Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675579

RESUMO

High ionic conductivity, outstanding mechanical stability, and a wide electrochemical window are the keys to the application of solid-state lithium metal batteries (LMBs). Due to their regular channels for ion transport and tailored functional groups, covalent organic frameworks (COFs) have been applied to solid electrolytes to improve their performance. Herein, we report a flexible polyethylene oxide-COF-LZU1 (abbreviated as PEO-COF) electrolyte membrane with a high lithium ion transference number and satisfactory mechanical strength, allowing for dendrite-free and long-time cycling for LMBs. Benefiting from the interaction between bis(triflfluoromethanesulonyl)imide anions (TFSI-) and aldehyde groups in COF-LZU1, the Li+ transference number of the PEO-5% COF-LZU1 electrolyte reached up to 0.43, much higher than that of neat PEO electrolyte (0.18). Orderly channels are conducive to the homogenous Li-+ deposition, thereby inhibiting the lithium dendrites. The assembled LiFePO4|PEO-5% COF-LZU1/Li cells delivered a discharge specific capacity of 146 mAh g-1 and displayed a capacity retention of 80% after 200 cycles at 0.1 C (60 °C). The Li/Li symmetrical cells of the PEO-5% COF-LZU1 electrolyte presented a longer working stability at different current densities compared to that of the PEO electrolyte. Therefore, the enhanced comprehensive performance of the solid electrolyte shows potential application prospects for use in LMBs.

2.
Molecules ; 29(18)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39339475

RESUMO

High-temperature proton exchange membrane fuel cells (HT-PEMFCs) have become one of the important development directions of PEMFCs because of their outstanding features, including fast reaction kinetics, high tolerance against impurities in fuel, and easy heat and water management. The proton exchange membrane (PEM), as the core component of HT-PEMFCs, plays the most critical role in the performance of fuel cells. Phosphoric acid (PA)-doped membranes have showed satisfied proton conductivity at high-temperature and anhydrous conditions, and significant advancements have been achieved in the design and development of HT-PEMFCs based on PA-doped membranes. However, the persistent issue of HT-PEMFCs caused by PA leaching remains a challenge that cannot be ignored. This paper provides a concise overview of the proton conduction mechanism in HT-PEMs and the underlying causes of PA leaching in HT-PEMFCs and highlights the strategies aimed at mitigating PA leaching, such as designing crosslinked structures, incorporation of hygroscopic nanoparticles, improving the alkalinity of polymers, covalently linking acidic groups, preparation of multilayer membranes, constructing microporous structures, and formation of micro-phase separation. This review will offer a guidance for further research and development of HT-PEMFCs with high performance and longevity.

3.
Molecules ; 29(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39339359

RESUMO

A series of CO2-based thermoplastic polyurethanes (TPUs) were prepared using CO2-based poly(polycarbonate) diol (PPCDL), 4,4'-methylenebis (cyclohexyl isocyanate) (HMDI), and polypropylene glycol (PPG and 1,4-butanediol (BDO) as the raw materials. The mechanical, thermal, optical, and barrier properties shape memory behaviors, while biocompatibility and degradation behaviors of the CO2-based TPUs are also systematically investigated. All the synthesized TPUs are highly transparent amorphous polymers, with one glass transition temperature at ~15-45 °C varying with hard segment content and soft segment composition. When PPG is incorporated into the soft segments, the resultant TPUs exhibit excellent self-healing and shape memory performances with the average shape fixity ratio and shape recovery ratio as high as 98.9% and 88.3%, respectively. Furthermore, the CO2-based TPUs also show superior water vapor permeability resistance, good biocompatibility, and good biodegradation properties, demonstrating their pretty competitive potential in the polyurethane industry applications.

4.
Small ; 17(29): e2101496, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34142443

RESUMO

Uniform deposition and distribution of lithium ion (Li+ ) on the surface of lithium metal anode is crucial for long-life and high-safety lithium metal batteries. However, the preparation of stable solid-electrolyte interphase (SEI) is mostly based on trial and error in the absence of guideline. Herein, covalent organic framework (COF) with high Young's modulus and low surface work function is in situ synthesized on Li anode to stabilize Li|electrolyte interface. Notably, Young's modulus, mechanical index for Li dendrite resistance, and surface work function, electrical index for Li+ distribution, can be regarded as macroscopically detectable indicators to evaluate the artificial SEI before battery assembly. The COFTpPa modified Li metal anodes delivered stable cycling over 1000 (2000) h at high current density of 5 (2) mA cm-2 in the ether-based electrolyte, and the full cells with commercial LiFePO4 electrode (mass loading of 16.5 mg cm-2 ) demonstrate remarkably enhanced cycling performance with a high reversible capacity of 152.3 mAh g-1 (retention of 96.8%) after 300 cycles.

5.
Small ; 17(41): e2102454, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34514698

RESUMO

Lithium (Li) metal has been generally noticed as the most prospective anode for next-generation batteries attributed to its outstanding theoretical capacity and low electrochemical potential. Nevertheless, the unstable solid-electrolyte interphase (SEI) and uncontrollable dendrite growth cause poor reversibility and fetter the practical application of Li metal anodes. Herein, a new organic-inorganic hybrid polymer artificial SEI (POSS-LiBMAB) layer with uniform lithium-ion paths at a molecular level is designed to stabilize Li metal anodes. The SEI layer is constructed by the thiol-ene "click chemistry" reaction between inorganic polyhedral oligomeric silsesquioxane containing eight-mercaptopropyl (POSS-SH) with lithium bis (allylmalonato) borate (LiBMAB) on Li foil. What is more, the POSS-LiBMAB film can be cross-linked and self-reinforced via intermolecular SC bonds. Benefiting from its flexible polymeric covalent structure and noble inorganic Si8 O16 -type cubes, the organic-inorganic hybrid polymer layer is flexible and effectively tolerates the volume change of Li metal anodes during plating/stripping cycles. In addition, this layer shows loose and uniformly distributed electrostatic interaction between Li+ and charge delocalized sp3 boron-oxygen anions, which aids to form a uniform intermolecular Li+ path regulating the homogeneous distribution of Li+ flux on Li anodes. Finally, the designed POSS-LiBMAB layer has high ionic conductivity and lithium-ion transference number, which can effectively promote Li+ diffusion and guide Li deposition beneath the SEI layer. Therefore, with the protection of the POSS-LiBMAB layer, the Li metal anode exhibits stable cycling at 5 mA cm-2 for more than 1000 h, and the LFP//Li full cells also present outstanding cycling stability.

6.
Macromol Rapid Commun ; 42(1): e2000446, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33108036

RESUMO

Hydrogels and polydimethylsiloxane (PDMS) are complementary to each other, since the hydrophobic PDMS provides a more stable and rigid substrate, while the water-rich hydrogel possesses remarkable hydrophilicity, biocompatibility, and similarity to biological tissues. Herein a transparent and stretchable covalently bonded PDMS-hydrogel bilayer (PHB) structure is prepared via in situ free radical copolymerization of acrylamide and allylamine-exfoliated-ZrP (AA-e-ZrP) on a functionalized PDMS surface. The AA-e-ZrP serves as cross-linking nano-patches in the polymer gel network. The covalently bonded structure is constructed through the addition reaction of vinyl groups of PDMS surface and monomers, obtaining a strong interfacial adhesion between the PDMS and the hydrogel. A mechanical-responsive wrinkle surface, which exhibs transparency change mechanochromism, is created via introducing a cross-linked polyvinyl alcohol film atop the PHB structure. A finite element model is implemented to simulate the wrinkle formation process. The implication of the present finding for the interfacial design of the PHB and PDMS-hydrogel-PVA trilayer (PHPT) structures is discussed.


Assuntos
Dimetilpolisiloxanos , Hidrogéis , Interações Hidrofóbicas e Hidrofílicas , Polímeros , Álcool de Polivinil
7.
Small ; 15(49): e1904830, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31714015

RESUMO

The Li-CO2 battery is an emerging green energy technology coupling CO2 capture and conversion. The main drawback of present Li-CO2 batteries is serious polarization and poor cycling caused by random deposition of lithium ions and big insulated Li2 CO3 formation on the cathode during discharge. Herein, covalent organic frameworks (COF) are identified as the porous catalyst in the cathode of Li-CO2 batteries for the first time. Graphene@COF is fabricated, graphene with thin and uniform imine COF loading, to enrich and confine CO2 in the nanospaces of micropores. The discharge voltage is raised by higher local CO2 concentration, which is predicted by the Nernst equation and realized by CO2 nanoenrichment. Moreover, uniform lithium ion deposition directed by the graphene@COF nanoconfined CO2 can produce smaller Li2 CO3 particles, leading to easier Li2 CO3 decomposition and thus lower charge voltage. The graphene@COF cathode with 47.5% carbon content achieves a discharge capacity of 27833 mAh g-1 at 75 mA g-1 , while retaining a low charge potential of 3.5 V at 0.5 A g-1 for 56 cycles.

8.
Small ; : e1801420, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29971933

RESUMO

A novel single-ion conducting polymer electrolyte (SIPE) membrane with high lithium-ion transference number, good mechanical strength, and excellent ionic conductivity is designed and synthesized by facile coupling of lithium bis(allylmalonato) borate (LiBAMB), pentaerythritol tetrakis (2-mercaptoacetate) (PETMP) and 3,6-dioxa-1,8-octanedithiol (DODT) in an electrospun poly(vinylidienefluoride) (PVDF) supporting membrane via a one-step photoinitiated in situ thiol-ene click reaction. The structure-optimized LiBAMB-PETMP-DODT (LPD)@PVDF SIPE shows an outstanding ionic conductivity of 1.32 × 10-3 S cm-1 at 25 °C, together with a high lithium-ion transference number of 0.92 and wide electrochemical window up to 6.0 V. The SIPE exhibits high tensile strength of 7.2 MPa and elongation at break of 269%. Due to these superior performances, the SIPE can suppress lithium dendrite growth, which is confirmed by galvanostatic Li plating/stripping cycling test and analysis of morphology of Li metal electrode surface after cycling test. Li|LPD@PVDF|Li symmetric cell maintains an extremely stable and low overpotential without short circuiting over the 1050 h cycle. The Li|LPD@PVDF|LiFePO4 cell shows excellent rate capacity and outstanding cycle performance compared to cells based on a conventional liquid electrolyte (LE) with Celgard separator. The facile approach of the SIPE provides an effective and promising electrolyte for safe, long-life, and high-rate lithium metal batteries.

9.
Small ; 14(21): e1704367, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29676056

RESUMO

Sodium ion batteries (SIB) are considered promising alternative candidates for lithium ion batteries (LIB) because of the wide availability and low cost of sodium, therefore the development of alternative sodium storage materials with comparable performance to LIB is urgently desired. The sodium ions with larger sizes resist intercalation or alloying because of slow reaction kinetics. Most pseudocapacitive sodium storage materials are based on subtle nanomaterial engineering, which is difficult for large-scale production. Here, ferroelectric Sn2 P2 S6 with layered nanostructure is developed as sodium ion storage material. The ferroelectricity-enhanced pseudocapacitance of sodium ion in the interlayer spacing makes the electrochemical reaction easier and faster, endowing the Sn2 P2 S6 electrode with excellent rate capability and cycle stability. Furthermore, the facile solid state reaction synthesis and common electrode fabrication make the Sn2 P2 S6 that becomes a promising anode material of SIB.

10.
Int J Mol Sci ; 19(7)2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30011782

RESUMO

The blends of Poly(propylene carbonate) (PPC) and polyester-based thermoplastic polyurethane (TPU) were melt compounded in an internal mixer. The compatibility, thermal behaviors, mechanical properties and toughening mechanism of the blends were investigated using Fourier transform infrared spectra (FTIR), tensile tests, impact tests, differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and dynamic mechanical analysis technologies. FTIR and SEM examination reveal strong interfacial adhesion between PPC matrix and suspended TPU particles. Dynamic mechanical analyzer (DMA) characterize the glass transition temperature, secondary motion and low temperature properties. By the incorporation of TPU, the thermal stabilities are greatly enhanced and the mechanical properties are obviously improved for the PPC/TPU blends. Moreover, PPC/TPU blends exhibit a brittle-ductile transition with the addition of 20 wt % TPU. It is considered that the enhanced toughness results in the shear yielding occurred in both PPC matrix and TPU particles of the blends.


Assuntos
Plásticos Biodegradáveis/química , Polímeros/química , Poliuretanos/química , Propano/análogos & derivados , Varredura Diferencial de Calorimetria , Ligação de Hidrogênio , Microscopia Eletrônica de Varredura , Propano/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Resistência à Tração
11.
Nanomaterials (Basel) ; 14(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39120374

RESUMO

High-energy-density Li-CO2 batteries are promising candidates for large-capacity energy storage systems. However, the development of Li-CO2 batteries has been hindered by low cycle life and high overpotential. In this study, we propose a CO2-based thermoplastic polyurethane (CO2-based TPU) with CO2 adsorption properties and excellent self-healing performance to replace traditional polyvinylidene fluoride (PVDF) as the cathode binder. The CO2-based TPU enhances the interfacial concentration of CO2 at the cathode/electrolyte interfaces, effectively increasing the discharge voltage and lowering the charge voltage of Li-CO2 batteries. Moreover, the CO2 fixed by urethane groups (-NH-COO-) in the CO2-based TPU are difficult to shuttle to and corrode the Li anode, minimizing CO2 side reactions with lithium metal and improving the cycling performance of Li-CO2 batteries. In this work, Li-CO2 batteries with CO2-based TPU as the multifunctional binders exhibit stable cycling performance for 52 cycles at a current density of 0.2 A g-1, with a distinctly lower polarization voltage than PVDF bound Li-CO2 batteries.

12.
ChemSusChem ; 17(3): e202300293, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37771268

RESUMO

Solid-state electrolytes are key to achieving high energy density, safety, and stability for lithium-ion batteries. In this Review, core indicators of solid polymer electrolytes are discussed in detail including ionic conductivity, interface compatibility, mechanical integrity, and cycling stability. Besides, we also summarize how above properties can be improved by design strategies of functional monomers, groups, and assembly of batteries. Structures and properties of polymers are investigated here to provide a basis for all-solid-state electrolyte design strategies of multi-component polymers. In addition, adjustment strategies of quasi-solid-state polymer electrolytes such as adding functional additives and carrying out structural design are also investigated, aiming at solving problems caused by simply adding liquids or small molecular plasticizer. We hope that fresh and established researchers can achieve a general perspective of solid polymer electrolytes via this Review and spur more extensive interests for exploration of high-performance lithium-ion batteries.

13.
Nanomaterials (Basel) ; 14(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38392711

RESUMO

Biodegradable polymers have become a topic of great scientific and industrial interest due to their environmentally friendly nature. For the benefit of the market economy and environment, biodegradable materials should play a more critical role in packaging materials, which currently account for more than 50% of plastic products. However, various challenges remain for biodegradable polymers for practical packaging applications. Particularly pertaining to the poor oxygen/moisture barrier issues, which greatly limit the application of current biodegradable polymers in food packaging. In this review, various strategies for barrier property improvement are summarized, such as chain architecture and crystallinity tailoring, melt blending, multi-layer co-extrusion, surface coating, and nanotechnology. These strategies have also been considered effective ways for overcoming the poor oxygen or water vapor barrier properties of representative biodegradable polymers in mainstream research.

14.
Materials (Basel) ; 17(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39124519

RESUMO

To address the challenges posed by the narrow oxidation decomposition potential window and the characteristic of low ionic conductivity at room temperature of solid polymer electrolytes (SPEs), carbon dioxide (CO2), epichlorohydrin (PO), caprolactone (CL), and phthalic anhydride (PA) were employed in synthesizing di-block copolymer PCL-b-PPC and PCL-b-PPCP. The carbonate and ester bonds in PPC and PCL provide high electrochemical stability, while the polyether segments in PPC contribute to the high ion conductivity. To further improve the ion conductivity, we added succinonitrile as a plasticizer to the copolymer and used the copolymer to assemble lithium metal batteries (LMBs) with LiFePO4 as the cathode. The LiFePO4/SPE/Li battery assembled with PCL-b-PPC electrolyte exhibited an initial discharge-specific capacity of 155.5 mAh·g-1 at 0.5 C and 60 °C. After 270 cycles, the discharge-specific capacity was 140.8 mAh·g-1, with a capacity retention of 90.5% and an average coulombic efficiency of 99%, exhibiting excellent electrochemical performance. The study establishes the design strategies of di-block polymer electrolytes and provides a new strategy for the application of LMBs.

15.
Nanomaterials (Basel) ; 14(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38869600

RESUMO

Lithium metal batteries (LMBs) are anticipated to meet the demand for high energy density, but the growth of lithium dendrites seriously hinders its practical application. Herein, we constructed a kind of composite separator (ZIF-90@PP) consisting of zeolite imidazole framework-90 (ZIF-90) and polypropylene (PP) to promote the uniform deposition of Li+ and inhibit the growth of lithium dendrites. The aldehyde groups interacting with TFSI- and the nitrogen-containing negative groups attracting Li+ of ZIF-90 can facilitate the dissociation of LiTFSI to release more Li+, thus alleviating the influence of space charge near the electrode surface and accelerating the transfer of Li+. Not only does the excellent electrolyte wettability of ZIF-90 enhance the electrolyte retention capacity of the separator, but the orderly nano-channels in ZIF-90 also restrict the free migration of anions and homogenize the distribution of Li+. Consequently, the functional separator achieves a long-term stable Li plating/stripping cycling for over 780 h at 2 mA cm-2. Moreover, an impressive average coulombic efficiency of 98.67% at 0.5 C after 300 cycles is realized by Li || LFP full cells based on ZIF-90@PP with a capacity retention rate of 71.22%. The high-rate and long cycling performance of the modified Li || LFP cells further demonstrates the advantages of the ZIF-90@PP composite separator.

16.
Materials (Basel) ; 17(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38998236

RESUMO

The binder ratio in a commercial lithium-ion battery is very low, but it is one of the key materials affecting the battery's performance. In this paper, polycarbonate-based polymers with liner or chain extension structures are proposed as binders. Then, dry LiFePO4 (LFP) electrodes with these binders are prepared using the solvent-free method. Polycarbonate-based polymers have a high tensile strength and a satisfactory bonding strength, and the rich polar carbonate groups provide highly ionic conductivity as binders. The batteries with poly (propylene carbonate)-plus (PPC-P) as binders were shown to have a long cycle life (350 cycles under 1 C, 89% of capacity retention). The preparation of dry electrodes using polycarbonate-based polymers can avoid the use of solvents and shorten the process of preparing electrodes. It can also greatly reduce the manufacturing cost of batteries and effectively use industrial waste gas dioxide oxidation. Most importantly, a battery material with this kind of polycarbonate polymer as a binder is easily recycled by simply heating after the battery is discarded. This paper provides a new idea for the industrialization and development of a novel binder.

17.
Nanomaterials (Basel) ; 14(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38998725

RESUMO

Poly(propylene carbonate-co-phthalate) (PPC-P) is an amorphous copolymer of aliphatic polycarbonate and aromatic polyester; it possesses good biodegradability, superior mechanical performances, high thermal properties, and excellent affinity with CO2. Hence, we fabricate PPC-P foams in an autoclave by using subcritical CO2 as a physical blowing agent. Both saturation pressure and foaming temperature affect the foaming behaviors of PPC-P, including CO2 adsorption and desorption performance, foaming ratio, cell size, porosity, cell density, and nucleation density, which are investigated in this research. Moreover, the low-cost PPC-P/nano-CaCO3 and PPC-P/starch composites are prepared and foamed using the same procedure. The obtained PPC-P-based foams show ultra-high expansion ratio and refined microcellular structures simultaneously. Besides, nano-CaCO3 can effectively improve PPC-P's rheological properties and foamability. In addition, the introduction of starch into PPC-P can lead to a large number of open cells. Beyond all doubt, this work can certainly provide both a kind of new biodegradable PPC-P-based foam materials and an economic methodology to make biodegradable plastic foams. These foams are potentially applicable in the packaging, transportation, and food industry.

18.
Nanomaterials (Basel) ; 13(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36678019

RESUMO

A semi-aromatic polybenzimidazole (DPBI) is synthesized via polycondensation of decanedioic acid (DCDA) and 3,3-diaminobenzidine (DAB) in a mixed phosphorus pentoxide/methanesulfonic acid (PPMA) solvent. Ascribing to in-situ macromolecular crosslinker of ploly((vinylbenzyl chloride) (PVBC), a robust crosslinked DPBI membrane (DPBI-xPVBC, x refers to the weight percentage of PVBC in the membrane) can be obtained. Comprehensive properties of the DPBI and DPBI-xPVBC membranes are investigated, including chemical structure, antioxidant stability, mechanical strength, PA uptake and electrochemical performances. Compared with pristine DPBI membrane, the PA doped DPBI-xPVBC membranes exhibit excellent antioxidative stability, high proton conductivity and enhanced mechanical strength. The PA doped DPBI-10PVBC membrane shows a proton conductivity of 49 mS cm-1 at 160 °C without humidification. Particularly, it reveals an enhanced H2/O2 single cell performance with the maximum peak power density of 405 mW cm-2, which is 29% higher than that of pristine DPBI membrane (314 mW cm-2). In addition, the cell is very stable in 50 h, indicating the in-situ crosslinked DPBI with a macromolecular crosslinker of PVBC is an efficient way to improve the overall performance of HT-PEMs for high performance HT-PEMFCs.

19.
Nanomaterials (Basel) ; 13(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37299670

RESUMO

The rapid development of electrochemical CO2 reduction offers a promising route to convert intermittent renewable energy into products of high value-added fuels or chemical feedstocks. However, low faradaic efficiency, low current density, and a narrow potential range still limit the large-scale application of CO2RR electrocatalysts. Herein, monolith 3D bi-continuous nanoporous bismuth (np-Bi) electrodes are fabricated via a simple one-step electrochemical dealloying strategy from Pb-Bi binary alloy. The unique bi-continuous porous structure ensures highly effective charge transfer; meanwhile, the controllable millimeter-sized geometric porous structure enables easy catalyst adjustment to expose highly suitable surface curvatures with abundant reactive sites. This results in a high selectivity of 92.6% and superior potential window (400 mV, selectivity > 88%) for the electrochemical reduction of carbon dioxide to formate. Our scalable strategy provides a feasible pathway for mass-producing high-performance and versatile CO2 electrocatalysts.

20.
ACS Appl Mater Interfaces ; 14(19): 22197-22205, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35522974

RESUMO

The insufficient activation of a S/C cathode makes insufficient utilization of S in Li-S pouch cells, while the deep activation of a S/C cathode in a formation process is time-consuming and produces lithium polysulfides, which corrode a Li anode. Both situations lead to a low actual capacity of the Li-S pouch cells with a high S loading but are ignored for coin cells. In this work, electrochemical oscillation (EOS) formation employing hundreds of shallow discharge/charge cycles with high frequency was used to replace the resting and/or one deep discharge/charge cycle of traditional (TD) formation protocols. By controlling the discharge/charge capacity separately, symmetric oscillation (SOS) and asymmetric oscillation (ASOS) protocols were performed to facilitate the infiltration of electrolyte into the S cathode and restrict the formed lithium polysulfide in the cathode region. For SOS formation, the batteries were discharged/charged above 2.4 V with the same (symmetric) capacity with 2.78 × 10-3 Hz of oscillation frequency (∼1.4 mAh/g for SOS-500), in which the polysulfide dissolution was suppressed effectively. For ASOS formation, 100% discharge capacity (also ∼1.4 mAh/g for ASOS-500) and 92% charge capacity are set in each oscillation period, which leads to better activation effect but more shuttling polysulfides than SOS. Compared with SOS protocol, for ASOS protocol, more oxidative S (instead of polysulfides) inside original nonactivated cathode will be preferentially reduced in the next discharging process, but all the accumulated polysulfides during discharge of activation are oxidized into elemental S in the final charging process. These efficient formation protocols increase the practical capacity by up to 160% after 50 cycles without any change in pouch cell assembly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA