RESUMO
The transition to a terrestrial environment, termed terrestrialization, is generally regarded as a pivotal event in the evolution and diversification of the land plant flora that changed the surface of our planet. Through phylogenomic studies, a group of streptophyte algae, the Zygnematophyceae, have recently been recognized as the likely sister group to land plants (embryophytes). Here, we report genome sequences and analyses of two early diverging Zygnematophyceae (Spirogloea muscicola gen. nov. and Mesotaenium endlicherianum) that share the same subaerial/terrestrial habitat with the earliest-diverging embryophytes, the bryophytes. We provide evidence that genes (i.e., GRAS and PYR/PYL/RCAR) that increase resistance to biotic and abiotic stresses in land plants, in particular desiccation, originated or expanded in the common ancestor of Zygnematophyceae and embryophytes, and were gained by horizontal gene transfer (HGT) from soil bacteria. These two Zygnematophyceae genomes represent a cornerstone for future studies to understand the underlying molecular mechanism and process of plant terrestrialization.
Assuntos
Evolução Biológica , Embriófitas/genética , Genoma de Planta , Estreptófitas/genética , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Família Multigênica , Filogenia , Proteínas de Plantas/química , Domínios Proteicos , Estreptófitas/classificação , Simbiose/genética , Sintenia/genéticaRESUMO
Defect engineering has been widely applied in semiconductors to improve photocatalytic properties by altering the surface structures. This study is about the transformation of inactive WO3 nanosheets to a highly effective CO2-to-CH4 conversion photocatalyst by introducing surface-ordered defects in abundance. The nonstoichiometric WO3-x samples were examined by using aberration-corrected electron microscopy. Results unveil abundant surface-ordered terminations derived from the periodic {013} stacking faults with a defect density of 20.2%. The {002} surface-ordered line defects are the active sites for fixation CO2, transforming the inactive WO3 nanosheets into a highly active catalyst (CH4: O2 = 8.2: 16.7 µmol h-1). We believe that the formation of the W-O-C-W-O species is a critical step in the catalytic pathways. This work provides an atomic-level comprehension of the structural defects of catalysts for activating small molecules.
RESUMO
Carbon-based single-atom catalysts, a promising candidate in electrocatalysis, offer insights into electron-donating effects of metal center on adjacent atoms. Herein, we present a practical strategy to rationally design a model catalyst with a single zinc (Zn) atom coordinated with nitrogen and sulfur atoms in a multilevel carbon matrix. The Zn site exhibits an atomic interface configuration of ZnN4S1, where Zn's electron injection effect enables thermal-neutral hydrogen adsorption on neighboring atoms, pushing the activity boundaries of carbon electrocatalysts toward electrochemical hydrogen evolution to an unprecedented level. Experimental and theoretical analyses confirm the low-barrier Volmer-Tafel mechanism of proton reduction, while the multishell hollow structures facilitate the hydrogen evolution even at high current intensities. This work provides insights for understanding the actual active species during hydrogen evolution reaction and paves the way for designing high-performance electrocatalysts.
RESUMO
Electrocatalytic hydrogen evolution reaction (HER) is critical for green hydrogen generation and exhibits distinct pH-dependent kinetics that have been elusive to understand. A molecular-level understanding of the electrochemical interfaces is essential for developing more efficient electrochemical processes. Here we exploit an exclusively surface-specific electrical transport spectroscopy (ETS) approach to probe the Pt-surface water protonation status and experimentally determine the surface hydronium pKa [Formula: see text] 4.3. Quantum mechanics (QM) and reactive dynamics using a reactive force field (ReaxFF) molecular dynamics (RMD) calculations confirm the enrichment of hydroniums (H3O[Formula: see text]) near Pt surface and predict a surface hydronium pKa of 2.5 to 4.4, corroborating the experimental results. Importantly, the observed Pt-surface hydronium pKa correlates well with the pH-dependent HER kinetics, with the protonated surface state at lower pH favoring fast Tafel kinetics with a Tafel slope of 30 mV per decade and the deprotonated surface state at higher pH following Volmer-step limited kinetics with a much higher Tafel slope of 120 mV per decade, offering a robust and precise interpretation of the pH-dependent HER kinetics. These insights may help design improved electrocatalysts for renewable energy conversion.
Assuntos
Eletroquímica , Hidrogênio , Platina , Concentração de Íons de Hidrogênio , Cinética , Platina/química , Energia Renovável , ÁguaRESUMO
A global international initiative, such as the Earth BioGenome Project (EBP), requires both agreement and coordination on standards to ensure that the collective effort generates rapid progress toward its goals. To this end, the EBP initiated five technical standards committees comprising volunteer members from the global genomics scientific community: Sample Collection and Processing, Sequencing and Assembly, Annotation, Analysis, and IT and Informatics. The current versions of the resulting standards documents are available on the EBP website, with the recognition that opportunities, technologies, and challenges may improve or change in the future, requiring flexibility for the EBP to meet its goals. Here, we describe some highlights from the proposed standards, and areas where additional challenges will need to be met.
Assuntos
Sequência de Bases/genética , Eucariotos/genética , Genômica/normas , Animais , Biodiversidade , Genômica/métodos , Humanos , Padrões de Referência , Valores de Referência , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normasRESUMO
The regenerative capacity of the adult mammalian heart is limited, while the neonatal heart is an organ with regenerative and proliferative ability. Activating adult cardiomyocytes (CMs) to re-enter the cell cycle is an effective therapeutic method for ischemic heart disease such as myocardial infarction (MI) and heart failure. Here, we aimed to reveal the role and potential mechanisms of cellular nucleic acid binding protein (CNBP) in cardiac regeneration and repair after heart injury. CNBP is highly expressed within 7 days post-birth while decreases significantly with the loss of regenerative ability. In vitro, overexpression of CNBP promoted CM proliferation and survival, whereas knockdown of CNBP inhibited these processes. In vivo, knockdown of CNBP in CMs robustly hindered myocardial regeneration after apical resection in neonatal mice. In adult MI mice, CM-specific CNBP overexpression in the infarct border zone ameliorated myocardial injury in acute stage and facilitated CM proliferation and functional recovery in the long term. Quantitative proteomic analysis with TMT labeling showed that CNBP overexpression promoted the DNA replication, cell cycle progression, and cell division. Mechanically, CNBP overexpression increased the expression of ß-catenin and its downstream target genes CCND1 and c-myc; Furthermore, Luciferase reporter and Chromatin immunoprecipitation (ChIP) assays showed that CNBP could directly bind to the ß-catenin promoter and promote its transcription. CNBP also upregulated the expression of G1/S-related cell cycle genes CCNE1, CDK2, and CDK4. Collectively, our study reveals the positive role of CNBP in promoting cardiac repair after injury, providing a new therapeutic option for the treatment of MI.
Assuntos
Coração , Miócitos Cardíacos , Proteínas de Ligação a RNA , Animais , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Proliferação de Células , Mamíferos/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Ácidos Nucleicos/metabolismo , Proteômica , Fatores de Transcrição/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Regeneração , Coração/fisiologiaRESUMO
Cu is a promising catalyst for electrochemical nitrate (NO3-) reduction. However, desorption of the nitrite (NO2-) intermediate can occur, leading to lowered ammonia productivity and Faradaic efficiency. Here, we discovered that this does not occur with oxide-derived Cu due to the presence of at least two distinct types of cooperative active sites: one for NO3- â NO2- and another for NO2- â NH3. As a result, oxide-derived Cu exhibits enhanced ammonia productivity with a mixed NO3-/NO2- feed relative to pure NO3- or NO2-. In contrast, this was not observed with a standard Cu sample, implying the presence of only a single type of active site. Our dual-site hypothesis was supported by attenuated total reflection surface enhanced infrared absorption spectroscopy and isotopic labeling experiments involving co-reduction of 15NO3-/14NO2-. We also successfully simulated our experimental results using a mathematical model involving two different adsorption sites. These findings motivate the need for further study and rational design of such active sites.
RESUMO
The fundamental understanding of sluggish hydrogen evolution reaction (HER) kinetics on a platinum (Pt) surface in alkaline media is a topic of considerable debate. Herein, we combine cyclic voltammetry (CV) and electrical transport spectroscopy (ETS) approaches to probe the Pt surface at different pH values and develop molecular-level insights into the pH-dependent HER kinetics in alkaline media. The change in HER Tafel slope from â¼110 mV/decade in pH 7-10 to â¼53 mV/decade in pH 11-13 suggests considerably enhanced kinetics at higher pH. The ETS studies reveal a similar pH-dependent switch in the ETS conductance signal at around pH 10, suggesting a notable change of surface adsorbates. Fixed-potential calculations and chemical bonding analysis suggest that this switch is attributed to a change in interfacial water orientation, shifting from primarily an O-down configuration below pH 10 to a H-down configuration above pH 10. This reorientation weakens the O-H bond in the interfacial water molecules and modifies the reaction pathway, leading to considerably accelerated HER kinetics at higher pH. Our integrated studies provide an unprecedented molecular-level understanding of the nontrivial pH-dependent HER kinetics in alkaline media.
RESUMO
The selective conversion of ethane (C2H6) to ethylene (C2H4) under mild conditions is highly wanted, yet very challenging. Herein, it is demonstrated that a Pt/WO3-x catalyst, constructed by supporting ultrafine Pt nanoparticles on the surface of oxygen-deficient tungsten oxide (WO3-x) nanoplates, is efficient and reusable for photocatalytic C2H6 dehydrogenation to produce C2H4 with high selectivity. Specifically, under pure light irradiation, the optimized Pt/WO3-x photocatalyst exhibits C2H4 and H2 yield rates of 291.8 and 373.4 µmol g-1 h-1, respectively, coupled with a small formation of CO (85.2 µmol g-1 h-1) and CH4 (19.0 µmol g-1 h-1), corresponding to a high C2H4 selectivity of 84.9%. Experimental and theoretical studies reveal that the vacancy-rich WO3-x catalyst enables broad optical harvesting to generate charge carriers by light for working the redox reactions. Meanwhile, the Pt cocatalyst reinforces adsorption of C2H6, desorption of key reaction species, and separation and migration of light-induced charges to promote the dehydrogenation reaction with high productivity and selectivity. In situ diffuse reflectance infrared Fourier transform spectroscopy and density functional theory calculation expose the key intermediates formed on the Pt/WO3-x catalyst during the reaction, which permits the construction of the possible C2H6 dehydrogenation mechanism.
RESUMO
In analogy to natural enzymes, an elaborated design of catalytic systems with a specifically tailored local chemical environment could substantially improve reaction kinetics, effectively combat catalyst poisoning effect and boost catalyst lifetime under unfavourable reaction conditions. Here we report a unique design of 'Ni(OH)2-clothed Pt-tetrapods' with an amorphous Ni(OH)2 shell as a water dissociation catalyst and a proton conductive encapsulation layer to isolate the Pt core from bulk alkaline electrolyte while ensuring efficient proton supply to the active Pt sites. This design creates a favourable local chemical environment to result in acidic-like hydrogen evolution reaction kinetics with a lowest Tafel slope of 27 mV per decade and a record-high specific activity and mass activity in alkaline electrolyte. The proton conductive Ni(OH)2 shell can also effectively reject impurity ions and retard the Oswald ripening, endowing a high tolerance to solution impurities and exceptional long-term durability that is difficult to achieve in the naked Pt catalysts. The markedly improved hydrogen evolution reaction activity and durability in an alkaline medium promise an attractive catalyst material for alkaline water electrolysers and renewable chemical fuel generation.
RESUMO
Fatty amide hydrolase (FAAH) is a key degradation enzyme of the endocannabinoid system, mainly responsible for the hydrolysis of arachidonic acid ethanolamine (AEA). Previous investigations have shown that FAAH is involved in a series of biological processes, such as inflammation, immune regulation, and transmembrane signal transduction of neurons. Endogenous cannabinoids and cannabinoid receptors have been reported to participate in the regulation of bone homeostasis by regulating the differentiation of osteoblasts and osteoclasts. We hypothesized that FAAH may play an important role in osteoclastogenesis based on the above evidence. The present study found that the FAAH expression was increased at both mRNA and protein levels during RANKL-induced osteoclastogenesis. Pharmacological and genetic inhibition of FAAH in bone marrow-derived macrophages (BMMs) inhibited osteoclastogenesis, F-actin ring formation, bone resorption, and osteoclast-specific gene expression in vitro. Moreover, intragastric administration of the FAAH inhibitor PF-04457845(PF) ameliorated ovariectomy (OVX)-induced bone loss in mice. Further investigation revealed that nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways were inhibited by PF treatment and FAAH knockdown. RNAseq indicated that the IL17 pathway was blocked by PF, and administration of recombinant murine IL17 protein could partially restore osteoclastogenesis and activate NF-κB and MAPK pathways. To sum up, our findings demonstrate that targeting FAAH could be a promising candidate strategy for treating osteoclast-related diseases, especially osteoporosis.
Assuntos
Amidoidrolases , Reabsorção Óssea , Interleucina-17 , Osteogênese , Animais , Feminino , Camundongos , Reabsorção Óssea/etiologia , Reabsorção Óssea/prevenção & controle , Diferenciação Celular , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Ovariectomia/efeitos adversos , Ligante RANK/metabolismo , Amidoidrolases/antagonistas & inibidores , Interleucina-17/metabolismoRESUMO
Typically, SO2 unavoidably deactivates catalysts in most heterogeneous catalytic oxidations. However, for Pt-based catalysts, SO2 exhibits an extraordinary boosting effect in propane catalytic oxidation, but the promotive mechanism remains contentious. In this study, an in situ-formed tactful (Pt-S-O)-Ti structure was concluded to be a key factor for Pt/TiO2 catalysts with a substantial SO2 tolerance ability. The experiments and theoretical calculations confirm that the high degree of hybridization and orbital coupling between Pt 5d and S 3p orbitals enable more charge transfer from Pt to S species, thus forming the (Pt-S-O)-Ti structure with the oxygen atom dissociated from the chemisorbed O2 adsorbed on oxygen vacancies. The active oxygen atom in the (Pt-S-O)-Ti active structure is a robust site for C3H8 adsorption, leading to a better C3H8 combustion performance. This work can provide insights into the rational design of chemical bonds for high SO2 tolerance catalysts, thereby improving economic and environmental benefits.
Assuntos
Oxigênio , Titânio , Titânio/química , Oxirredução , Catálise , AdsorçãoRESUMO
BACKGROUND: Previous studies have demonstrated the relationship between sagittal facet orientation and cervical degenerative spondylolisthesis. However, the associations between facet orientation and cervical spinal stenosis (CSS) have rarely been studied. METHODS: One hundred twenty patients with CSS (CSS group) and 120 healthy participants (control group) were consecutively enrolled. The cervical facet angles and anteroposterior diameter (A-P diameter) of spinal canal at each subaxial cervical levels were measured using axial magnetic resonance imaging. The intersection angle of the midsagittal line of the vertebra to the facet line represents the orientation of the facet joint. RESULTS: The facet angles on the right side at C2- C3 and C3-C4 in CSS group and at C2- C3 in control group had significantly higher values than those of the other sides. Besides, the facet angles and A-P diameter of spinal canal in CSS group were significantly smaller than those in control group at all levels (p < 0.05). CONCLUSIONS: Our study demonstrated that patients with CSS have smaller axial cervical facet joint angles compared to the healthy individuals. Further studies are needed to elicit the specific underlying mechanism between sagittalization of the cervical facet joints and the pathology of CSS.
Assuntos
Doenças da Medula Espinal , Estenose Espinal , Espondilolistese , Articulação Zigapofisária , Humanos , Estenose Espinal/diagnóstico por imagem , Estenose Espinal/patologia , Articulação Zigapofisária/diagnóstico por imagem , Articulação Zigapofisária/patologia , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/patologia , Pescoço , Imageamento por Ressonância Magnética/métodos , Doenças da Medula Espinal/patologia , Vértebras Lombares/patologiaRESUMO
Developing artificial enzymes with excellent catalytic activities and uncovering the structural and chemical determinants remain a grand challenge. Discrete titanium-oxo clusters with well-defined coordination environments at the atomic level can mimic the pivotal catalytic center of natural enzymes and optimize the charge-transfer kinetics. Herein, we report the precise structural tailoring of a self-assembled tetrahedral Ti4Mn3-cluster for photocatalytic CO2 reduction and realize the selective evolution of CO over specific sites. Experiments and theoretical simulation demonstrate that the high catalytic performance of the Ti4Mn3-cluster should be related to the synergy between active Mn sites and the surrounding functional microenvironment. The reduced energy barrier of the CO2 photoreduction reaction and moderate adsorption strength of CO* are beneficial for the high selective evolution of CO. This work provides a molecular scale accurate structural model to give insight into artificial enzyme for CO2 photoreduction.
RESUMO
Highly crystalline carbon nitride polymers have shown great opportunities in overall water photosplitting; however, their mission in light-driven CO2 conversion remains to be explored. In this work, crystalline carbon nitride (CCN) nanosheets of poly triazine imide (PTI) embedded with melon domains are fabricated by KCl/LiCl-mediated polycondensation of dicyandiamide, the surface of which is subsequently deposited with ultrafine WO3 nanoparticles to construct the CCN/WO3 heterostructure with a S-scheme interface. Systematic characterizations have been conducted to reveal the compositions and structures of the S-scheme CCN/WO3 hybrid, featuring strengthened optical capture, enhanced CO2 adsorption and activation, attractive textural properties, as well as spatial separation and directed movement of light-triggered charge carriers. Under mild conditions, the CCN/WO3 catalyst with optimized composition displays a high photocatalytic activity for reducing CO2 to CO in a rate of 23.0 µmol/hr (i.e., 2300 µmol/(hr·g)), which is about 7-fold that of pristine CCN, along with a high CO selectivity of 90.6% against H2 formation. Moreover, it also manifests high stability and fine reusability for the CO2 conversion reaction. The CO2 adsorption and conversion processes on the catalyst are monitored by in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), identifying the crucial intermediates of CO2*-, COOH* and CO*, which integrated with the results of performance evaluation proposes the possible CO2 reduction mechanism.
Assuntos
Dióxido de Carbono , Nanopartículas , Nitrilas , Adsorção , ImidasRESUMO
Sunlight has long served as primary energy source on our planet, shaping the behavior of living organisms. Extensive research has been dedicated to unraveling the evolutionary pathways involved. When the formation of Earth atmosphere, it primarily consisted of small gas molecules, which are considered crucial for the emergence of life. Recent demonstrations have shown that these molecules can also be transformed into semiconductors, with the potential to harness solar energy and catalyze chemical reactions as photocatalysts. Building upon this research, this minireview focuses on the potential revolutionary impact of photocatalysis on Earth. Initially, it examines key reactions, such as the formation of prebiotic molecules and the oxygen evolution reaction via water oxidation. Additionally, various C-N complexes in photocatalysts are explored, showcasing their roles in catalyzing chemical reactions. The conclusion and outlook provide a potential pathway for the evolution of Earth, shedding light on the significance of metal-free photocatalysts in development of Earth.
RESUMO
Photocatalytic reduction of diluted CO2 from anthropogenic sources holds tremendous potential for achieving carbon neutrality, while the huge barrier to forming *COOH key intermediate considerably limits catalytic effectiveness. Herein, via coordination engineering of atomically scattered Ni sites in conductive metal-organic frameworks (CMOFs), we propose a facile strategy for tailoring the dband center of metal active sites towards high-efficiency photoreduction of diluted CO2. Under visible-light irradiation in pure CO2, CMOFs with Ni-O4 sites (Ni-O4 CMOFs) exhibits an outstanding rate for CO generation of 13.3 µmol h-1 with a selectivity of 94.5%, which is almost double that of its isostructural counterpart with traditional Ni-N4 sites (Ni-N4 CMOFs), outperforming most reported systems under comparable conditions. Interestingly, in simulated flue gas, the CO selectivity of Ni-N4 CMOFs decreases significantly while that of Ni-O4 CMOFs is mostly unchanged, signifying the supremacy for Ni-O4 CMOFs in leveraging anthropogenic diluted CO2. In-situ spectroscopy and density functional theory (DFT) investigations demonstrate that O coordination can move the center of the Ni sites' d-band closer to the Fermi level, benefiting the generation of *COOH key intermediate as well as the desorption of *CO and hence leading to significantly boosted activity and selectivity for CO2-to-CO photoreduction.
RESUMO
Strong excitonic effects are common in organic conjugated polymer semiconductors, severely hindering the generation of free charge carriers for conducting photocatalysis. Therefore, exploring new channels to modulate exciton dissociation in polymers is far-reaching in facilitating photocatalysis. A series of B-N Lewis pair functionalized conjugated polymers have been developed to minimize exciton effects by modulating charge transfer pathways. Theoretical studies have shown that introducing B-N Lewis pairs can dramatically increase the distance of charge transfer (D index) and the amount of electron transfer and reduce the Coulomb attraction energy (EC), which contributes to breaking the equilibrium of the coexistence of excitons and charge carriers. Further experimental results show that the singlet excitons are efficiently dissociated into more free-charge carriers under photoexcitation to participate in surface reactions. The optimized polymer PyPBM shows an exponential increase in photocatalytic hydrogen and hydrogen peroxide production performance by visible light illumination.
RESUMO
Photocatalytic synthesis of H2O2 is an advantageous and ecologically sustainable alternative to the conventional anthraquinone process. However, achieving high conversion efficiency without sacrificial agents remains a challenge. In this study, two covalent organic frameworks (COF-O and COF-C) were prepared with identical skeletal structures but with their pore walls anchored to different alkyl chains. They were used to investigate the effect of the chemical microenvironment of pores on photocatalytic H2O2 production. Experimental results reveal a change of hydrophilicity in COF-O, leading to suppressed charge recombination, diminished charge transfer resistance, and accelerated interfacial electron transfer. An apparent quantum yield as high as 10.3 % (λ=420â nm) can be achieved with H2O and O2 through oxygen reduction reaction. This is among the highest ever reported for polymer photocatalysts. This study may provide a novel avenue for optimizing photocatalytic activity and selectivity in H2O2 generation.
RESUMO
The artificial photosynthesis of H2O2 from water and oxygen using semiconductor photocatalysts is attracting increasing levels of attention owing to its green, environmentally friendly, and energy-saving characteristics. Although covalent organic frameworks (COFs) are promising materials for promoting photocatalytic H2O2 production owing to their structural and functional diversity, they typically suffer from low charge-generation and -transfer efficiencies as well as rapid charge recombination, which restricts their use as catalysts for photocatalytic H2O2 production. Herein, we report a strategy for anchoring vinyl moieties to a COF skeleton to facilitate charge separation and migration, thereby promoting photocatalytic H2O2 generation. This vinyl-group-bearing COF photocatalyst exhibits a H2O2-production rate of 84.5â µmol h-1 (per 10â mg), which is ten-times higher than that of the analog devoid of vinyl functionality and superior to most reported COF photocatalysts. Both experimental and theoretical studies provide deep insight into the origin of the improved photocatalytic performance. These findings are expected to facilitate the rational design and modification of organic semiconductors for use in photocatalytic applications.