RESUMO
Glass nanopipets have been demonstrated to be a powerful tool for the sensing and discrimination of biomolecules, such as DNA strands with different lengths or configurations. Despite progress made in nanopipet-based sensors, it remains challenging to develop effective strategies that separate and sense in one operation. In this study, we demonstrate an agarose gel-filled nanopipet that enables hyphenated length-dependent separation and electrochemical sensing of short DNA fragments based on the electrokinetic flow of DNA molecules in the nanoconfined channel at the tip of the nanopipet. This nanoconfined electrokinetic chromatography (NEC) method is used to distinguish the mixture of DNA strands without labels, and the ionic current signals measured in real time show that the mixed DNA strands pass through the tip hole in order according to the molecular weight. With NEC, gradient separation and electrochemical measurement of biomolecules can be achieved simultaneously at the single-molecule level, which is further applied for programmable gene delivery into single living cells. Overall, NEC provides a multipurpose platform integrating separation, sensing, single-cell delivery, and manipulation, which may bring new insights into advanced bioapplication.
Assuntos
DNA , Nanotecnologia , DNA/química , Nanotecnologia/métodos , CromatografiaRESUMO
The localized surface-plasmon resonance of the AuNP in aqueous media is extremely sensitive to environmental changes. By measuring the signal of plasmon scattering light, the dark-field microscopic (DFM) imaging technique has been used to monitor the aggregation of AuNPs, which has attracted great attention because of its simplicity, low cost, high sensitivity, and universal applicability. However, it is still challenging to interpret DFM images of AuNP aggregation due to the heterogeneous characteristics of the isolated and discontinuous color distribution. Herein, we introduce machine vision algorithms for the training of DFM images of AuNPs in different saline aqueous media. A visual deep learning framework based on AlexNet is constructed for studying the aggregation patterns of AuNPs in aqueous suspensions, which allows for rapid and accurate identification of the aggregation extent of AuNPs, with a prediction accuracy higher than 0.96. With the aid of machine learning analysis, we further demonstrate the prediction ability of various aggregation phenomena induced by both cation species and the concentration of the external saline solution. Our results suggest the great potential of machine vision frameworks in the accurate recognition of subtle pattern changes in DFM images, which can help researchers build predictive analytics based on DFM imaging data.
RESUMO
This study explores the role of the transcription factor FOXM1 in the initiation and progression of oesophageal squamous cell carcinoma (ESCC). Our findings reveal that FOXM1 is highly expressed in ESCC and correlates with the prognosis of the disease. The relationship between FOXM1 and asparagine synthetase (ASNS) is investigated, and the study demonstrates that FOXM1 activates ASNS, impacting the tumour stemness of ESCC. In this study, we reveal the association between FOXM1 and ESCC development, as well as FOXM1's promotion of migration and proliferation in ESCC cells. The study also highlights FOXM1's regulation of ASNS transcription and the functional role of ASNS in ESCC metastasis and growth. Furthermore, the study explores the impact of FOXM1 and ASNS on ESCC stemness and their potential implications for chemotherapy resistance.
Assuntos
Aspartato-Amônia Ligase , Movimento Celular , Proliferação de Células , Progressão da Doença , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteína Forkhead Box M1 , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Aspartato-Amônia Ligase/genética , Aspartato-Amônia Ligase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Movimento Celular/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Prognóstico , Animais , Camundongos , Masculino , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-AmidaRESUMO
Acoustic kinetic therapy systems that target specific organelles can improve the precision of a sonosensitizer, which is a perfect combination of targeted therapy and sonodynamic therapy (SDT) and plays an important role in current acoustic kinetic therapy. In this study, we loaded PpIX, a sonosensitizer, on targeted-functional carbon dots (CDs) via an amide reaction and then generated the mitochondria-targeted system (Mit-CDs-PpIX) and nucleus-targeted system (Nuc-CDs-PpIX), respectively, to deliver the sonosensitizer. Both systems exhibited minimal cytotoxicity in the absence of ultrasound stimulation. The efficacy of the targeted SDT systems was investigated using methylthiazol tetrazolium (MTT) assays, live/dead staining, flow cytometry, etc. Compared with the free PpIX and mitochondria-targeted system, the nucleus-targeted system is more potent in killing effect under ultrasound stimulation and induces apoptosis with higher intensity. To achieve the equal killing effect, the effective concentration of Nuc-CDs-PpIX is just one third of that of Mit-CDs-PpIX.
Assuntos
Terapia por Ultrassom , Apoptose , Mitocôndrias , Espécies Reativas de Oxigênio , Linhagem Celular TumoralRESUMO
Dihydroartemisinin (DHA) inhibits restenosis following balloon angioplasty. However, data on the mechanisms of DHA activity in restenosis remains scant. Here, we investigated the role of circRNAs in mediating the inhibitory activity of DHA in neointimal formation. We used total RNA sequencing data to profile the expression of mRNA, circRNA and small RNA in sham, vascular balloon injury (VBI) and DHA-treated groups. CCK8 and EdU assays were employed to analyze cell proliferation, while qRT-PCR and Western blot were used to analyze the RNA or protein expression. In addition, we used RNA immunoprecipitation and luciferase reporter assay to assess the binding of circHSPA4 with miR-19a-5p. RNA sequencing demonstrated that circHSPA4 was upregulated in VBI. Treatment with DHA effectively suppressed the upregulation of the circHSPA4. In addition, analysis of platelet-derived growth family factor bb (PDGFbb)-induced HA-VSMCs showed upregulation of circHSPA4, which was associated with cell proliferation and differentiation. CircHSPA4 was shown to induce dedifferentiation and proliferation of smooth muscle cells. PDGFBB-induced overexpression of CircHSPA4 in HA-VSMCs led to suppression of miR-19a-5p, a phenomenon that was reversed by DHA, in concentration-dependent fashion. In addition, miR-19a-5p reduced the dedifferentiation and proliferation of the smooth muscle cells. Our data demonstrated that CircHSPA4 regulates proliferation and differentiation of smooth muscle cells. DHA and miR-19a-5p modulates CircHSPA4 and can be used as coated drugs on balloon catheter to improve the success rate of vascular remodeling.
Assuntos
Angioplastia com Balão , Artemisininas , MicroRNAs , Lesões do Sistema Vascular , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Células Cultivadas , Becaplermina/metabolismo , Becaplermina/farmacologia , Proliferação de Células/genética , Miócitos de Músculo Liso/metabolismo , Lesões do Sistema Vascular/metabolismo , Movimento Celular/genéticaRESUMO
Serum uric acid (UA) and homocysteine (Hcy) are potential biomarkers of systemic lupus erythematosus (SLE). In this study, the expressions of UA and Hcy in SLE patients and the predictive value of these two parameters for lupus nephritis (LN) were studied. A total of 476 SLE patients were recruited to this case-control study, of which 176 SLE patients diagnosed with LN and 300 without LN. Serum UA and Hcy levels were analyzed. Multivariate logistic regression analysis was used to evaluate the relationship between serum UA and Hcy and LN. The receiver operating characteristic (ROC) curves were used to predict the role of combination of serum UA and Hcy in LN. We found that serum UA and Hcy levels in SLE patients with LN were significantly higher than those in controls (p<0.05). Multivariate logistic regressions showed that serum UA (OR+=+1.003, 95+% CI: 1.001-1.006, p+=+0.003), apolipoprotein B (Apo B) (OR+=+21.361, 95+% CI: 2.312-195.373, p+=+0.007) and Hcy (OR+=+1.042, 95+% CI: 1.011-1.080, p+=+0.014) were independent markers of LN. Combined serum UA and Hcy revealed a better result (AUC+=+0.718, 95+% CI: 0.670-0.676, p<0.001) in prediction of LN compared to that of the serum UA (AUC+=+0.710) and Hcy (AUC+=+0.657) independently. In conclusion, serum UA and Hcy could be predictive biomarkers of LN, and joint detection of serum UA and Hcy might be useful in the clinical setting.
Assuntos
Biomarcadores , Homocisteína , Nefrite Lúpica , Curva ROC , Ácido Úrico , Humanos , Ácido Úrico/sangue , Homocisteína/sangue , Nefrite Lúpica/sangue , Nefrite Lúpica/diagnóstico , Feminino , Biomarcadores/sangue , Masculino , Adulto , Estudos de Casos e Controles , Pessoa de Meia-Idade , PrognósticoRESUMO
Plant-derived exosome-like nanoparticles (ELNs) have drawn considerable attention for oral treatment of colonic diseases. However, the roles of ELNs derived from garlic on colitis remain unclear. Here, we demonstrate that garlic ELNs (GELNs), with desirable particle sizes (79.60 nm) and trafficking large amounts of functional proteins and microRNAs, stably roam in the gut and confer protection against ulcerative colitis (UC). In mice with DSS-induced colitis, orally administered GELNs effectively ameliorated bloody diarrhea, normalized the production of proinflammatory cytokines, and prevented colonic barrier impairment. Mechanistically, GELNs were taken up by gut microbes and reshaped DSS-induced gut microbiota dysbiosis, in which Bacteroides was the dominant respondent genus upon GELNs treatment. Notably, GELNs-enriched peu-MIR2916-p3 specifically promoted the growth of Bacteroides thetaiotaomicron, an intestinal symbiotic bacterium with palliative effects on colitis. Our findings provide new insights into the medicinal application of GELNs and highlight their potential as natural nanotherapeutic agents for preventing and treating UC.
Assuntos
Bacteroides thetaiotaomicron , Colite Ulcerativa , Colite , Exossomos , Alho , Microbioma Gastrointestinal , Camundongos , Animais , Exossomos/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/microbiologia , Colo , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: Pichia pastoris is a widely utilized host for heterologous protein expression and biotransformation. Despite the numerous strategies developed to optimize the chassis host GS115, the potential impact of changes in cell wall polysaccharides on the fitness and performance of P. pastoris remains largely unexplored. This study aims to investigate how alterations in cell wall polysaccharides affect the fitness and function of P. pastoris, contributing to a better understanding of its overall capabilities. RESULTS: Two novel mutants of GS115 chassis, H001 and H002, were established by inactivating the PAS_chr1-3_0225 and PAS_chr1-3_0661 genes involved in ß-glucan biosynthesis. In comparison to GS115, both modified hosts exhibited a looser cell surface and larger cell size, accompanied by faster growth rates and higher carbon-to-biomass conversion ratios. When utilizing glucose, glycerol, and methanol as exclusive carbon sources, the carbon-to-biomass conversion rates of H001 surpassed GS115 by 10.00%, 9.23%, and 33.33%, respectively. Similarly, H002 exhibited even higher increases of 32.50%, 12.31%, and 53.33% in carbon-to-biomass conversion compared to GS115 under the same carbon sources. Both chassis displayed elevated expression levels of green fluorescent protein (GFP) and human epidermal growth factor (hegf). Compared to GS115/pGAPZ A-gfp, H002/pGAPZ A-gfp showed a 57.64% higher GFP expression, while H002/pPICZα A-hegf produced 66.76% more hegf. Additionally, both mutant hosts exhibited enhanced biosynthesis efficiencies of S-adenosyl-L-methionine and ergothioneine. H001/pGAPZ A-sam2 synthesized 21.28% more SAM at 1.14 g/L compared to GS115/pGAPZ A-sam2, and H001/pGAPZ A-egt1E obtained 45.41% more ERG at 75.85 mg/L. The improved performance of H001 and H002 was likely attributed to increased supplies of NADPH and ATP. Specifically, H001 and H002 exhibited 5.00-fold and 1.55-fold higher ATP levels under glycerol, and 6.64- and 1.47-times higher ATP levels under methanol, respectively, compared to GS115. Comparative lipidomic analysis also indicated that the mutations generated richer unsaturated lipids on cell wall, leading to resilience to oxidative damage. CONCLUSIONS: Two novel P. pastoris chassis hosts with impaired ß-1,3-D-glucan biosynthesis were developed, showcasing enhanced performances in terms of growth rate, protein expression, and catalytic capabilities. These hosts exhibit the potential to serve as attractive alternatives to P. pastoris GS115 for various bioproduction applications.
Assuntos
Metanol , Pichia , Saccharomycetales , Humanos , Pichia/metabolismo , Metanol/metabolismo , Glicerol/metabolismo , Trifosfato de Adenosina/metabolismo , Carbono/metabolismo , Parede Celular/metabolismo , Polissacarídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
BACKGROUND: The co-occurrence of Lemierre's syndrome, primarily triggered by Fusobacterium necrophorum following oropharyngeal infection, with diabetic ketoacidosis (DKA) in diabetes mellitus (DM) patients, underscores a rare but life-threatening clinical scenario. Lemierre's syndrome induced DKA is extremely rare, with only one case report in adult and no case yet reported in elderly. CASE PRESENTATION: We reported a case of a 69-year-old female who presented with DKA triggered by deep neck space infection (DNSI), leading to rapid clinical deterioration within 6 h that necessitated high flow nasal cannula (HFNC) and antibiotic administration. Laboratory findings included leukocytosis, elevated serum C-reactive protein, hyperglycemia, ketonemia, and severe metabolic acidosis. Culture of the fluid from a neck mass puncture drainage and blood were positive for Klebsiella pneumoniae. The patient was further complicated by thrombosis of the left internal jugular vein with extension to the sigmoid and a neck abscess surrounding the carotid artery sheath, consistent with Lemierre's syndrome. This condition was managed aggressively with fluid resuscitation, insulin therapy, surgical drainage, antibiotics, and anticoagulation led to a significant improvement in her condition. Following a 13-day hospitalization, there was significant clinical improvement, culminating in the patient's discharge. CONCLUSIONS: The case highlights the need for greater awareness and understanding of the interrelated and mutually promoting conditions of DKA and Lemierre's syndrome among clinicians. Early recognition and treatment are crucial to prevent mortality in such complex cases.
Assuntos
Antibacterianos , Cetoacidose Diabética , Síndrome de Lemierre , Humanos , Feminino , Idoso , Cetoacidose Diabética/complicações , Síndrome de Lemierre/complicações , Síndrome de Lemierre/diagnóstico , Antibacterianos/uso terapêutico , Klebsiella pneumoniae/isolamento & purificação , Infecções por Klebsiella/complicações , Infecções por Klebsiella/microbiologiaRESUMO
Aberrant epigenetic modifications or events regulate autophagy to influence tumor progression, which has gained increasing attention. KDM6B is an essential histone demethylase that participates in multiple processes of tumors, but its role in thyroid carcinoma (THCA) remains to be unknown. Here, in this study, we used the MTT assay to screen and validate that KDM6B is an essential demethylase for THCA. KDM6B promotes THCA proliferation, migration, invasion in vitro and in vivo. Transcriptional factor E2F1 directly binds to the promoter region of KDM6B and regulates its mRNA levels in THCA. E2F1 partially depended on KDM6B to exert its oncogenic functions. Mechanistically, KDM6B binds to TFEB promoter region and mediates the demethylation of H3K27me3. KDM6B depended on TFEB to activate a series of lysosomal-related genes. KDM6B enhances autophagy process, as evidenced by elevated p62 and Beclin-1 proteins. KDM6B depended on TFEB-driven autophagy activity to accelerate THCA progression. Lastly, targeting autophagy with 3-MA could notably abrogate growth of KDM6Bhigh THCA, but has mild influence on KDM6Blow THCA. Together, this study identified KDM6B as an essential epigenetic regulator for THCA, functioning as an autophagy regulator. The fundamental mechanisms underlying E2F1/KDM6B/TFEB axis provided novel vulnerabilities for THCA treatment.
Assuntos
Histona Desmetilases , Neoplasias da Glândula Tireoide , Humanos , Histona Desmetilases/genética , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Autofagia/genética , Neoplasias da Glândula Tireoide/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fator de Transcrição E2F1/genéticaRESUMO
Cronobacter sakazakii, an opportunistic milk-borne pathogen responsible for severe neonatal meningitis and bacteremia, can synthesize yellow pigment (various carotenoids) benefiting for bacterial survival, while little literature was available about the influence of various carotenoids on bacterial resistance to a series of stresses and the characteristics of cell membrane, obstructing the development of novel bactericidal strategies overcoming the strong tolerance of C. sakazakii. Thus in this study, for the first time, five carotenogenic genes of C. sakazakii BAA-894 were inactivated, respectively, to construct a series of mutants producing various carotenoids and their effects on the cell membrane properties, and resistances to food- and host-related stresses, were investigated systematically. Furthermore, to explore its possible mode of action, comparative lipidomics analysis was performed to reveal the change of lipids that were mainly located at cell membranes. The results showed that five mutants (ΔcrtB, ΔcrtI, ΔcrtY, ΔcrtZ, and ΔcrtX) displayed negligible change in growth rate but higher permeability of the outer membrane and lower fluidity of cell membrane compared to the wild type. Besides, these mutants exhibited poorer ability of biofilm formation and lower resistances to acid, oxidative, osmotic, and desiccation stresses, indicating that different carotenoid composition significantly affected environmental tolerance of C. sakazakii. To discover the possible causes, lipidomics analysis of C. sakazakii was conducted and more than 500 lipid species belonging to 27 classes had been identified at first. Compared to that of BAA-894, the composition and relative intensity of lipid species in five mutants varied significantly, especially the monounsaturated and biunsaturated phosphatidylethanolamine. The evidence presented in this study demonstrated that the varied composition of carotenoids in C. sakazakii significantly altered the lipid profile and intensity, which maybe a crucial means to influencing the characteristics of cell membranes and resistance to environmental stresses.
Assuntos
Cronobacter sakazakii , Cronobacter , Recém-Nascido , Humanos , Cronobacter sakazakii/genética , Carotenoides/metabolismo , Estresse Fisiológico , LipídeosRESUMO
OBJECTIVE: The clinical characteristics, genetic mutation spectrum, treatment strategies and prognoses of 15 children with Dent disease were retrospectively analyzed to improve pediatricians' awareness of and attention to this disease. METHODS: We analyzed the clinical and laboratory data of 15 Chinese children with Dent disease who were diagnosed and treated at our hospital between January 2017 and May 2023 and evaluated the expression of the CLCN5 and OCRL1 genes. RESULTS: All 15 patients were male and complained of proteinuria, and the incidence of low-molecular-weight proteinuria (LMWP) was 100.0% in both Dent disease 1 (DD1) and Dent disease 2 (DD2) patients. The incidence of hypercalciuria was 58.3% (7/12) and 66.7% (2/3) in DD1 and DD2 patients, respectively. Nephrocalcinosis and nephrolithiasis were found in 16.7% (2/12) and 8.3% (1/12) of DD1 patients, respectively. Renal biopsy revealed focal segmental glomerulosclerosis (FSGS) in 1 patient, minimal change lesion in 5 patients, and small focal acute tubular injury in 1 patient. A total of 11 mutations in the CLCN5 gene were detected, including 3 missense mutations (25.0%, c.1756C > T, c.1166T > G, and c.1618G > A), 5 frameshift mutations (41.7%, c.407delT, c.1702_c.1703insC, c.137delC, c.665_666delGGinsC, and c.2200delG), and 3 nonsense mutations (25.0%, c.776G > A, c.1609C > T, and c.1152G > A). There was no significant difference in age or clinical phenotype among patients with different mutation types (p > 0.05). All three mutations in the OCRL1 gene were missense mutations (c.1477C > T, c.952C > T, and c.198A > G). CONCLUSION: Pediatric Dent disease is often misdiagnosed. Protein electrophoresis and genetic testing can help to provide an early and correct diagnosis.
Assuntos
Canais de Cloreto , Doença de Dent , Monoéster Fosfórico Hidrolases , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , China/epidemiologia , Canais de Cloreto/genética , Doença de Dent/genética , Doença de Dent/diagnóstico , População do Leste Asiático , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Testes Genéticos , Glomerulosclerose Segmentar e Focal/genética , Hipercalciúria/genética , Rim/patologia , Mutação , Mutação de Sentido Incorreto , Nefrocalcinose/genética , Nefrolitíase/genética , Monoéster Fosfórico Hidrolases/genética , Proteinúria/genética , Estudos RetrospectivosRESUMO
The driver in road hypnosis has not only some external characteristics, but also some internal characteristics. External features have obvious manifestations and can be directly observed. Internal features do not have obvious manifestations and cannot be directly observed. They need to be measured with specific instruments. Electroencephalography (EEG), as an internal feature of drivers, is the golden parameter for drivers' life identification. EEG is of great significance for the identification of road hypnosis. An identification method for road hypnosis based on human EEG data is proposed in this paper. EEG data on drivers in road hypnosis can be collected through vehicle driving experiments and virtual driving experiments. The collected data are preprocessed with the PSD (power spectral density) method, and EEG characteristics are extracted. The neural networks EEGNet, RNN, and LSTM are used to train the road hypnosis identification model. It is shown from the results that the model based on EEGNet has the best performance in terms of identification for road hypnosis, with an accuracy of 93.01%. The effectiveness and accuracy of the identification for road hypnosis are improved in this study. The essential characteristics for road hypnosis are also revealed. This is of great significance for improving the safety level of intelligent vehicles and reducing the number of traffic accidents caused by road hypnosis.
Assuntos
Condução de Veículo , Eletroencefalografia , Hipnose , Redes Neurais de Computação , Humanos , Eletroencefalografia/métodos , Hipnose/métodos , Acidentes de TrânsitoRESUMO
Protection suits are vital for firefighters' safety. Traditional protection suits physically protect firemen from burns, but cannot locate the position of bodily injuries caused by impact debris. Herein, we present a wearable impact debris positioning system for firefighter protection suits based on an accelerometer array. Wearable piezoelectric accelerometers are distributed regularly on the suit to detect the vibration on different body parts, which is conducive to determining the position of injured body parts. In addition, the injured parts can be displayed on a dummy body model on the upper computer with a higher localization accuracy of 4 cm. The positioning alarm system has a rapid response time of 0.11 ms, attributed to the smart signal processing method. This work provides a reliable and smart method for locating and assessing the position of bodily injuries caused by impact debris, which is significant because it enables fire commanders to rescue injured firefighters in time.
Assuntos
Acelerometria , Bombeiros , Acelerometria/instrumentação , Humanos , Roupa de Proteção , Dispositivos Eletrônicos Vestíveis , VibraçãoRESUMO
Bupleurum is a kind of medicinal plant that has made a great contribution to human health because of the presence of bioactive metabolites: Bupleurum saikosaponins and flavonoids. Despite their importance, it has been a challenge to visually characterize the spatial distribution of these metabolites in situ within the plant tissue, which is essential for assessing the quality of Bupleurum. The development of a new technology to identify and evaluate the quality of medicinal plants is therefore necessary. Here, the spatial distribution and quality characteristics of metabolites of three Bupleurum species: Bupleurum smithii (BS), Bupleurum marginatum var. stenophyllum (BM), and Bupleurum chinense (BC) were characterized by Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Twenty-nine metabolites, including saikosaponins, non-saikosaponins, and compounds from the saikosaponin synthesis pathway, were characterized. Some of these were successfully localized and visualized in the transverse section of roots. In these Bupleurum species, twelve saikosaponins, five non-saikosaponins, and five saikosaponin synthesis pathway compounds were detected. Twenty-two major influencing components, which exhibit higher ion intensities in higher quality samples, were identified as potential quality markers of Bupleurum. The final outcome indicates that BC has superior quality compared to BS and BM. MALDI-MSI has effectively distinguished the quality of these Bupleurum species, providing an intuitive and effective marker for the quality control of medicinal plants.
Assuntos
Bupleurum , Raízes de Plantas , Saponinas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Bupleurum/química , Bupleurum/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/química , Saponinas/metabolismo , Saponinas/análise , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/metabolismo , Ácido Oleanólico/análise , Plantas Medicinais/metabolismo , Plantas Medicinais/química , Flavonoides/metabolismo , Flavonoides/análiseRESUMO
To elucidate the underlying mechanism of the energy metabolism in largemouth bass (Micropterus salmoides), cultured fish (initial body weight: 77.57 ± 0.75 g) in the present study were starved for 0 h, 12 h, 24 h, 48 h, 96 h and 192 h, respectively. The proximate composition analysis showed that short-term starvation induced a significant up-regulation in crude protein proportion in hepatic of cultured fish (P < 0.05). However, short-term starvation significantly decreased the hepatosomatic index and the viscerosomatic index of cultured fish (P < 0.05). The exact hepatic glycogen content in the group starved for 92 h presented remarkable decrease (P < 0.05). Meanwhile, compared with the weight change of lipid and protein (mg) in hepatic (y = 0.0007x2 - 0.2827x + 49.402; y = 0.0013x2 - 0.5666x + 165.31), the decreasing trend of weight in glycogen (mg) was more pronounced (y = 0.0032x2 - 1.817x + 326.52), which suggested the preferential utilization of hepatic glycogen as energy substrates under short-term starvation. Gene expression analysis revealed that the starvation down-regulated the expression of insulin-like growth factor 1 and genes of TOR pathway, such as target of rapamycin (tor) and ribosomal protein S6 (s6) (P < 0.05). In addition, the starvation significantly enhanced expression of lipolysis-related genes, including hormone-sensitive lipase (hsl) and carnitine palmitoyl transferase I (cpt1), but down-regulated lipogenesis as indicated by the inhibited expression of fatty acids synthase (fas), acetyl-CoA carboxylase 1 (acc1) and acetyl-CoA carboxylase 2 (acc2) (P < 0.05). Starvation of 24 h up-regulated the expression of glycolysis genes, glucokinase (gk), phosphofructokinase liver type (pfkl) and pyruvate kinase (pk), and then their expression returned to the normal level. Meanwhile, the expression of gluconeogenesis genes, such as glucose-6-phosphatase catalytic subunit (g6pc), fructose-1,6-bisphosphatase-1 (fbp1) and phosphoenolpyruvate carboxy kinase (pepck), was significantly inhibited with the short-term starvation (P < 0.05). In conclusion, short-term starvation induced an overall decline in growth performance, but it could deplete the hepatic glycogen accumulation and mobilize glycogen for energy effectively.
Assuntos
Bass , Animais , Glicogênio Hepático/metabolismo , Acetil-CoA Carboxilase/metabolismo , Lipogênese , Glicogênio/metabolismo , Proteínas/metabolismo , Fígado/metabolismoRESUMO
Gamma-aminobutyric acid (GABA) is a non-protein amino acid which is widely applied in agriculture and pharmaceutical additive industries. GABA is synthesized from glutamate through irreversible α-decarboxylation by glutamate decarboxylase. Recently, microbial synthesis has become an inevitable trend to produce GABA due to its sustainable characteristics. Therefore, reasonable microbial platform design and metabolic engineering strategies for improving production of GABA are arousing a considerable attraction. The strategies concentrate on microbial platform optimization, fermentation process optimization, rational metabolic engineering as key metabolic pathway modification, promoter optimization, site-directed mutagenesis, modular transporter engineering, and dynamic switch systems application. In this review, the microbial producers for GABA were summarized, including lactic acid bacteria, Corynebacterium glutamicum, and Escherichia coli, as well as the efficient strategies for optimizing them to improve the production of GABA.
Assuntos
Corynebacterium glutamicum , Ácido gama-Aminobutírico , Agricultura , Corynebacterium glutamicum/genética , Indústria Farmacêutica , Engenharia , Escherichia coli/genéticaRESUMO
Dopamine (DA) is an important neurotransmitter, which not only participates in the regulation of neural processes but also plays critical roles in tumor progression and immunity. However, direct identification of DA-containing exosomes, as well as quantification of DA in single vesicles, is still challenging. Here, we report a nanopipette-assisted method to detect single exosomes and their dopamine contents via amperometric measurement. The resistive-pulse current measured can simultaneously provide accurate information of vesicle translocation and DA contents in single exosomes. Accordingly, DA-containing exosomes secreted from HeLa and PC12 cells under different treatment modes successfully detected the DA encapsulation efficiency and the amount of exosome secretion that distinguish between cell types. Furthermore, a custom machine learning model was constructed to classify the exosome signals from different sources, with an accuracy of more than 99%. Our strategy offers a useful tool for investigating single exosomes and their DA contents, which facilitates the analysis of DA-containing exosomes derived from other untreated or stimulated cells and may open up a new insight to the research of DA biology.
RESUMO
BACKGROUND: Immune checkpoint inhibitors (ICIs) through programmed cell death 1 blockade improve the survival outcomes of patients with advanced esophageal squamous cell carcinoma (ESCC). Recently, the use of neoadjuvant immunotherapy for the treatment of ESCC has been gradually increasing. We aimed to evaluate the efficacy of neoadjuvant treatment of ICIs with chemotherapy and explore tumor microenvironment (TME) immune profiles of ESCC samples during neoadjuvant therapy. METHODS: Patients with previously untreated, resectable, locally advanced ESCC (stage II or III) in Harbin Medical University Cancer Hospital were enrolled. Each patient received two to four cycles of neoadjuvant ICIs combined with chemotherapy before surgical resection. The TME immune profiles of formalin-fixed paraffin-embedded tumor samples at baseline and after surgery were evaluated by multiplex staining and multispectral imaging. RESULTS: In all, 18 patients were enrolled, and all patients received surgery with R0 resection. The postoperative pathological evaluation indicated that 7 (38.9%) patients had a pathological complete response (pCR) and 11 (61.1%) patients had a partial response. The neoadjuvant therapeutic regimens had acceptable side effect profiles. The TME immune profiles at baseline observed higher densities of stroma CD3 + , PD-1 + , and PD-1 + CD3 + cells in pCR patients than in non-pCR patients. Comparing TME immune profiles before and after neoadjuvant treatment, an increase in CD8 + T cells and a decrease in CD163 + CD68 + M2-like macrophage cells were observed after neoadjuvant treatment. CONCLUSIONS: Neoadjuvant ICIs combined with chemotherapy produced a satisfactory treatment response, demonstrating its anti-tumor efficacy in locally advanced ESCC. Further large-scale studies are required to understand the role of tumor immunities and ICIs underlying ESCC.
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/patologia , Terapia Neoadjuvante/métodos , Neoplasias Esofágicas/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Microambiente Tumoral , Receptor de Morte Celular Programada 1/uso terapêutico , População do Leste AsiáticoRESUMO
Lipid A plays an important role in the pathogenicity and antimicrobial resistance of Vibrio parahaemolyticus, but little is known about the structure and biosynthesis of lipid A in V. parahaemolyticus. In this study, lipid A species were either directly extracted or obtained by the acid hydrolysis of lipopolysaccharide from V. parahaemolyticus ATCC33846 cells and analyzed by thin-layer chromatography and high-performance liquid chromatography-tandem mass spectrometry. Several lipid A species in V. parahaemolyticus cells were characterized, and two of these species were not connected to polysaccharides. One free lipid A species has the similar structure as the hexa-acylated lipid A in Escherichia coli, and the other is a hepta-acylated lipid A with an additional secondary C16:0 acyl chain. Three lipid A species were isolated by the acid hydrolysis of lipopolysaccharide: the 1st one has the similar structure as the hexa-acylated lipid A in E. coli, the 2nd one is a hepta-acylated lipid A with an additional secondary C16:0 acyl chain and a secondary 2-OH C12:0 acyl chain, and the 3rd one is equal to the 2nd species with a phosphoethanolamine modification. These results are important for understanding the biosynthesis of lipid A in V. parahaemolyticus.