Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Nature ; 626(7997): 86-91, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297172

RESUMO

Electrolysis that reduces carbon dioxide (CO2) to useful chemicals can, in principle, contribute to a more sustainable and carbon-neutral future1-6. However, it remains challenging to develop this into a robust process because efficient conversion typically requires alkaline conditions in which CO2 precipitates as carbonate, and this limits carbon utilization and the stability of the system7-12. Strategies such as physical washing, pulsed operation and the use of dipolar membranes can partially alleviate these problems but do not fully resolve them11,13-15. CO2 electrolysis in acid electrolyte, where carbonate does not form, has therefore been explored as an ultimately more workable solution16-18. Herein we develop a proton-exchange membrane system that reduces CO2 to formic acid at a catalyst that is derived from waste lead-acid batteries and in which a lattice carbon activation mechanism contributes. When coupling CO2 reduction with hydrogen oxidation, formic acid is produced with over 93% Faradaic efficiency. The system is compatible with start-up/shut-down processes, achieves nearly 91% single-pass conversion efficiency for CO2 at a current density of 600 mA cm-2 and cell voltage of 2.2 V and is shown to operate continuously for more than 5,200 h. We expect that this exceptional performance, enabled by the use of a robust and efficient catalyst, stable three-phase interface and durable membrane, will help advance the development of carbon-neutral technologies.

2.
Proc Natl Acad Sci U S A ; 120(52): e2310916120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38117856

RESUMO

The kinetics and pathway of most catalyzed reactions depend on the existence of interface, which makes the precise construction of highly active single-atom sites at the reaction interface a desirable goal. Herein, we propose a thermal printing strategy that not only arranges metal atoms at the silica and carbon layer interface but also stabilizes them by strong coordination. Just like the typesetting of Chinese characters on paper, this method relies on the controlled migration of movable nanoparticles between two contact substrates and the simultaneous emission of atoms from the nanoparticle surface at high temperatures. Observed by in situ transmission electron microscopy, a single Fe3O4 nanoparticle migrates from the core of a SiO2 sphere to the surface like a droplet at high temperatures, moves along the interface of SiO2 and the coated carbon layer, and releases metal atoms until it disappears completely. These detached atoms are then in situ trapped by nitrogen and sulfur defects in the carbon layer to generate Fe single-atom sites, exhibiting excellent activity for oxygen reduction reaction. Also, sites' densities can be regulated by controlling the size of Fe3O4 nanoparticle between the two surfaces. More importantly, this strategy is applicable to synthesize Mn, Co, Pt, Pd, Au single-atom sites, which provide a general route to arrange single-atom sites at the interface of different supports for various applications.

3.
Nature ; 573(7774): 421-425, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31511693

RESUMO

Early human embryonic development involves extensive lineage diversification, cell-fate specification and tissue patterning1. Despite its basic and clinical importance, early human embryonic development remains relatively unexplained owing to interspecies divergence2,3 and limited accessibility to human embryo samples. Here we report that human pluripotent stem cells (hPSCs) in a microfluidic device recapitulate, in a highly controllable and scalable fashion, landmarks of the development of the epiblast and amniotic ectoderm parts of the conceptus, including lumenogenesis of the epiblast and the resultant pro-amniotic cavity, formation of a bipolar embryonic sac, and specification of primordial germ cells and primitive streak cells. We further show that amniotic ectoderm-like cells function as a signalling centre to trigger the onset of gastrulation-like events in hPSCs. Given its controllability and scalability, the microfluidic model provides a powerful experimental system to advance knowledge of human embryology and reproduction. This model could assist in the rational design of differentiation protocols of hPSCs for disease modelling and cell therapy, and in high-throughput drug and toxicity screens to prevent pregnancy failure and birth defects.


Assuntos
Âmnio/embriologia , Camadas Germinativas/embriologia , Modelos Biológicos , Células-Tronco Pluripotentes/citologia , Âmnio/citologia , Diferenciação Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Feminino , Camadas Germinativas/citologia , Humanos , Gravidez , Linha Primitiva/citologia
5.
Nano Lett ; 24(4): 1197-1204, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38227967

RESUMO

Electrocatalytic reduction of nitrate to ammonia (NO3RR) is gaining attention for low carbon emissions and environmental protection. However, low ammonia production rate and poor selectivity have remained major challenges in this multi-proton coupling process. Herein, we report a facile strategy toward a novel Fe-based hybrid structure composed of Fe single atoms and Fe3C atomic clusters that demonstrates outstanding performance for synergistic electrocatalytic NO3RR. By operando synchrotron Fourier transform infrared spectroscopy and theoretical computation, we clarify that Fe single atoms serve as the active site for NO3RR, while Fe3C clusters facilitate H2O dissociation to provide protons (*H) for continued hydrogenation reactions. As a result, the Fe-based electrocatalyst exhibits ammonia Faradaic efficiency of nearly 100%, with a corresponding production rate of 24768 µg h-1 cm-2 at -0.4 V vs RHE, exceeding most reported metal-based catalysts. This research provides valuable guidance toward multi-step reactions.

6.
Anal Chem ; 96(6): 2455-2463, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38285921

RESUMO

Single-nanoparticle studies often need one or a series of nanoparticle populations that are designed with differences in a nominally particular structural parameter to clarify the structure-activity relationship (SAR). However, the heterogeneity of various properties within any population would make it rather difficult to approach an ideal one-parameter control. In situ modification ensures the same nanoparticle to be investigated and also avoids complicating effects from the otherwise often needed ex situ operations. Herein, we apply electrochemical cycling to single platinum nanoparticles and optically examine their SAR. An electrocatalytic fluorescent microscopic method is established to evaluate the apparent catalytic activity of a number of single nanoparticles toward the oxygen reduction reaction. Meanwhile, dark-field microscopy with the substrate electrode under a cyclic potential control is found to be able to assess the electrochemically active surface area (ECSA) of single nanoparticles via induced chloride redox electrochemistry. Consequently, nanoparticles with drastically increased catalytic activity are discovered to have larger ECSAs upon potential regulation, and interestingly, there are also a few particles with decreased activity, as opposed to the overall trend, that all develop a smaller ECSA in the process. The deactivated nanoparticles against the overall enhancement effects of potential cycling are revealed for the first time. As such, the SAR of single nanoparticles when subjected to an in situ structural control is optically demonstrated.

7.
Nano Lett ; 23(9): 3826-3834, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37115709

RESUMO

Modifying the atomic and electronic structure of platinum-based alloy to enhance its activity and anti-CO poisoning ability is a vital issue in hydrogen oxidation reaction (HOR). However, the role of foreign modifier metal and the underlying ligand effect is not fully understood. Here, we propose that the ligand effect of single-atom Cu can dynamically modulate the d-band center of Pt-based alloy for boosting HOR performance. By in situ X-ray absorption spectroscopy, our research has identified that the potential-driven structural rearrangement into high-coordination Cu-Pt/Pd intensifies the ligand effect in Pt-Cu-Pd, leading to enhanced HOR performance. Thereby, modulating the d-band structure leads to near-optimal hydrogen/hydroxyl binding energies and reduced CO adsorption energies for promoting the HOR kinetics and the CO-tolerant capability. Accordingly, PtPdCu1/C exhibits excellent CO tolerance even at 1,000 ppm impurity.

8.
Angew Chem Int Ed Engl ; : e202410545, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940407

RESUMO

Rational design of efficient methanol oxidation reaction (MOR) catalyst that undergo non-CO pathway is essential to resolve the long-standing poisoning issue. However, it remains a huge challenge due to the rather difficulty in maximizing the non-CO pathway by the selective coupling between the key *CHO and *OH intermediates. Here, we report a high-performance electrocatalyst of patchy atomic-layer Pt epitaxial growth on CeO2 nanocube (Pt ALs/CeO2) with maximum electron-metal support interactions for enhancing the coupling selectively. The small-size monolayer material achieves an optimal geometrical distance between edge Pt-O-Ce sites and *OH absorbed on CeO2, which well restrains the dehydrogenation of *CHO, resulting in the non-CO pathway. Meanwhile, the *CHO/*CO intermediate generated at inner Pt-O-Ce sites can migrate to edge, inducing the subsequent coupling reaction, thus avoiding poisoning while promoting reaction efficiency. Consequently, Pt ALs/CeO2 exhibits exceptionally catalytic stability with negligible degradation even under 1000 s pure CO poisoning operation and high mass activity (14.87 A/mgPt), enabling it one of the best-performing alkali-stable MOR catalysts.

9.
J Am Chem Soc ; 145(24): 13462-13468, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37293805

RESUMO

Arranging atoms in an orderly manner at the atomic scale to create stable polyatomic structures is a very challenging task. In this study, we have developed three-dimensional confinement areas on the two-dimensional surface by creating regional defects. These areas are composed of vertically stacked graphene layers, where Ni and Fe atoms are anchored concentrically to form axial dual atomic sites in high yield. These sites can be used to produce tunable syngas through the electroreduction of CO2. Theoretical calculations indicate that the Ni sites vertically regulate the charge distribution of the adjacent Fe sites in the layer below, resulting in a lower d-band center. This, in turn, weakens the adsorption of the *CO intermediate and inhibits the production of H2 at the Fe site. Our research presents a novel approach for concentrated creation of dual atomic sites by building a confinement-selective surface.

10.
BMC Med ; 21(1): 310, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592257

RESUMO

BACKGROUND: Aging is a dynamic and heterogeneous process that may better be captured by trajectories of aging biomarkers. Biological age has been advocated as a better biomarker of aging than chronological age, and plant-based dietary patterns have been found to be linked to aging. However, the associations of biological age trajectories with mortality and plant-based dietary patterns remained unclear. METHODS: Using group-based trajectory modeling approach, we identified distinctive aging trajectory groups among 12,784 participants based on a recently developed biological aging measure acquired at four-time points within an 8-year period. We then examined associations between aging trajectories and quintiles of plant-based dietary patterns assessed by overall plant-based diet index (PDI), healthful PDI (hPDI), and unhealthful PDI (uPDI) among 10,191 participants who had complete data on dietary intake, using multivariable multinomial logistics regression adjusting for sociodemographic and lifestyles factors. Cox proportional hazards regression models were applied to investigate the association between aging trajectories and all-cause mortality. RESULTS: We identified three latent classes of accelerated aging trajectories: slow aging, medium-degree, and high-degree accelerated aging trajectories. Participants who had higher PDI or hPDI had lower odds of being in medium-degree (OR = 0.75, 95% CI: 0.65, 0.86 for PDI; OR = 0.73, 95% CI: 0.62, 0.85 for hPDI) or high-degree (OR = 0.63, 95% CI: 0.46, 0.86 for PDI; OR = 0.62, 95% CI: 0.44, 0.88 for hPDI) accelerated aging trajectories. Participants in the highest quintile of uPDI were more likely to be in medium-degree (OR = 1.72, 95% CI: 1.48, 1.99) or high-degree (OR = 1.70, 95% CI: 1.21, 2.38) accelerated aging trajectories. With a mean follow-up time of 8.40 years and 803 (6.28%) participants died by the end of follow-up, we found that participants in medium-degree (HR = 1.56, 95% CI: 1.29, 1.89) or high-degree (HR = 3.72, 95% CI: 2.73, 5.08) accelerated aging trajectory groups had higher risks of death than those in the slow aging trajectory. CONCLUSIONS: We identified three distinctive aging trajectories in a large Asian cohort and found that adopting a plant-based dietary pattern, especially when rich in healthful plant foods, was associated with substantially lowered pace of aging.


Assuntos
Envelhecimento , Dieta , Humanos , Estudos Prospectivos , Estilo de Vida
11.
Eur J Clin Invest ; 53(10): e14038, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37314058

RESUMO

AIM: The effects of vitamin D administration on bone turnover markers (BTMs) in adults are controversial. Thus, we carried out a meta-analysis of available randomised controlled trials (RCTs) to examine the impact of vitamin D supplementation on BTMs. METHODS: To identify relevant RCTs, we searched the PubMed/MEDLINE, Web of Science, Scopus, Cochrane Library and Embase databases for manuscripts published up to July 2022. The present study was conducted in agreement with the PRISMA guidelines. Weighed mean difference (WMD) and 95% confidence intervals (CI) were used to calculate the magnitude of the effect of the intervention. RESULTS: A total of 42 RCTs were included in the meta-analysis. The age of the participants enrolled in the RCTs ranged from 19.4 to 84 years. The pooled results depicted a decrease in deoxypyridinoline (DPD) concentrations (WMD: -1.58 nmol/mmol, 95% CI: -2.55, -.61, p = .001) following vitamin D supplementation. In addition, subgroup analyses demonstrated that vitamin D administration notably reduced procollagen type I N-terminal propeptide (PINP) levels in individuals aged >50 years and led to a pronounced decrease in alkaline phosphatase (ALP) values when the intervention lasted >12 weeks. No significant effect was observed on other BTMs, for example, collagen type 1 cross-linked C-telopeptide (CTX) and osteocalcin (OC) levels. CONCLUSION: Vitamin D administration decreases DPD, PINP and ALP levels, indicating a reduced bone turnover following the intervention. Other BTMs, for example, CTX or OC values, were not affected by vitamin D prescription. Vitamin D supplementation may exert a positive effect on some important BTMs.


Assuntos
Colágeno Tipo I , Vitamina D , Adulto , Humanos , Colágeno Tipo I/farmacologia , Remodelação Óssea , Fosfatase Alcalina , Biomarcadores , Osteocalcina/farmacologia , Suplementos Nutricionais , Ensaios Clínicos Controlados Aleatórios como Assunto
12.
Opt Lett ; 48(10): 2523-2526, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37186698

RESUMO

The supercritical lens has shown a remarkable capability of achieving far-field sub-diffraction limited focusing through elaborating a modulated interference effect. Benefiting from the relative high energy utilization efficiency and weak sidelobe properties, the supercritical lens holds significant advantage in a series of application scenarios. However, all of the demonstrated supercritical lenses mainly work in the on-axis illumination condition, so the off-axis aberration effect will severely deteriorate its sub-diffraction limit focusing capability for the illuminating beam with an oblique angle. In this work, an aberration-compensated supercritical lens with single-layer configuration is proposed and experimentally demonstrated. Such a single-layer supercritical lens consists of multilevel phase configurations patterned with the two-photon polymerization lithography technique. The simulation and experimental recorded results show that the aberration-compensated supercritical lens with a numerical aperture value of 0.63 could achieve a far-field sub-diffraction limited focusing property within 20° field of view at a wavelength of λ = 633 nm. This monochromatic aberration-compensated supercritical lens with single-layer configuration indicates excellent potential in the development of laser scanning ultrahigh optical storage and label free super-resolution imaging.

13.
J Magn Reson Imaging ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37942838

RESUMO

BACKGROUND: Tertiary lymphoid structures (TLSs) have prognostic value in intrahepatic cholangiocarcinoma (ICC) patients. Noninvasive tool to preoperatively evaluate TLSs is still lacking. PURPOSE: To explore the association between TLSs status of ICC and preoperative MRI radiomics analysis. STUDY TYPE: Retrospective. SUBJECTS: One hundred and ninety-two patients with ICC, divided into training (T = 105), internal validation groups (V1 = 46), and external validation group (V2 = 41). SEQUENCE: Coronal and axial single-shot fast spin-echo T2-weighted, diffusion-weighted imaging, T1-weighted, and T1WI fat-suppressed spoiled gradient-recall echo LAVA sequence at 3.0 T. ASSESSMENT: The VOIs were drawn manually within the visible borders of the tumors using ITK-SNAP version 3.8.0 software in the axial T2WI, DWI, and portal vein phase sequences. Radiomics features were subjected to least absolute shrinkage and selection operator regression to select the associated features of TLSs and construct the radiomics model. Univariate and multivariate analyses were used to identify the clinical radiological variables associated with TLSs. The performances were evaluated by the area under the receiver operator characteristic curve (AUC). STATISTICAL TESTS: Logistic regression analysis, ROC and AUC, Hosmer-Lemeshow test, Kaplan-Meier method with the log-rank test, calibration curves, and decision curve analysis. P < 0.05 was considered statistically significant. RESULTS: The AUCs of arterial phase diffuse hyperenhancement were 0.59 (95% confidence interval [CI], 0.50-0.67), 0.52 (95% CI, 0.43-0.61), and 0.66 (95% CI, 0.52-0.80) in the T, V1, and V2 cohorts. The AUCs of Rad-score were 0.85 (95% CI, 0.77-0.92), 0.81 (95% CI, 0.67-0.94), and 0.84 (95% CI, 0.71-0.96) in the T, V1, and V2 cohorts, respectively. In cohort T, low-risk group showed significantly better median recurrence-free survival (RFS) than that of the high-risk group, which was also confirmed in cohort V1 and V2. DATA CONCLUSION: A preoperative MRI radiomics signature is associated with the intratumoral TLSs status of ICC patients and correlate significantly with RFS. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

14.
Eur Radiol ; 33(5): 3592-3603, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36884087

RESUMO

OBJECTIVES: To estimate the potential of preoperative MR imaging features and clinical parameters in the risk stratification of patients with solitary hepatocellular carcinoma (HCC) ≤ 5 cm without microvascular invasion (MVI) after hepatectomy. METHODS: The study enrolled 166 patients with histopathological confirmed MVI-negative HCC retrospectively. The MR imaging features were evaluated by two radiologists independently. The risk factors associated with recurrence-free survival (RFS) were identified by univariate Cox regression analysis and the least absolute shrinkage and selection operator Cox regression analysis. A predictive nomogram was developed based on these risk factors, and the performance was tested in the validation cohort. The RFS was analyzed by using the Kaplan-Meier survival curves and log-rank test. RESULTS: Among the 166 patients with solitary MVI-negative HCC, 86 patients presented with postoperative recurrence. Multivariate Cox regression analysis indicated that cirrhosis, tumor size, hepatitis, albumin, arterial phase hyperenhancement (APHE), washout, and mosaic architecture were risk factors associated with poor RFS and then incorporated into the nomogram. The nomogram achieved good performance with C-index values of 0.713 and 0.707 in the development and validation cohorts, respectively. Furthermore, patients were stratified into high- and low-risk subgroups, and significant prognostic differences were found between the different subgroups in both cohorts (p < 0.001 and p = 0.024, respectively). CONCLUSION: The nomogram incorporated preoperative MR imaging features, and clinical parameters can be a simple and reliable tool for predicting RFS and achieving risk stratification in patients with solitary MVI-negative HCC. KEY POINTS: • Application of preoperative MR imaging features and clinical parameters can effectively predict RFS in patients with solitary MVI-negative HCC. • Risk factors including cirrhosis, tumor size, hepatitis, albumin, APHE, washout, and mosaic architecture were associated with worse prognosis in patients with solitary MVI-negative HCC. • Based on the nomogram incorporating these risk factors, the MVI-negative HCC patients could be stratified into two subgroups with significant different prognoses.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Prognóstico , Neoplasias Hepáticas/patologia , Estudos Retrospectivos , Invasividade Neoplásica/patologia , Cirrose Hepática , Imageamento por Ressonância Magnética , Medição de Risco
15.
Eur Radiol ; 33(5): 3638-3646, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36905470

RESUMO

OBJECTIVES: This study aimed to investigate whether a deep learning (DL) model based on preoperative MR images of primary tumors can predict lymph node metastasis (LNM) in patients with stage T1-2 rectal cancer. METHODS: In this retrospective study, patients with stage T1-2 rectal cancer who underwent preoperative MRI between October 2013 and March 2021 were included and assigned to the training, validation, and test sets. Four two-dimensional and three-dimensional (3D) residual networks (ResNet18, ResNet50, ResNet101, and ResNet152) were trained and tested on T2-weighted images to identify patients with LNM. Three radiologists independently assessed LN status on MRI, and diagnostic outcomes were compared with the DL model. Predictive performance was assessed with AUC and compared using the Delong method. RESULTS: In total, 611 patients were evaluated (444 training, 81 validation, and 86 test). The AUCs of the eight DL models ranged from 0.80 (95% confidence interval [CI]: 0.75, 0.85) to 0.89 (95% CI: 0.85, 0.92) in the training set and from 0.77 (95% CI: 0.62, 0.92) to 0.89 (95% CI: 0.76, 1.00) in the validation set. The ResNet101 model based on 3D network architecture achieved the best performance in predicting LNM in the test set, with an AUC of 0.79 (95% CI: 0.70, 0.89) that was significantly greater than that of the pooled readers (AUC, 0.54 [95% CI: 0.48, 0.60]; p < 0.001). CONCLUSION: The DL model based on preoperative MR images of primary tumors outperformed radiologists in predicting LNM in patients with stage T1-2 rectal cancer. KEY POINTS: • Deep learning (DL) models with different network frameworks showed different diagnostic performance for predicting lymph node metastasis (LNM) in patients with stage T1-2 rectal cancer. • The ResNet101 model based on 3D network architecture achieved the best performance in predicting LNM in the test set. • The DL model based on preoperative MR images outperformed radiologists in predicting LNM in patients with stage T1-2 rectal cancer.


Assuntos
Aprendizado Profundo , Neoplasias Retais , Humanos , Metástase Linfática/patologia , Estudos Retrospectivos , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Imageamento por Ressonância Magnética/métodos , Neoplasias Retais/patologia
16.
Fish Shellfish Immunol ; 134: 108576, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36775182

RESUMO

The IRF2BP family of transcription regulators act as corepressor molecules by inhibiting both enhancer-activated and basal transcription involving in many biological contexts. In the present study, an IRF2BP homologue (CgIRF2BP) was identified from oyster C. gigas. Its open reading frame is of 1809 bp encoding a polypeptide of 602 amino acids, which contains an IRF-2BP1_2 domain and a RING domain. The mRNA transcripts of CgIRF2BP were detected in all tested tissues with highest level in haemocytes (28.99-fold of that in mantle, p < 0.05). After poly (I:C) stimulation, the expression level of CgIRF2BP was significantly down-regulated at 3 h (0.50-fold of that in control group, p < 0.001) and gradually increased from 6 h to 48 h (2.69-fold of that in control group, p < 0.01). The recombinant protein of CgIRF2BP (rCgIRF2BP) showed high affinity to both rCgIRF1 and rCgIRF8 with Kd value of 1.02 × 10-7 and 2.09 × 10-7, respectively. In CgIRF2BP-RNAi oysters, the mRNA expression of CgIFNLP, CgMx1, CgViperin and CgIFI44L were significantly increased after poly (I:C) stimulation, which were 2.88 (p < 0.01), 1.83 (p < 0.05), 2.47 (p < 0.05), and 1.99-fold (p < 0.01) of that in EGFP group, respectively. These findings suggested that CgIRF2BP negatively regulated CgIFNLP expression by binding with CgIRF1 and CgIRF8.


Assuntos
Crassostrea , Imunidade Inata , Animais , Imunidade Inata/genética , Crassostrea/genética , Regulação da Expressão Gênica , Proteínas Recombinantes/genética , RNA Mensageiro/metabolismo , Hemócitos/metabolismo
17.
Fish Shellfish Immunol ; 138: 108829, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37201731

RESUMO

Mannose-binding lectin-associated serine protease (MASP) is a type of central serine protease in the complement lectin pathway. In the present study, a MASP-like was identified from the Pacific oyster Crassostrea gigas, defined as CgMASPL-2. The cDNA sequence of CgMASPL-2 was of 3399 bp with an open reading frame of 2757 bp and encoded a polypeptide of 918 amino acids containing three CUB domains, an EGF domain, two IG domains, and a Tryp_SPC domain. In the phylogenetic tree, CgMASPL-2 was firstly clustered with Mytilus californianus McMASP-2-like, and then assigned into the invertebrate branch. CgMASPL-2 shared similar domains with M. californianus McMASP-2-like and Littorina littorea LlMReM1. CgMASPL-2 mRNA was expressed in all the tested tissues with the highest expression in haemolymph. CgMASPL-2 protein was mainly distributed in the cytoplasm of haemocytes. The mRNA expression of CgMASPL-2 increased significantly in haemocytes after Vibrio splendidus stimulation. The recombinant 3 × CUB-EGF domains of CgMASPL-2 displayed binding activities to diverse polysaccharides (lipopolysaccharide, peptidoglycan and mannose) and microbes (Staphylococcus aureus, Micrococcus luteus, Pichia pastoris, Vibrio anguillarum, V. splendidus and Escherichia coli). In anti-CgMASPL-2 treated oysters, the mRNA expressions of CgIL17-1 and CgIL17-2 in haemocytes decreased significantly after V. splendidus stimulation. The results indicated that CgMASPL-2 could directly sense microbes and regulate the mRNA expressions of inflammatory factors.


Assuntos
Crassostrea , Serina Proteases Associadas a Proteína de Ligação a Manose , Animais , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Crassostrea/genética , Filogenia , Fator de Crescimento Epidérmico/genética , RNA Mensageiro/genética , Hemócitos/fisiologia , Imunidade Inata/genética
18.
Phys Chem Chem Phys ; 25(4): 2935-2945, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36606387

RESUMO

Aqueous dispersed conjugated polymer dots (Pdots) have shown promising application in photocatalytic hydrogen evolution. To efficiently extract photogenerated charges from type-II heterojunction Pdots for hydrogen evolution, the mechanistic study of photophysical processes is essential for Pdot optimization. Within this work, we use a PFODTBT donor (D) polymer and an ITIC small molecule acceptor (A) as a donor/acceptor (D/A) model system to study their excited states and charge/energy transfer dynamics via steady-state and time-resolved photoluminescence spectroscopy, respectively. Charge-carrier generation and the recombination dynamics of binary Pdots with different D/A ratios were followed using femtosecond transient absorption spectroscopy. A significant spectral relaxation of photoluminescence was observed for individual D Pdots, implying an energetic disorder by nature. However, this was not seen for charge carriers in binary Pdots, probably due to the ultrafast charge generation process at an early time (<200 fs). The results showed slower charge recombination upon increasing the ratio of ITIC in binary Pdots, which further resulted in an enhanced photocatalytic hydrogen evolution, twice that as compared to individual D Pdots. Although binary Pdots prepared via the nanoprecipitation method exhibit a large interfacial area that allows high charge generation efficiencies, it also provides a high possibility for charge recombination and limits the further utilization of free charges. Therefore, for the future design of type-II heterojunction Pdots, suppressing the charge carrier recombination via increasing the crystallinity and proper phase segregation is necessary for enhanced photocatalytic hydrogen evolution.

19.
J Nanobiotechnology ; 21(1): 164, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37221595

RESUMO

Extracellular vesicles (EVs), a cluster of cell-secreted lipid bilayer nanoscale particles, universally exist in body fluids, as well as cell and tissue culture supernatants. Over the past years, increasing attention have been paid to the important role of EVs as effective intercellular communicators in fibrotic diseases. Notably, EV cargos, including proteins, lipids, nucleic acids, and metabolites, are reported to be disease-specific and can even contribute to fibrosis pathology. Thus, EVs are considered as effective biomarkers for disease diagnosis and prognosis. Emerging evidence shows that EVs derived from stem/progenitor cells have great prospects for cell-free therapy in various preclinical models of fibrotic diseases and engineered EVs can improve the targeting and effectiveness of their treatment. In this review, we will focus on the biological functions and mechanisms of EVs in the fibrotic diseases, as well as their potential as novel biomarkers and therapeutic strategies.


Assuntos
Líquidos Corporais , Vesículas Extracelulares , Biomarcadores , Transporte Biológico , Terapia Baseada em Transplante de Células e Tecidos
20.
Acta Radiol ; 64(3): 1194-1204, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35971221

RESUMO

BACKGROUND: The prognosis of lung cancer varies widely, even in cases wherein the tumor stage, genetic mutation, and treatment regimens are the same. Thus, an effective means for risk stratification of patients with lung cancer is needed. PURPOSE: To develop and validate a combined model for predicting progression-free survival and risk stratification in patients with advanced anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC) treated with ensartinib. MATERIAL AND METHODS: We analyzed 203 tumor lesions in 114 patients and evaluated average radiomic feature measures from all lesions at baseline and changes in these features after early treatment (Δradiomic features). Combined models were developed by integrating clinical with radiomic features. The prediction performance and clinical value of the proposed models were evaluated using receiver operating characteristic analysis, calibration curve, decision curve analysis (DCA), and Kaplan-Meier survival analysis. RESULTS: Both the baseline and delta combined models achieved predictive efficacy with a high area under the curve. The calibration curve and DCA indicated the high accuracy and clinical usefulness of the combined models for tumor progression prediction. In the Kaplan-Meier analysis, the delta and baseline combined models, Δradiomic signature, and two selected clinical features could distinguish patients with a higher progression risk within 42 weeks. The delta combined model had the best performance. CONCLUSION: The combination of clinical and radiomic features provided a prognostic value for survival and progression in patients with NSCLC receiving ensartinib. Radiomic-signature changes after early treatment could be more valuable than those at baseline alone.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/uso terapêutico , Intervalo Livre de Progressão , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA