Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 43(8): 3934-3943, 2022 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-35971692

RESUMO

To investigate the ambient pollution caused by volatile organic compounds (VOCs) in a typical industrial city in summer, the characteristics and chemical reactivity from VOCs and the causes of ozone (O3) pollution were analyzed using online VOCs measurements during polluted and non-polluted periods in Zibo city in July 2020. The results showed that the average hourly concentration of total volatile organic compounds (TVOC) during the polluted period[(50.6±28.3)] µg·m-3 was 32.5% higher than that during the non-polluted period[(38.2±24.9) µg·m-3]. The contribution of all VOCs categories were as follows:alkanes>aromatics>alkenes>alkynes, and the diurnal averages of TVOC and O3 concentrations were opposite during the polluted and non-polluted period. Ozone formation potential (OFP),·OH radical loss rate (L·OH), and secondary organic aerosol formation potential (SOAp) during the polluted period were higher than those during the non-polluted period. Alkenes contributed most to OFP and L·OH, whereas aromatics contributed most to SOAp. The tendency of the diurnal average of OFP and SOAp was overall consistent with that of TVOC. The priority species of OFP, L·OH, and SOAp were alkenes and aromatics. The VOCs/NOx method was applied to identify the O3-VOC-NOx sensitivity during the polluted and non-polluted periods, and the results showed that the photochemical regimes were VOCs-limited and transition regions. In addition, the smog production model (SPM) was employed to identify the O3 formation regime, and the results showed that those during the polluted period were identified as VOCs-limited and transition regions from 08:00 to 16:00, whereas the non-polluted period was mainly considered to be VOCs-limited. To mitigate the O3 pollution in summertime, the synergistic control of VOCs (especially alkenes and aromatics) and NOx emissions should be enforced.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Alcenos , China , Monitoramento Ambiental , Ozônio/análise , Compostos Orgânicos Voláteis/análise
2.
Huan Jing Ke Xue ; 43(3): 1286-1295, 2022 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-35258192

RESUMO

To study the differences in volatile organic compound (VOCs) pollution characteristics between an urban site and a background site in summer, ambient VOCs were monitored using an online gas chromatograph (GC) at an urban site and a background site (Mt. Lu) in Zibo in July 2020. The VOCs pollution characteristics and chemical reactivity were analyzed, and the sources of VOCs were identified using the positive matrix factorization model(PMF). The results showed that ρ(TVOC) and ρ(NOx) were higher at the urban site, but ρ(O3) was higher at the background site. Diurnal average characteristics of ρ(TVOC) and ρ(NOx) were high at night and low during the day at the urban site, and there were no obvious variation characteristics at the background site. The diurnal average characteristics of ρ(O3) were consistent at the urban and background sites, showing low level at night and high level during the day; however, the peak in the background site was later than that at the urban site. The average ρ(TVOC) at the urban site and background site were (44.9±27.5) µg·m-3 and (17.3±9.1) µg·m-3, respectively, and the mass fraction of each component was ordered as alkanes>aromatics>alkenes>alkynes in both sites. The average ozone formation potentials(OFP)were (115.5±63.1) µg·m-3 and (38.0±20.2) µg·m-3, and the contribution of each component was ordered as alkenes>aromatics>alkanes>alkynes. The respective average values of·OH radical loss rate(L·OH) were (3.9±2.3) s-1 and (1.0±0.6) s-1, with the highest contribution of alkenes and the lowest contribution of alkynes in both sites. The average values of secondary organic aerosol formation potential(SOAp) were (0.5±0.3) µg·m-3 and (0.2±0.06) µg·m-3, respectively, with aromatic being the most abundant group. According to the source appointment by the PMF model, the main source of VOCs in the urban site was traffic sources (52.4%), followed by petroleum evaporation (19.2%), solvent evaporation (17.3%), and oil and biological sources (11.1%). The source of VOCs in the background site mainly came from traffic sources (40.2%), followed by solvent evaporation (31.3%), combustion sources (19.3%), and biological sources (9.2%). Zibo City should strengthen the management and control of motor vehicle emissions, petroleum evaporation, and the use of industrial solvents.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental/métodos , Ozônio/análise , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
3.
Huan Jing Ke Xue ; 40(6): 2526-2532, 2019 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854642

RESUMO

In view of the insufficient source profiles for emissions from nonmetal mineral products manufacturing processes in China, a dilution sampling system was used to collect PM10 and PM2.5 samples from glassmaking, ceramics, and firebrick manufacturing sources between February and June of 2017. The characteristics of 50 chemical components in the samples were studied to identify source profiles. The results showed that the dominant composition of particulate matter in glassmaking plant profiles was Na, with percentages ranging from 9.2% to 18.5%. Ceramics profiles were enriched in Al, Si, Ca, and Fe, with percentages ranging from 1.7% to 8.7%. Refractory brick and shale manufacturing process profiles were characterized by high abundances of SO42- (36.9%-48.1%) and NH4+ (7.7%-17.0%). Chemical components in the source profiles varied with the different fuel types and desulfurization, denitrification, and dedusting methods. The coefficients of divergence (CD) between PM2.5 and PM10 from the same process were similar except for the results from the shale manufacturing process (CD values>0.3), thus indicating that the elements profiles of PM2.5 might be similar to those in PM10. Profiles of the same particle size from different processes were significantly different from one another, with CD values ranging from 0.42 to 0.76. The CD values for float glass and medicinal glass, and the CD values for the two ceramic enterprises were relatively small. The distributions of weighted differences (R/U ratios) were used to compare the differences of components between the source profiles, and results showed that the identified components for glass manufacturing, ceramic manufacturing, fireproof bricks, and page rock bricks were Na and As, Al and Ti, NO3- and NH4+, and SO42- and NH4+, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA