Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nature ; 629(8012): 586-591, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720080

RESUMO

Light-emitting diodes (LEDs) based on perovskite quantum dots (QDs) have produced external quantum efficiencies (EQEs) of more than 25% with narrowband emission1,2, but these LEDs have limited operating lifetimes. We posit that poor long-range ordering in perovskite QD films-variations in dot size, surface ligand density and dot-to-dot stacking-inhibits carrier injection, resulting in inferior operating stability because of the large bias required to produce emission in these LEDs. Here we report a chemical treatment to improve the long-range order of perovskite QD films: the diffraction intensity from the repeating QD units increases three-fold compared with that of controls. We achieve this using a synergistic dual-ligand approach: an iodide-rich agent (aniline hydroiodide) for anion exchange and a chemically reactive agent (bromotrimethylsilane) that produces a strong acid that in situ dissolves smaller QDs to regulate size and more effectively removes less conductive ligands to enable compact, uniform and defect-free films. These films exhibit high conductivity (4 × 10-4 S m-1), which is 2.5-fold higher than that of the control, and represents the highest conductivity recorded so far among perovskite QDs. The high conductivity ensures efficient charge transportation, enabling red perovskite QD-LEDs that generate a luminance of 1,000 cd m-2 at a record-low voltage of 2.8 V. The EQE at this luminance is more than 20%. Furthermore, the stability of the operating device is 100 times better than previous red perovskite LEDs at EQEs of more than 20%.

2.
Small ; 20(35): e2401346, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38700047

RESUMO

Transparent flexible energy storage devices are limited by the trade-off among flexibility, transparency, and charge storage capability of their electrode materials. Conductive polymers are intrinsically flexible, but limited by small capacitance. Pseudocapacitive MXene provides high capacitance, yet their opaque and brittle nature hinders their flexibility and transparency. Herein, the development of synergistically interacting conductive polymer Ti3C2Tx MXene/PEDOT:PSS composites is reported for transparent flexible all-solid-state supercapacitors, with an outstanding areal capacitance of 3.1 mF cm-2, a high optical transparency of 61.6%, and excellent flexibility and durability. The high capacitance and high transparency of the devices stem from the uniform and thorough blending of PEDOT:PSS and Ti3C2Tx, which is associated with the formation of O─H…O H-bonds in the composites. The conductive MXene/polymer composite electrodes demonstrate a rational means to achieve high-capacity, transparent and flexible supercapacitors in an easy and scalable manner.

3.
BMC Med Inform Decis Mak ; 23(1): 126, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464410

RESUMO

BACKGROUND: The ovarian reserve is a reservoir for reproductive potential. In clinical practice, early detection and treatment of premature ovarian decline characterized by abnormal ovarian reserve tests is regarded as a critical measure to prevent infertility. However, the relevant data are typically stored in an unstructured format in a hospital's electronic medical record (EMR) system, and their retrieval requires tedious manual abstraction by domain experts. Computational tools are therefore needed to reduce the workload. METHODS: We presented RegEMR, an artificial intelligence tool composed of a rule-based natural language processing (NLP) extractor and a knowledge-based disease scoring model, to automatize the screening procedure of premature ovarian decline using Chinese reproductive EMRs. We used regular expressions (REs) as a text mining method and explored whether REs automatically synthesized by the genetic programming-based online platform RegexGenerator + + could be as effective as manually formulated REs. We also investigated how the representativeness of the learning corpus affected the performance of machine-generated REs. Additionally, we translated the clinical diagnostic criteria into a programmable disease diagnostic model for disease scoring and risk stratification. Four hundred outpatient medical records were collected from a Chinese fertility center. Manual review served as the gold standard, and fivefold cross-validation was used for evaluation. RESULTS: The overall F-score of manually built REs was 0.9444 (95% CI 0.9373 to 0.9515), with no significant difference (paired t test p > 0.05) compared with machine-generated REs that could be affected by training set sizes and annotation portions. The extractor performed effectively in automatically tracing the dynamic changes in hormone levels (F-score 0.9518-0.9884) and ultrasonographic measures (F-score 0.9472-0.9822). Applying the extracted information to the proposed diagnostic model, the program obtained an accuracy of 0.98 and a sensitivity of 0.93 in risk screening. For each specific disease, the automatic diagnosis in 76% of patients was consistent with that of the clinical diagnosis, and the kappa coefficient was 0.63. CONCLUSION: A Chinese NLP system named RegEMR was developed to automatically identify high risk of early ovarian aging and diagnose related diseases from Chinese reproductive EMRs. We hope that this system can aid EMR-based data collection and clinical decision support in fertility centers.


Assuntos
Inteligência Artificial , Processamento de Linguagem Natural , Insuficiência Ovariana Primária , Humanos , Registros Eletrônicos de Saúde , Idioma , Insuficiência Ovariana Primária/diagnóstico , Feminino
4.
Angew Chem Int Ed Engl ; 62(17): e202300396, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36849867

RESUMO

PbS quantum dots (QDs) are promising building blocks for solution-processed short-wavelength infrared (SWIR) devices. The recently developed direct synthesis of semi-conductive PbS QD inks has substantially simplified the preparation processing and reduced the material cost, while facing the challenge to synthesize large-size QDs with absorption covering the SWIR region. Herein, we for the first time realize a low-cost, scalable synthesis of SWIR PbS QD inks after an extensive investigation of the reaction kinetics. Finally, based on these PbS SWIR QD inks, the solar cell demonstrates a record-high power conversion efficiency (PCE) of 1.44 % through an 1100 nm cutoff silicon filter and the photodetector device shows a low dark current density of 2×10-6  A cm-2 at -0.8 V reverse bias with a high external quantum efficiency (EQE) of 70 % at ≈1300 nm. Our results realize the direct synthesis of low-cost and scalable SWIR QD inks and may accelerate the industrialization of consumer SWIR technologies.

5.
Nanotechnology ; 33(6)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34736234

RESUMO

Artificial synapses that integrate functions of sensing, memory and computing are highly desired for developing brain-inspired neuromorphic hardware. In this work, an optoelectronic synapse based on the ZnO nanowire (NW) transistor is achieved, which can be used to emulate both the short-term and long-term synaptic plasticity. Synaptic potentiation is present when the device is stimulated by light pulses, arising from the light-induced O2desorption and the persistent photoconductivity behavior of the ZnO NW. On the other hand, synaptic depression occurs when the device is stimulated by electrical pulses in dark, which is realized by introducing a charge trapping layer in the gate dielectric to trap carriers. Simulation of a neural network utilizing the ZnO NW synapses is carried out, demonstrating a high recognition accuracy over 90% after only 20 training epochs for recognizing the Modified National Institute of Standards and Technology digits. The present nanoscale optoelectronic synapse has great potential in the development of neuromorphic visual systems.

6.
Sci Technol Adv Mater ; 21(1): 768-786, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33488297

RESUMO

With the rapid development of conductive polymers, they have shown great potential in room-temperature chemical gas detection, as their electrical conductivity can be changed upon exposure to oxidative or reductive gas molecules at room temperature. However, due to their relatively low conductivity and high affinity toward volatile organic compounds and water molecules, they always exhibit low sensitivity, poor stability, and gas selectivity, which hinder their practical gas sensor applications. In addition, inorganic sensitive materials show totally different advantages in gas sensors, such as high sensitivity, fast response to low concentration analytes, high surface area, and versatile surface chemistry, which could complement the conducting polymers in terms of the sensing characteristics. It seems to be a win-win choice to combine inorganic sensitive materials with polymers for gas detection due to their synergistic effects, which has attracted extensive interests in gas-sensing applications. In this review, we summarize the recent development in polymer-inorganic nanocomposite based gas sensors. The roles of inorganic nanomaterials in improving the gas-sensing performances of conducting polymers are introduced and the progress of conducting polymer-inorganic nanocomposites including metal oxides, metal, carbon (carbon nanotube, graphene), and ternary composites are presented. Finally, a conclusion and a perspective in the field of gas sensors incorporating conducting polymer-inorganic nanocomposite are summarized.

7.
Nano Lett ; 15(12): 8397-401, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26605760

RESUMO

We report, for the first time, that an encapsulated silver nanoparticle can be directly converted to a silver nanoshell through a nanoscale localized oxidation and reduction process in the gas phase. Silver can be etched when exposed to a mixture of NH3/O2 gases through a mechanism analogous to the formation of aqueous Tollens' reagent, in which a soluble silver-ammonia complex was formed. Starting with Ag@resorcinol-formaldehyde (RF) resin core-shell nanoparticles, we demonstrate that RF-core@Ag-shell nanoparticles can be prepared successfully when the etching rate and RF thickness were well controlled. Due to the strong surface plasmon resonance (SPR) coupling effect among neighboring silver nanoparticles, the RF@Ag nanoparticle showed great SPR and SERS performance. This process provides a general route to the conversion of Ag-core to Ag-shell nanostructures and might be extended to other systems.

8.
Nanotechnology ; 25(7): 075201, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24451917

RESUMO

Intrinsic Ge nanowires (NWs) with a Ge core covered by a thick Ge oxide shell are utilized to achieve nanoscale field-effect transistor nonvolatile memories, which show a large memory window and a high ON/OFF ratio with good retention. The retainable surface charge trapping is considered to be responsible for the memory effect, and the Ge oxide shell plays a key role as the insulating tunneling dielectric which must be thick enough to prevent stored surface charges from leaking out. Annealing the device in air is demonstrated to be a simple and effective way to attain thick Ge oxide on the Ge NW surface, and the Ge-NW-based memory corresponding to thick Ge oxide exhibits a much better retention capability compared with the case of thin Ge oxide.

9.
Phys Chem Chem Phys ; 16(48): 26645-52, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25372410

RESUMO

We have investigated model systems of silver clusters with different sizes (3 and 15 atoms) deposited on alumina and titania supports using ambient pressure X-ray photoelectron spectroscopy. The electronic structures of silver clusters and support materials are studied upon exposure to various atmospheres (ultrahigh vacuum, O2 and CO) at different temperatures. Compared to bulk silver, the binding energies of silver clusters are about 0.55 eV higher on TiO2 and 0.95 eV higher on Al2O3 due to the final state effect and the interaction with supports. No clear size effect of the silver XPS peak is observed on different silver clusters among these samples. Silver clusters on titania show better stability against sintering. Al 2p and Ti 2p core level peak positions of the alumina and titania support surfaces change upon exposure to oxygen while the Ag 3d core level position remains unchanged. We discuss the origin of these core level shifts and their implications for catalytic properties of Ag clusters.

10.
Nano Lett ; 13(12): 6176-82, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24175587

RESUMO

Work function is a fundamental property of a material's surface. It is playing an ever more important role in engineering new energy materials and efficient energy devices, especially in the field of photovoltaic devices, catalysis, semiconductor heterojunctions, nanotechnology, and electrochemistry. Using ambient pressure X-ray photoelectron spectroscopy (APXPS), we have measured the binding energies of core level photoelectrons of Ar gas in the vicinity of several reference materials with known work functions (Au(111), Pt(111), graphite) and PbS nanoparticles. We demonstrate an unambiguously negative correlation between the work functions of reference samples and the binding energies of Ar 2p core level photoelectrons detected from the Ar gas near the sample surface region. Using this experimentally determined linear relationship between the surface work function and Ar gas core level photoelectron binding energy, we can measure the surface work function of different materials under different gas environments. To demonstrate the potential applications of this ambient pressure XPS technique in nanotechnology and solar energy research, we investigate the work functions of PbS nanoparticles with various capping ligands: methoxide, mercaptopropionic acid, and ethanedithiol. Significant Fermi level position changes are observed for PbS nanoparticles when the nanoparticle size and capping ligands are varied. The corresponding changes in the valence band maximum illustrate that an efficient quantum dot solar cell design has to take into account the electrochemical effect of the capping ligand as well.


Assuntos
Gases/química , Chumbo/química , Nanopartículas/química , Energia Solar , Sulfetos/química , Ouro/química , Grafite/química , Nanoestruturas/química , Espectroscopia Fotoeletrônica , Platina/química , Pontos Quânticos , Propriedades de Superfície
11.
Nanomaterials (Basel) ; 14(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38786841

RESUMO

Two-dimensional transition metal dichalcogenides (2D-TMDs) possess appropriate bandgaps and interact via van der Waals (vdW) forces between layers, effectively overcoming lattice compatibility challenges inherent in traditional heterojunctions. This property facilitates the creation of heterojunctions with customizable bandgap alignments. However, the prevailing method for creating heterojunctions with 2D-TMDs relies on the low-efficiency technique of mechanical exfoliation. Sb2Te3, recognized as a notable p-type semiconductor, emerges as a versatile component for constructing diverse vertical p-n heterostructures with 2D-TMDs. This study presents the successful large-scale deposition of 2D Sb2Te3 onto inert mica substrates, providing valuable insights into the integration of Sb2Te3 with 2D-TMDs to form heterostructures. Building upon this initial advancement, a precise epitaxial growth method for Sb2Te3 on pre-existing WS2 surfaces on SiO2/Si substrates is achieved through a two-step chemical vapor deposition process, resulting in the formation of Sb2Te3/WS2 heterojunctions. Finally, the development of 2D Sb2Te3/WS2 optoelectronic devices is accomplished, showing rapid response times, with a rise/decay time of 305 µs/503 µs, respectively.

12.
ACS Appl Mater Interfaces ; 16(36): 47996-48004, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39221579

RESUMO

In the vanguard of neuromorphic engineering, we develop a paradigm of biocompatible polymer memcapacitors using a seamless solution process, unleashing comprehensive synaptic capabilities depending on both the stimulation form and history. Like the human brain to learn and adapt, the memcapacitors exhibit analogue-type and evolvable capacitance shifts that mirror the complex flexibility of synaptic strengthening and weakening. With increasing frequency and intensity of the stimulation, the memcapacitors demonstrate an evolution from short-term plasticity (STP) to long-term plasticity (LTP), and even to metaplasticity (MP) at a higher level. A physical picture, featuring the stimulus-controlled spatiotemporal ion redistribution in the polymer, elaborates the origin of the memcapacitive prowess and resultant versatile synaptic plasticity. The distinctive MP behavior endows the memcapacitors with a dynamic learning rate (LR), which is utilized in an artificial neural network. The superiority of implementing a dynamic LR compared with conventional practices of using constant LR shines light on the potential of the memcapacitors to exploit organic neuromorphic computing hardware.

13.
Nanotechnology ; 24(48): 484010, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24196589

RESUMO

In this work, we have reported for the first time a facile route for developing solution-processed Al2O3 film at a greatly reduced processing temperature and studied its applications in producing inverted polymer solar cells (PSCs). These PSCs using Al2O3 thin film as the electron-extraction layer demonstrated improved diode characteristics and achieved a 20% higher power conversion efficiency than devices using the conventional ZnO buffer layer. Furthermore, the low temperature processing of the Al2O3 film makes it compatible with fabrication of flexible organic electronic devices based on plastic substrates.

14.
J Chem Phys ; 138(21): 214304, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23758368

RESUMO

In this paper, we investigate uniformly dispersed size-selected Pd(n) clusters (n = 4, 10, and 17) on alumina supports. We study the changes of clustered Pd atoms under oxidizing and reducing (O2 and CO, respectively) conditions in situ using ambient pressure XPS. The behavior of Pd in the clusters is quite different from that of Pd foil under the same conditions. For all Pd clusters, we observe only one Pd peak. The binding energy of this Pd 3d peak is ~1-1.4 eV higher than that of metallic Pd species and changes slightly in CO and O2 environments. On the Pd foil however many different Pd species co-exist on the surface and change their oxidation states under different conditions. We find that the Pd atoms in direct contact with Al2O3 differ in oxidation state from the surface Pd atoms in a foil under reaction conditions. Compared to previous literature, we find that Pd 3d peak positions are greatly influenced by the different types of Al2O3 supports due to the combination of both initial and final state effects.

15.
ACS Appl Mater Interfaces ; 15(41): 48452-48461, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37802499

RESUMO

Ferroelectric materials with a modulable polarization extent hold promise for exploring voltage-driven neuromorphic hardware, in which direct current flow can be minimized. Utilizing a single active layer of an insulating ferroelectric polymer, we developed a voltage-mode ferroelectric synapse that can continuously and reversibly update its states. The device states are straightforwardly manifested in the form of variable output voltage, enabling large-scale direct cascading of multiple ferroelectric synapses to build a deep physical neural network. Such a neural network based on potential superposition rather than current flow is analogous to the biological counterpart driven by action potentials in the brain. A high accuracy of over 97% for the simulation of handwritten digit recognition is achieved using the voltage-mode neural network. The controlled ferroelectric polarization, revealed by piezoresponse force microscopy, turns out to be responsible for the synaptic weight updates in the ferroelectric synapses. The present work demonstrates an alternative strategy for the design and construction of emerging artificial neural networks.

16.
Nanoscale ; 15(23): 9985-9992, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37232241

RESUMO

Inkjet printing electronics is a growing market that reached 7.8 billion USD in 2020 and that is expected to grow to ∼23 billion USD by 2026, driven by applications like displays, photovoltaics, lighting, and radiofrequency identification. Incorporating two-dimensional (2D) materials into this technology could further enhance the properties of the existing devices and/or circuits, as well as enable the development of new concept applications. Along these lines, here we report an easy and cheap process to synthesize inks made of multilayer hexagonal boron nitride (h-BN)-an insulating 2D layered material-by the liquid-phase exfoliation method and use them to fabricate memristors. The devices exhibit multiple stochastic phenomena that are very attractive for use as entropy sources in electronic circuits for data encryption (physical unclonable functions [PUFs], true random number generators [TRNGs]), such as: (i) a very disperse initial resistance and dielectric breakdown voltage, (ii) volatile unipolar and non-volatile bipolar resistive switching (RS) with a high cycle-to-cycle variability of the state resistances, and (iii) random telegraph noise (RTN) current fluctuations. The clue for the observation of these stochastic phenomena resides on the unpredictable nature of the device structure derived from the inkjet printing process (i.e., thickness fluctuations, random flake orientations), which allows fabricating electronic devices with different electronic properties. The easy-to-make and cheap memristors here developed are ideal to encrypt the information produced by multiple types of objects and/or products, and the versatility of the inkjet printing method, which allows effortless deposition on any substrate, makes our devices especially attractive for flexible and wearable devices within the internet-of-things.


Assuntos
Eletrônica , Dispositivos Eletrônicos Vestíveis , Entropia , Tinta
17.
ACS Appl Mater Interfaces ; 15(15): 19300-19306, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37014251

RESUMO

A comprehensive comparison of organic single crystals based on a single material but with different dimensions provides a unique approach to probe their carrier injection mechanism. In this report, both two-dimensional (2D) and microrod single crystals with the same crystalline structure of an identical thiopyran derivative, 7,14-dioctylnaphtho[2,1-f:6,5-f']bis(cyclopentane[b]thiopyran) (C8-SS), are grown on a glycerol surface with the space-confined method. Organic field-effect transistors (OFETs) based on the 2D C8-SS single crystal exhibit superior performance compared with those based on the microrod single crystal, particularly in their contact resistance (RC). It is demonstrated that the resistance of the crystal bulk in the contact region plays a key role in RC of the OFETs. Thus, among the 30 devices tested, the microrod OFETs typically appear contact-limited, whereas the 2D OFETs possess significantly reduced RC arising from the tiny thickness of the 2D single crystal. The 2D OFETs show high operational stability and high channel mobility up to 5.7 cm2/V·s. The elucidation of the contact behavior highlights the merits and great potential of 2D molecular single crystals in organic electronics.

18.
Phys Chem Chem Phys ; 14(41): 14255-61, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22936367

RESUMO

Recently, bipolar host materials have attracted considerable attention because they can achieve balanced charge injection/transport in phosphorescent organic light emitting diodes (PhOLEDs) and consequently obtain excellent device performance. In this work, two bipolar host materials, namely, 3-(4,6-diphenyl-1,3,5-triazin-2-yl)-9-phenyl-9H-carbazole (DPTPCz) and 3-(4,6-diphenoxy-1,3,5-triazin-2-yl)-9-phenyl-9H-carbazole (DPOTPCz), have been designed, synthesized and characterized. With high triplet energy levels of 2.78 and 2.86 eV for DPTPCz and DPOTPCz, respectively, two compounds are considered promising bipolar host materials for PhOLEDs. Blue and green PhOLEDs based on these two new compounds show excellent performances. The phosphorescent devices based on DPTPCz exhibit maximum external quantum efficiencies of 14.4% (for blue device) and 21.2% (for green device), and maintain high efficiencies of 11.9% and 20.0% even at a high luminance of 10,000 cd m(-2).

19.
Nano Lett ; 11(11): 4870-3, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22007737

RESUMO

Electrets are dielectric materials possessing a quasi-permanent electric charge or dipole polarization. Frequently, the electrets are adversely affected by environmental temperature and humidity, leading to charge instability, which severely restricts applications. Here we show that silicon nanowires (SiNWs) via modified oxide-assisted growth can surprisingly serve as electrets with permanent electrostatic charges and surface potential up to 7.7 mV. Significantly, the extraordinary electret behavior of SiNWs is extremely robust, remaining stable against immersion in water for over 2 months. The SiNWs were utilized to fabricate a nanogenerator, which yielded an output electrical power of 2.19 × 10(-11) W with a conversion efficiency of 2.2%. The nanogenerator consists of only one movable part, giving highly sustainable and stable output signals, and thus holds promise for various self-powered applications. The permanent electrostatic charges on SiNWs are attributed to the formation of α-quartz in SiNWs.


Assuntos
Fontes de Energia Elétrica , Nanoestruturas/química , Nanotecnologia/instrumentação , Silício/química , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Eletricidade Estática
20.
ACS Appl Mater Interfaces ; 13(30): 35878-35888, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34297521

RESUMO

Electrochemical capacitors using neutral aqueous electrolytes are safer and cheaper and allow diverse current collectors compared with the counterparts using organic or acidic/alkaline electrolytes. Two-dimensional (2D) MXenes have been demonstrated as the high-capacitive materials with high rate performance. However, MXene electrodes often exhibit a limited capacitance in neutral electrolytes, where the reversible electrochemical reactions rely greatly on the structural and surface properties of MXenes depending on their synthesis methods. Herein, a simple and highly efficient strategy, which combines HF etching of Ti3AlC2 powder and subsequent amine-assisted delamination at a low temperature, is developed to synthesize 2D Ti3C2Tx MXenes. The comprehensive results demonstrate that the enlarged interlayer spacing and the presence of more -O-containing functional groups synergistically contribute to the improvement of capacitive performance in neutral electrolytes. The 2D Ti3C2Tx MXenes show excellent electrochemical performance in various neutral electrolytes, and a high specific gravimetric capacitance of 149.8 F/g is achieved in 1.0 M Li2SO4. Furthermore, the flexible solid-state supercapacitors (SCs) with a neutral PVA/LiCl gel electrolyte possess a superior areal capacitance (163.1 mF/cm2) and high energy density (17.6 µWh/cm2 at 0.07 mW/cm2), together with high user safety. This work provides a promising guideline of synthesis strategy for high-capacitive MXenes used in neutral electrolytes, which may promote the development of safe and flexible power sources with a high energy density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA