Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
Mol Cell ; 83(21): 3852-3868.e6, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37852256

RESUMO

The Chaperonin Containing Tailless polypeptide 1 (CCT) complex is an essential protein folding machine with a diverse clientele of substrates, including many proteins with ß-propeller domains. Here, we determine the structures of human CCT in complex with its accessory co-chaperone, phosducin-like protein 1 (PhLP1), in the process of folding Gß5, a component of Regulator of G protein Signaling (RGS) complexes. Cryoelectron microscopy (cryo-EM) and image processing reveal an ensemble of distinct snapshots that represent the folding trajectory of Gß5 from an unfolded molten globule to a fully folded ß-propeller. These structures reveal the mechanism by which CCT directs Gß5 folding through initiating specific intermolecular contacts that facilitate the sequential folding of individual ß sheets until the propeller closes into its native structure. This work directly visualizes chaperone-mediated protein folding and establishes that CCT orchestrates folding by stabilizing intermediates through interactions with surface residues that permit the hydrophobic core to coalesce into its folded state.


Assuntos
Proteínas de Ligação ao GTP , Chaperonas Moleculares , Humanos , Microscopia Crioeletrônica , Chaperonas Moleculares/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Dobramento de Proteína , Transdução de Sinais , Chaperoninas
2.
Nature ; 624(7990): 69-73, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37938775

RESUMO

All-perovskite tandem solar cells hold great promise in surpassing the Shockley-Queisser limit for single-junction solar cells1-3. However, the practical use of these cells is currently hampered by the subpar performance and stability issues associated with mixed tin-lead (Sn-Pb) narrow-bandgap perovskite subcells in all-perovskite tandems4-7. In this study, we focus on the narrow-bandgap subcells and develop an all-in-one doping strategy for them. We introduce aspartate hydrochloride (AspCl) into both the bottom poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) and bulk perovskite layers, followed by another AspCl posttreatment. We show that a single AspCl additive can effectively passivate defects, reduce Sn4+ impurities and shift the Fermi energy level. Additionally, the strong molecular bonding of AspCl-Sn/Pb iodide and AspCl-AspCl can strengthen the structure and thereby improve the stability of Sn-Pb perovskites. Ultimately, the implementation of AspCl doping in Sn-Pb perovskite solar cells yielded power conversion efficiencies of 22.46% for single-junction cells and 27.84% (27.62% stabilized and 27.34% certified) for tandems with 95% retention after being stored in an N2-filled glovebox for 2,000 h. These results suggest that all-in-one AspCl doping is a favourable strategy for enhancing the efficiency and stability of single-junction Sn-Pb perovskite solar cells and their tandems.

3.
J Gene Med ; 26(1): e3596, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37726968

RESUMO

Myocardial infarction refers to the irreversible impairment of cardiac function resulting from the permanent loss of numerous cardiomyocytes and the formation of scar tissue. This condition is caused by acute and persistent inadequate blood supply to the heart's arteries. In the treatment of myocardial infarction, Mesenchymal stem cells (MSCs) play a crucial role because of their powerful therapeutic effects. These effects primarily stem from the paracrine secretion of multiple factors by MSCs, with exosome-carried microRNAs being the most effective component in promoting cardiac function recovery after infarction. Exosome therapy has emerged as a promising cell-free treatment for myocardial infarction as a result of its relatively simple composition, low immunogenicity and controlled transplantation dose. Despite these advantages, maintaining the stability of exosomes after transplantation and enhancing their targeting effect remain significant challenges in clinical applications. In recent developments, several approaches have been designed to optimize exosome therapy. These include enhancing exosome retention, improving their ability to target specific effects, pretreating MSC-derived exosomes and employing transgenic MSC-derived exosomes. This review primarily focuses on describing the biological characteristics of exosomes, their therapeutic potential and their application in treating myocardial infarction.


Assuntos
Exossomos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , MicroRNAs , Infarto do Miocárdio , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Infarto do Miocárdio/terapia , Miócitos Cardíacos , MicroRNAs/genética
4.
Appl Environ Microbiol ; 90(6): e0069124, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38809047

RESUMO

Methanogenic archaea play a key role in the global carbon cycle because these microorganisms remineralize organic compounds in various anaerobic environments. The microorganism Methanosarcina barkeri is a metabolically versatile methanogen, which can utilize acetate, methanol, and H2/CO2 to synthesize methane. However, the regulatory mechanisms underlying methanogenesis for different substrates remain unknown. In this study, RNA-seq analysis was used to investigate M. barkeri growth and gene transcription under different substrate regimes. According to the results, M. barkeri showed the best growth under methanol, followed by H2/CO2 and acetate, and these findings corresponded well with the observed variations in genes transcription abundance for different substrates. In addition, we identified a novel regulator, MSBRM_RS03855 (designated as HdrR), which specifically activates the transcription of the heterodisulfide reductase hdrBCA operon in M. barkeri. HdrR was able to bind to the hdrBCA operon promoter to regulate transcription. Furthermore, the structural model analyses revealed a helix-turn-helix domain, which is likely involved in DNA binding. Taken together, HdrR serves as a model to reveal how certain regulatory factors control the expression of key enzymes in the methanogenic pathway.IMPORTANCEThe microorganism Methanosarcina barkeri has a pivotal role in the global carbon cycle and contributes to global temperature homeostasis. The consequences of biological methanogenesis are far-reaching, including impacts on atmospheric methane and CO2 concentrations, agriculture, energy production, waste treatment, and human health. As such, reducing methane emissions is crucial to meeting set climate goals. The methanogenic activity of certain microorganisms can be drastically reduced by inhibiting the transcription of the hdrBCA operon, which encodes heterodisulfide reductases. Here, we provide novel insight into the mechanisms regulating hdrBCA operon transcription in the model methanogen M. barkeri. The results clarified that HdrR serves as a regulator of heterodisulfide reductase hdrBCA operon transcription during methanogenesis, which expands our understanding of the unique regulatory mechanisms that govern methanogenesis. The findings presented in this study can further our understanding of how genetic regulation can effectively reduce the methane emissions caused by methanogens.


Assuntos
Proteínas Arqueais , Methanosarcina barkeri , Óperon , Oxirredutases , Methanosarcina barkeri/genética , Methanosarcina barkeri/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Regulação da Expressão Gênica em Archaea , Transcrição Gênica , Metano/metabolismo , Metanol/metabolismo , Dióxido de Carbono/metabolismo , Acetatos/metabolismo , Hidrogênio/metabolismo
5.
Chemistry ; : e202302602, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780031

RESUMO

Understanding the complete structure of noble metal nanoclusters is both academically and practically significant. However, progress has been hindered by the low synthetic efficiency of many nanocluster syntheses. In this study, we present the first high-throughput syntheses of homo-gold, homo-copper, and gold-copper alloy nanoclusters in dichloromethane at room temperature. Through high-throughput screening, we successfully obtained three nanoclusters in a single reaction: Au18(SC6H11)14, [Au41Cu66(SC6H11)44](SbF6)3, and an unidentified copper cluster (referred to as Au18, Au41Cu66 , and Cu-NC). The optimized synthesis route was achieved with the assistance of machine learning for experimental data analysis, which also guided the synthesis of other metal nanoclusters such as Au40Cu34(4-S-PhF)40 (Au40Cu34), [Au6Cu6(SPh)12]n ([Au6Cu6]n), and Au18Cu32(3,5-C8H9S)36 (Au18Cu32)). This research demonstrates that high-throughput screening can be a valuable tool in accelerating the development of nanocluster syntheses.

6.
Part Fibre Toxicol ; 21(1): 21, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658944

RESUMO

BACKGROUND: Increasing attention is being paid to the environmental and health impacts of nanoplastics (NPs) pollution. Exposure to nanoplastics (NPs) with different charges and functional groups may have different adverse effects after ingestion by organisms, yet the potential ramifications on mammalian blood glucose levels, and the risk of diabetes remain unexplored. RESULTS: Mice were exposed to PS-NPs/COOH/NH2 at a dose of 5 mg/kg/day for nine weeks, either alone or in a T2DM model. The findings demonstrated that exposure to PS-NPs modified by different functional groups caused a notable rise in fasting blood glucose (FBG) levels, glucose intolerance, and insulin resistance in a mouse model of T2DM. Exposure to PS-NPs-NH2 alone can also lead the above effects to a certain degree. PS-NPs exposure could induce glycogen accumulation and hepatocellular edema, as well as injury to the pancreas. Comparing the effect of different functional groups or charges on T2DM, the PS-NPs-NH2 group exhibited the most significant FBG elevation, glycogen accumulation, and insulin resistance. The phosphorylation of AKT and FoxO1 was found to be inhibited by PS-NPs exposure. Treatment with SC79, the selective AKT activator was shown to effectively rescue this process and attenuate T2DM like lesions. CONCLUSIONS: Exposure to PS-NPs with different functional groups (charges) induced T2DM-like lesions. Amino-modified PS-NPs cause more serious T2DM-like lesions than pristine PS-NPs or carboxyl functionalized PS-NPs. The underlying mechanisms involved the inhibition of P-AKT/P-FoxO1. This study highlights the potential risk of NPs pollution on T2DM, and provides a new perspective for evaluating the impact of plastics aging.


Assuntos
Glicemia , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Nanopartículas , Poliestirenos , Proteínas Proto-Oncogênicas c-akt , Animais , Diabetes Mellitus Tipo 2/induzido quimicamente , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Masculino , Poliestirenos/toxicidade , Poliestirenos/química , Nanopartículas/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Camundongos , Proteína Forkhead Box O1/metabolismo , Microplásticos/toxicidade , Fosforilação , Camundongos Endogâmicos C57BL , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia
7.
Curr Microbiol ; 81(8): 253, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954028

RESUMO

Two Gram-stain-negative, facultative anaerobic, rod-shaped, motile bacterial strains, designated F26243T and F60267T were isolated from coastal sediment in Weihai, China. Strains F26243T and F60267T were grown at 4-40 °C (optimum 33 °C), pH 7.0-9.5 and pH 6.5-9.5 (optimum at pH 7.0), in the presence of 1.0-7.0% (w/v) NaCl (optimum 2.5%) and 1.0-12.0% (w/v) NaCl (optimum 2.0%), respectively. The 16S rRNA gene sequences phylogenetic analysis showed that strains F26243T and F60267T are closely related to the genus Marinobacter and exhibited the highest sequence similarities to Marinobacter salexigens HJR7T (97.7% and 98.0%, respectively), the similarity between two isolates was 96.7%. Strains F26243T and F60267T displayed genomic DNA G + C content of 53.6% and 53.8%, respectively. When compared to the M. salexigens HJR7T, the average nucleotide identity (ANI) values were 83.7% and 84.1%, and the percentage of conserved proteins (POCP) values were 79.9% and 84.6%, respectively. Ubiquinone 9 (Q-9) was the only respiratory quinone detected in both isolates. The major cellular fatty acids (> 10.0%) were summed feature 3 (comprising C16:1ω7c and/or C16:1ω6c), C16:0 and C18:1ω9c. The polar lipid profiles of strains F26243T and F60267T contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidyldimethylethanolamine, phosphatidylglycerol, aminophospholipid and one unidentified phospholipid. Based on genomic characteristics, phenotypic and chemotaxonomic, strains F26243T and F60267T represent two novel species of the genus Marinobacter, for which the names Marinobacter sediminicola sp. nov. and Marinobacter xiaoshiensis sp. nov. are proposed, the type strains are F26243T (= KCTC 92640T = MCCC 1H01345T) and F60267T (= KCTC 92638T = MCCC 1H01346T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Sedimentos Geológicos , Marinobacter , Filogenia , RNA Ribossômico 16S , Marinobacter/genética , Marinobacter/classificação , Marinobacter/isolamento & purificação , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Ácidos Graxos/análise , DNA Bacteriano/genética , China , Fosfolipídeos/análise , Análise de Sequência de DNA , Água do Mar/microbiologia
8.
New Phytol ; 240(4): 1421-1432, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37632265

RESUMO

Global warming is advancing the timing of spring leaf-out in temperate and boreal plants, affecting biological interactions and global biogeochemical cycles. However, spatial variation in spring phenological responsiveness to climate change within species remains poorly understood. Here, we investigated variation in the responsiveness of spring phenology to temperature (RSP; days to leaf-out at a given temperature) in 2754 Ginkgo biloba twigs of trees distributed across subtropical and temperate regions in China from 24°N to 44°N. We found a nonlinear effect of mean annual temperature on spatial variation in RSP, with the highest response rate at c. 12°C and lower response rates at warmer or colder temperatures due to declines in winter chilling accumulation. We then predicted the spatial maxima in RSP under current and future climate scenarios, and found that trees are currently most responsive in central China, which corresponds to the species' main distribution area. Under a high-emission scenario, we predict a 4-degree latitude shift in the responsiveness maximum toward higher latitudes over the rest of the century. The identification of the nonlinear responsiveness of spring phenology to climate gradients and the spatial shifts in phenological responsiveness expected under climate change represent new mechanistic insights that can inform models of spring phenology and ecosystem functioning.


Assuntos
Ecossistema , Ginkgo biloba , Temperatura , Árvores/fisiologia , Folhas de Planta/fisiologia , Mudança Climática , Estações do Ano , China
9.
Artigo em Inglês | MEDLINE | ID: mdl-36961878

RESUMO

Two Gram-stain-negative, strictly aerobic, chemoheterotrophic, short-rod-shaped and non-motile strains, forming yellow colonies and designated F47161T and F64183T, were isolated from marine sediment of Xiaoshi Island, Wei Hai, PR China. Strain F47161T grew at 15-37 °C (optimally at 30 °C) and pH 6.0-9.0 (optimally at pH 7.5) and in the presence of 1-9 % (w/v) NaCl (optimally at 3 %). Strain F64183T grew at 10-37 °C (optimally at 30 °C) and pH 6.0-8.5 (optimally at pH 7.0) and in the presence of 1-8 % (w/v) NaCl (optimally at 3 %). The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that F47161T and F64183T were related to members of the genus Aequorivita. The strains shared 97.4 % 16S rRNA gene sequence similarity to each other. F47161T and F64183T shared highest 16S rRNA gene sequence similarity to Aequorivita sinensis JCM 19789T, and the values were 97.5 % and 98.4 %, respectively. The predominant cellular fatty acids of both F64183T and F47161T were iso-C15 : 0 and iso-C17 : 0 3-OH, but the predominant fatty acids of F47161T also included anteiso-C15 : 0. The sole respiratory quinone of F47161T and F64183T was menaquinone 6 (MK-6), consistent with that observed for all related strains. Between F47161T and F64183T, the average nucleotide identity (ANI) and digital DNA-DNA hybridisation (dDDH) values were 75.8 % and 20.5 %, respectively, and between the novel isolates (F47161T and F64183T) and A. sinensis JCM 19789T they were 76.0 % and 94.2 % and 20.6 % and 57.1 %, respectively. The genomic DNA G+C contents of F47161T and F64183T was 37.3 % and 34.5 %, respectively. The polar lipid profiles of F47161T and F64183T contained phosphatidylethanolamine, two aminolipids, one glycolipid, one phosphoglycolipid and two unidentified polar lipids. Differential phenotypic and genotypic characteristics of the two strains indicated that the two strains should be classified as representing two novel species of the genus Aequorivita, for which the names Aequorivita vitellina sp. nov. and Aequorivita xiaoshiensis sp. nov. are proposed. The type strains are F47161T (=MCCC 1H00509T=KCTC 92017T) and F64183T (=MCCC 1H00507T=KCTC 92016T), respectively.


Assuntos
Ácidos Graxos , Flavobacteriaceae , Ácidos Graxos/química , Água do Mar , Filogenia , RNA Ribossômico 16S/genética , Cloreto de Sódio , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Sedimentos Geológicos , Vitamina K 2/química
10.
Phys Chem Chem Phys ; 25(14): 9772-9778, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36946196

RESUMO

Nanocluster photoluminescence (PL) has important practical applications and its rationalization is therefore of significant interest. Here, we report the synthesis, structure determination and photoluminescence of Au10Ag17(TPP)10(SR)6Cl5 (TPP = triphenylphosphine, SR = 3, 5-bis(trifluoromethyl)thiophenol, denoted as Au10Ag17). Au10Ag17 exhibited a low photoluminescence quantum yield (PLQY) of 2.8%, which could be increased 15-fold by removing the two terminal silver atoms to give AgxAu25-x(SR)5(TPP)10Cl22+ (x = 11-13, SR = 2-phenylethylmercaptan, abbrev. Au12Ag13). The discovery of such a PL switch constitutes an interesting opportunity to further understand the origin of fluorescence in nanoclusters.

11.
Phys Chem Chem Phys ; 26(1): 62-66, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38086629

RESUMO

The aspiration of chemists has always been to design and achieve control over nanoparticle morphology at the atomic level. Here, we report a synthesis strategy and crystal structure of a perfect cubic Ag-Cu alloyed nanocluster, [Ag55Cu8I12(S-C6H32,4(CH3)2)24][(PPh4)] (Ag55Cu8I12 for short). The structure of this cluster was determined by single-crystal X-ray diffraction (SCXRD) and further validated by X-ray photoelectron spectroscopy (XPS), inductively coupled plasma (ICP), Energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), and 1H and 31P nuclear magnetic resonance (NMR). The surface deviation of the cube was measured to be 0.291 Å, making it the flattest known cube to date.

12.
Curr Microbiol ; 80(12): 370, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838638

RESUMO

A novel bacterium, designated E313T, was isolated from brown algae Saccharina japonica in Weihai, China. The strain is a Gram-stain-negative, non-flagellated, non-gliding, aerobic, rod-shaped bacterium that grows optimally at 28 °C with pH levels between 7.0 and 7.5 and in the presence of 2-3% (w/v) NaCl. Phylogenetic analyses based on its 16S rRNA gene sequence placed the strain within the monophyletic cluster of the genus Winogradskyella, exhibiting the highest similarity to Winogradskyella wandonensis KCTC 32579T (96.8%). Genome comparison of strain E313T with W. wandonensis KCTC 32579T and W. thalassocola KCTC 12221T revealed average nucleotide identity (ANI) values of 74.2% and 74.8%, and DNA-DNA hybridization (dDDH) values of 19.0% and 19.5%, respectively, lower than prokaryotic species delineation values. The strain E313T could hydrolyze alginate. A total of 123 carbohydrate-active enzymes were annotated according to the CAZy database. Especially, one oligo-alginate lyase and one poly(ß-D-mannuronate) lyase were identified in the genome of strain E313T. Strain E313T possessed MK-6 quinone and iso-C15:0, iso-C15:1 G, iso-C17:0 3-OH, and iso-C15:0 3-OH as main fatty acids. Its major polar lipids were phosphatidylethanolamine (PE), one unidentified aminolipid, and two unknown lipids. Thus, based on phylogenetic, physiological, and chemotaxonomic analyses, we propose a novel species of the genus Winogradskyella, named Winogradskyella immobilis sp. nov., with E313T (= MCCC 1H00506T = KCTC 82731T) as the type strain.


Assuntos
Phaeophyceae , Água do Mar , Água do Mar/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Análise de Sequência de DNA , Vitamina K 2 , Ácidos Graxos/análise , Phaeophyceae/genética
13.
Angew Chem Int Ed Engl ; 62(11): e202300553, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36655888

RESUMO

Hydride AuI bonds are labile due to the mismatch in electric potential of an oxidizing metal and reducing ligand, and therefore the structure and structure-activity relationships of nanoclusters that contain them are seldom studied. Herein, we report the synthesis and characterization of [Au7 (PPh3 )7 H5 ](SbF6 )2 (abbrev. Au7 H5 2+ ), an Au cluster complex containing five hydride ligands, which decomposed to give [Au8 (PPh3 )7 ]2+ (abbrev. Au8 2+ ) upon exposure to light (300 to 450 nm). The valence state of AuI and H- was verified by density functional theory (DFT) calculations, NMR, UV/Vis and XPS. The two nanoclusters behaved differently in the electrocatalytic CO2 reduction reaction (CO2 RR): Au7 H5 2+ exhibited 98.2 % selectivity for H2 , whereas Au8 2+ was selective for CO (73.5 %). Further DFT calculations showed that the H- ligand inhibited the CO2 RR process compared with the electron-donor H.

14.
J Am Chem Soc ; 144(9): 3787-3792, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35225599

RESUMO

The inorganic-organic interface between metal catalysts and their substrates greatly influences reaction processes, but few studies of this interface have been conducted for a detailed understanding of its structure. Herein, we describe the synthesis and structural determination of an arylthiolated Au25(F-Ph)18- nanocluster and characterize in detail the key roles of its ligands in photocatalyzed oxidative functionalization reactions. The most significant findings are that (i) interactions are established between ligands to avoid distortion of the geometric structure, limit the Jahn-Teller effect, and protect the nanocluster from oxidization and (ii) the low energy gap (HOMO-LUMO) of the synthetic clusters enables three types of photocatalytic oxidative functionalization reactions by near-infrared light (850 nm).

15.
Arch Microbiol ; 204(5): 279, 2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35461400

RESUMO

A Gram-stain-negative, motile by gliding, catalase positive, facultative anaerobic strain, designated strain XSD401T, was isolated from an unidentified Gelidium species of Xiaoshi Island, Shandong Province, China. The 16S rRNA gene sequence comparisons indicated strain XSD401T had a sequence similarity of 96.9% with Psychroserpens damuponensis KCTC 23539T and 96.3% with Psychroserpens burtonensis DSM 12212T. The G + C content of the genomic DNA was 33.9%. The ANI values between strain XSD401T and P. damuponensis KCTC 23539T, P. burtonensis DSM 12212T, were 76.9% and 76.9%, respectively. The dDDH values between strain XSD401T and P. damuponensis KCTC 23539T, P. burtonensis DSM 12212T, were 20.4% and 20.3%, respectively. The AAI values and POCP values of these 8 species were all over 72% and 50%. Combined with the results of comparative genomic analysis, Ichthyenterobacterium magnum, Flavihalobacter algicola and Arcticiflavibacter luteus were reclassified into Psychroserpens. Furthermore, the differences in morphology, physiology and genotype from the previously described taxa support the classification of strain XSD401T as a representative of the genus Psychroserpens, for which the name Psychroserpens luteolus sp. nov. is proposed. The type strain is XSD401T (= MCCC 1H00396T = KCTC 72684T = JCM 33931T).


Assuntos
Gammaproteobacteria , Rodófitas , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Flavobacteriaceae , Gammaproteobacteria/genética , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA
16.
Arch Microbiol ; 204(12): 695, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348202

RESUMO

Bacterial predation is a vital feeding behavior that affects community structure and maintains biodiversity. However, predatory bacterial species in coastal sediments are comparatively poorly described. In this study, the predation capacity of all nine culturable Bradymonabacteria strains belonging to the recently discovered order Bradymonadales was determined against different types of prey. The predatory efficiency of Bradymonabacteria increased as the initial prey proportion in a mixed culture decreased. When the initial prey proportion was 0.5, the number of surviving prey bacterial cells significantly decreased after 4 h of predation with the Bradymonabacteria strains TMQ1, SEH01, B210 and FA350. However, growth of the prey strain occurred in the presence of the Bradymonabacteria strains TMQ4, TMQ2, TMQ3, V1718 and YN101. When the initial prey proportion decreased to 0.1 or 0.01, most of the Bradymonabacteria strains preyed efficiently. Furthermore, established neighboring colonies of prey were destroyed by Bradymonabacteria. This invading predation capacity was determined by the predation ability of the strain and its motility on the agar surface. Our findings provide new insights into the potential ecological significance of predatory Bradymonabacteria, which may serve as a potential probiotic for use in the aquaculture.


Assuntos
Deltaproteobacteria , Comportamento Predatório , Animais , Biodiversidade , Sedimentos Geológicos/microbiologia , Cadeia Alimentar
17.
Proc Natl Acad Sci U S A ; 116(38): 18834-18840, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31488725

RESUMO

Exploring intermetallic synergy has allowed a series of alloy nanoparticles with prominent chemical-physical properties to be produced. However, precise alloying based on a maintained template has long been a challenging pursuit, and little has been achieved for manipulation at the atomic level. Here, a nanosystem based on M29(S-Adm)18(PPh3)4 (where S-Adm is the adamantane mercaptan and M is Ag/Cu/Au/Pt/Pd) has been established, which leads to the atomically precise operation on each site in this M29 template. Specifically, a library of 21 species of nanoclusters ranging from monometallic to tetrametallic constitutions has been successfully prepared step by step with in situ synthesis, target metal-exchange, and forced metal-exchange methods. More importantly, owing to the monodispersity of each nanocluster in this M29 library, the synergetic effects on the optical properties and stability have been mapped out. This nanocluster methodology not only provides fundamental principles to produce alloy nanoclusters with multimetallic compositions and monodispersed dopants but also provides an intriguing nanomodel that enables us to grasp the intermetallic synergy at the atomic level.

18.
BMC Musculoskelet Disord ; 23(1): 868, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114570

RESUMO

BACKGROUND: Hybrid total hip replacement (THR) is commonly used in the management of proximal femur fractures in elderly individuals. However, in the context of the revision, the literature on hybrid THR is limited, and differences in the long-term survival outcomes reported in the literature are obvious. This retrospective study aimed to evaluate the long-term survival of hybrid THR for failed proximal femoral nail antirotation (PFNA) in elderly individuals aged ≥ 75 years. METHODS: An observational cohort of 227 consecutive individuals aged ≥ 75 years who experienced hybrid THRs following prior primary PFNAs was retrospectively identified from the Joint Surgery Centre, the First Affiliated Hospital, Sun Yat-sen University. Implant survival was estimated using the Kaplan-Meier method. The primary end point was the implant survivorship calculated using the Kaplan-Meier method with revision for any reason as the end point; secondary end points were the function score measured using the modified Harris Hip Score (mHHS) and the incidence of main orthopaedic complications. RESULTS: In total, 118 individuals (118 THRs) were assessed as available. The median follow-up was 10 (3-11) years. The 10-year survivorship with revision for any reason as the endpoint was 0.914 (95% confidence interval [CI], 0.843-0.960). The most common indication for revision was aseptic loosening (70.0%), followed by periprosthetic fracture (30.0%). At the final follow-up, the median functional score was 83.6 (79.0-94.0). Among the 118 patients included in this study, 16 experienced 26 implant-related complications. The overall incidence of key orthopaedic complications was 13.5% (16/118). CONCLUSION: For patients aged ≥ 75 years old with prior failed PFNAs, hybrid THR may yield satisfactory long-term survival, with good functional outcomes and a low rate of key orthopaedic complications.


Assuntos
Artroplastia de Quadril , Idoso , Artroplastia de Quadril/efeitos adversos , Fêmur , Seguimentos , Humanos , Reoperação , Estudos Retrospectivos
19.
J Am Chem Soc ; 143(18): 7069-7080, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33905231

RESUMO

Hybrid halide perovskites consisting of corner-sharing metal halide octahedra and small cuboctahedral cages filled with counter cations have proven to be prominent candidates for many high-performance optoelectronic devices. The stability limits of their three-dimensional perovskite framework are defined by the size range of the cations present in the cages of the structure. In some cases, the stability of the perovskite-type structure can be extended even when the counterions violate the size and shape requirements, as is the case in the so-called "hollow" perovskites. In this work, we engineered a new family of 3D highly defective yet crystalline "hollow" bromide perovskites with general formula (FA)1-x(en)x(Pb)1-0.7x(Br)3-0.4x (FA = formamidinium (FA+), en = ethylenediammonium (en2+), x = 0-0.44). Pair distribution function analysis shed light on the local structural coherence, revealing a wide distribution of Pb-Pb distances in the crystal structure as a consequence of the Pb/Br-deficient nature and en inclusion in the lattice. By manipulating the number of Pb/Br vacancies, we finely tune the optical properties of the pristine FAPbBr3 by blue shifting the band gap from 2.20 to 2.60 eV for the x = 0.42 en sample. A most unexpected outcome was that at x> 0.33 en incorporation, the material exhibits strong broad light emission (1% photoluminescence quantum yield (PLQY)) that is maintained after exposure to air for more than a year. This is the first example of strong broad light emission from a 3D hybrid halide perovskite, demonstrating that meticulous defect engineering is an excellent tool for customizing the optical properties of these semiconductors.

20.
Inorg Chem ; 60(5): 3037-3045, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33576224

RESUMO

Although a homometallic (isotopic metal) exchange reaction has been reported, the in-depth understanding of the interaction between a metalloid cluster and the homometal (representing the same metal element as the metalloid cluster) thiolate is quite limited, especially at the atomic level. Herein, based on Ag44(SR)30 (where SR represents 4-mercaptobenzoic acid), we report a facile approach for investigating the metalloid cluster-homometal thiolate interaction at the atomic level, i.e., isotopic exchange in the Ag metalloid cluster. Since such a reaction takes no account of the enthalpy change-related heterometal (representing a different metal element) exchange, the intrinsic metalloid cluster-homometal thiolate interaction can be thoroughly investigated. Through analyzing the ESI-MS (electrospray ionization mass spectrometry) and MS/MS (mass/mass spectrometry) results of the reversible conversion between 107Ag44(SR)30 and 109Ag44(SR)30, we observed that all Ag atoms are exchangeable in the Ag44(SR)30 template. In addition, through analyzing the ESI-MS results of the interconversion between 107Ag29(BDT)12(TPP)4 and 109Ag29(BDT)12(TPP)4, we demonstrated that the metal exchange in the Ag29(BDT)12(TPP)4 metalloid cluster should be a shell → kernel metal transfer process. Our results provide new insights into the metalloid cluster reactivity in the homometal thiolate environment, which will guide the future preparation of metalloid clusters with customized structures and properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA