactions. This study might be helpful for the safe use of Shengmai injection.


Assuntos
Alérgenos/análise , Medicamentos de Ervas Chinesas/química , Receptores Acoplados a Proteínas G/biossíntese , Animais , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Combinação de Medicamentos , Medicamentos de Ervas Chinesas/administração & dosagem , Humanos , Espectrometria de Massas , Medicina Tradicional Chinesa , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA