Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 62(6): 1504-1509, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36821311

RESUMO

A slightly tapered graded index multimode fiber (GIMF) is demonstrated as the saturable absorber (SA) for a conventional soliton and tightly bound soliton generation. The SA device is simply a GIMF spliced with single-mode fiber (SMF) at its two ends. The waist diameter of the slightly tapered fiber is ∼23.8µm, located at one of the splicing points of SMF and GIMF. The mode-locked output of conventional solitons and tightly bound solitons can be obtained in a ring fiber laser based on such a SA. The central wavelength of the output conventional solitons is 1563.5 nm, and the pulse width is as short as 473 fs at the fundamental frequency of 19.53 MHz. The central wavelength of the tightly bound solitons is 1563.5 nm, with a pulse width of 636 fs and a separation of 1.89 ps. The device is featured with a simple and robust structure and stable operation capability and can effectively overcome the difficulty in requirement of precise control of the GIMF length, which make it attractive in ultrafast lasers and optical fiber communication systems.

2.
Materials (Basel) ; 11(12)2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30477163

RESUMO

Biochar has been studied for remediation of heavy metal-contaminated soils by many researchers. When in external conditions, biochar in soils ages, which can transform its structural properties and adsorption capacity. This study was conducted with two oxidation processes, HNO3/H2SO4 and NaOH/H2O2, to simulate the effects of biochar in acid and alkaline soil conditions. The results show that the oxygen-containing functional groups increased in aged biochar, which led to improve the ratio of oxygen and carbon (O/C). Nitro functional groups were found in the acid-oxidation treated biochar. Destroyed ditches and scars were observed on the surface of aged biochar and resulted in growth in their specific surface area and porosity. Specific surface area increased by 21.1%, 164.9%, and 63.0% for reed-derived biochar treated with water washing, acid oxidation, and basic oxidation, respectively. Greater peaks in the Fourier Transform Infrared Spectroscopy (FTIR) results were found in C⁻O and O⁻H on the surface of field-aged biochar. Meanwhile, mappings of energy-dispersive spectroscopy showed that biochar aged in soil was abundant in minerals such as silicon, iron, aluminum, and magnesium. In summary, biochar subjected to wet oxidation aging had an increased capacity to immobilize Cd compared to unaged biochar, and the adsorption capacity of oxidized biochar increased by 28.4% and 13.15% compared to unaged biochar due to improvements in porosity and an increase in functional groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA