Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Cancer Res ; 12(12): 3823-30, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16778110

RESUMO

PURPOSE: There is a growing awareness that radiation-induced normal tissue injury in late-responding organs, such as the brain, kidney, and lung, involves complex and dynamic responses between multiple cell types that not only lead to targeted cell death but also acute and chronic alterations in cell function. The specific genes involved in the acute and chronic responses of these late-responding normal tissues remain ill defined; understanding these changes is critical to understanding the mechanism of organ damage. As such, the aim of the present study was to identify candidate genes involved in the development of radiation injury in the murine kidney and brain using microarray analysis. EXPERIMENTAL DESIGN: A multimodality experimental approach combined with a comprehensive expression analysis was done to determine changes in normal murine tissue gene expression at 8 and 24 hours after irradiation. RESULTS: A comparison of the gene expression patterns in normal mouse kidney and brain was strikingly different. This observation was surprising because it has been long assumed that the changes in irradiation-induced gene expression in normal tissues are preprogrammed genetic changes that are not affected by tissue-specific origin. CONCLUSIONS: This study shows the potential of microarray analysis to identify gene expression changes in irradiated normal tissue cells and suggests how normal cells respond to the damaging effects of ionizing radiation is complex and markedly different in cells of differing origin.


Assuntos
Encéfalo/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Rim/efeitos da radiação , Animais , Encéfalo/fisiologia , Ciclo Celular/efeitos da radiação , Integrinas/metabolismo , Integrinas/efeitos da radiação , Rim/fisiologia , Pulmão/fisiologia , Pulmão/efeitos da radiação , Metabolismo/efeitos da radiação , Camundongos , Dobramento de Proteína , Transporte Proteico/efeitos da radiação , Radiação Ionizante
2.
Drug Resist Updat ; 8(5): 322-30, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16230045

RESUMO

Tumor cells undergoing proliferation, de-differentiation and progression depend on a complex set of respiratory pathways to generate the necessary energy. The metabolites from these pathways produce significant oxidative stress and must be buffered to prevent permanent cell damage and cell death. It is now clear that, in order to cope with and defend against the detrimental effects of oxidative stress, a series of redox-sensitive, pro-survival signaling pathways and factors regulate a complex intracellular redox buffering network. This review develops the hypothesis that tumor cells use these redox-sensitive, pro-survival signaling pathways and factors - up-regulated due to increased tumor cell respiration - to evade the damaging and cytotoxic effects of specific anticancer agents. It further suggests that redox-sensitive, signaling factors may be potential novel targets for drug discovery.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Neoplasias/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/enzimologia , Neoplasias/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA