Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Ano de publicação
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(1): 326-338, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38155399

RESUMO

We investigated the absorption mechanism of the shrimp peptide QMDDQ in small intestines, explored its physiological function in inhibiting neuronal hyperactivity, and verified its entry into the brain in vivo to display functional activity. The everted rat sac model and a Caco-2 paracellular absorption monolayer model were used, indicating that QMDDQ has a good absorption capacity with an apparent permeability coefficient (Papp) > 1 × 10-6 cm/s and the absorption of QMDDQ was concentration-dependent. When the concentration of QMDDQ was 1 mM and the transport time was 180 min, the highest absorption concentration of QMDDQ was 41.17 ± 3.48 µM (P < 0.05). The myosin light-chain kinase (MLCK)-specific inhibitor ML-7 and activator MPA, Western blotting, and immunofluorescence results showed that QMDDQ absorption takes place by mediating the MLCK-p-MLCK-MLC signaling pathway, reversibly opening the zonula occludens-1 (ZO-1), occludin in tight junctions (TJs), upregulating claudin-2 expression, and reaching targets through blood to inhibit neuronal overactivity. Results of fluorescence imaging in vivo verified that QMDDQ could enter the brain 4 h after oral administration. The results provide a theoretical foundation for the mechanism of paracellular absorption of active peptides and a starting point for the development of functional foods for Alzheimer's disease intervention.


Assuntos
Mucosa Intestinal , Cadeias Leves de Miosina , Humanos , Ratos , Animais , Células CACO-2 , Mucosa Intestinal/metabolismo , Ocludina/metabolismo , Peptídeos/metabolismo , Junções Íntimas/metabolismo
2.
Acta Pharm Sin B ; 14(3): 1400-1411, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486988

RESUMO

The self-assembly prodrugs are usually consisted of drug modules, activation modules, and assembly modules. Keeping the balance between efficacy and safety by selecting suitable modules remains a challenge for developing prodrug nanoassemblies. This study designed four docetaxel (DTX) prodrugs using disulfide bonds as activation modules and different lengths of branched-chain fatty alcohols as assembly modules (C16, C18, C20, and C24). The lengths of the assembly modules determined the self-assembly ability of prodrugs and affected the activation modules' sensitivity. The extension of the carbon chains improved the prodrugs' self-assembly ability and pharmacokinetic behavior while reducing the cytotoxicity and increased cumulative toxicity. The use of C20 can balance efficacy and safety. These results provide a great reference for the rational design of prodrug nanoassemblies.

3.
Asian J Pharm Sci ; 19(2): 100908, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38623486

RESUMO

The disulfide bond plays a crucial role in the design of anti-tumor prodrugs due to its exceptional tumor-specific redox responsiveness. However, premature breaking of disulfide bonds is triggered by small amounts of reducing substances (e.g., ascorbic acid, glutathione, uric acid and tea polyphenols) in the systemic circulation. This may lead to toxicity, particularly in oral prodrugs that require more frequent and high-dose treatments. Fine-tuning the activation kinetics of these prodrugs is a promising prospect for more efficient on-target cancer therapies. In this study, disulfide, steric disulfide, and ester bonds were used to bridge cabazitaxel (CTX) to an intestinal lymph vessel-directed triglyceride (TG) module. Then, synthetic prodrugs were efficiently incorporated into self-nanoemulsifying drug delivery system (corn oil and Maisine CC were used as the oil phase and Cremophor EL as the surfactant). All three prodrugs had excellent gastric stability and intestinal permeability. The oral bioavailability of the disulfide bond-based prodrugs (CTX-(C)S-(C)S-TG and CTX-S-S-TG) was 11.5- and 19.1-fold higher than that of the CTX solution, respectively, demonstrating good oral delivery efficiency. However, the excessive reduction sensitivity of the disulfide bond resulted in lower plasma stability and safety of CTX-S-S-TG than that of CTX-(C)S-(C)S-TG. Moreover, introducing steric hindrance into disulfide bonds could also modulate drug release and cytotoxicity, significantly improving the anti-tumor activity even compared to that of intravenous CTX solution at half dosage while minimizing off-target adverse effects. Our findings provide insights into the design and fine-tuning of different disulfide bond-based linkers, which may help identify oral prodrugs with more potent therapeutic efficacy and safety for cancer therapy.

4.
J Agric Food Chem ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853533

RESUMO

Microglia phagocytose synapses have an important effect on the pathogenesis of neurological disorders. Here, we investigated the neuroprotective effects of the walnut-derived peptide, TWLPLPR(TW-7), against LPS-induced cognitive deficits in mice and explored the underlying C1q-mediated microglia phagocytose synapses mechanisms in LPS-treated HT22 cells. The MWM showed that TW-7 improved the learning and memory capacity of the LPS-injured mice. Both transmission electron microscopy and immunofluorescence analysis illustrated that synaptic density and morphology were increased while associated with the decreased colocalized synapses with C1q. Immunohistochemistry and immunofluorescence demonstrated that TW-7 effectively reduced the microglia phagocytosis of synapses. Subsequently, overexpression of C1q gene plasmid was used to verify the contribution of the TW-7 via the classical complement pathway-regulated mitochondrial function-mediated microglia phagocytose synapses in LPS-treated HT22 cells. These data suggested that TW-7 improved the learning and memory capability of LPS-induced cognitively impaired mice through a mechanism associated with the classical complement pathway-mediated microglia phagocytose synapse.

5.
Food Chem ; 454: 139750, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810457

RESUMO

Hydrophilic and hydrophobic modified nanomicelles might be more conducive to passage of the gastrointestinal barrier than walnut peptide (WP). In this study, a novel double modified starch polymer, SB-CST-DCA, was synthesized by grafting sulfabetaine (SB) and deoxycholic acid (DCA) onto corn starch (CST) molecules through etherification and esterification. The modification mechanism was discussed to determine its chemical structure, morphological properties, and thermal stability. Peptide-loaded nanomicelles (SB-CST-DCA-WP) were prepared using WP as the core material. The encapsulation efficiency and peptide loading amount reached 76.90 ± 1.52% and 18.27 ± 0.53%, respectively, with good stability and pH-responsive release behavior observed to effectively control WP release and enhance its antioxidant activity. The composite exhibited safety, non-toxicity, and good blood compatibility at concentrations below 125 µg/mL. Duodenum was identified as the main absorption site with an absorption ratio of 41.16 ± 0.36%.


Assuntos
Preparações de Ação Retardada , Portadores de Fármacos , Juglans , Micelas , Peptídeos , Amido , Amido/química , Juglans/química , Peptídeos/química , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Humanos , Nanopartículas/química , Interações Hidrofóbicas e Hidrofílicas , Composição de Medicamentos , Proteínas de Plantas/química , Animais
6.
Life Sci ; 351: 122812, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38862063

RESUMO

AIMS: Despite islet transplantation has proved a great potential to become the standard therapy for type 1 diabetes mellitus (T1DM), this approach remains limited by ischemia, hypoxia, and poor revascularization in early post-transplant period as well as inflammation and life-long host immune rejection. Here, we investigate the potential and mechanism of human amniotic mesenchymal stem cells (hAMSCs)-islet organoid to improve the efficiency of islet engraftment in immunocompetent T1DM mice. MAIN METHODS: We generated the hAMSC-islet organoid structure through culturing the mixture of hAMSCs and islets on 3-dimensional-agarose microwells. Flow cytometry, whole-body fluorescent imaging, immunofluorescence, Calcein-AM/PI staining, ELISA, and qPCR were used to assess the potential and mechanism of shielding hAMSCs to improve the efficiency of islet transplantation. KEY FINDINGS: Transplant of hAMSC-islet organoids results in remarkably better glycemic control, an enhanced glucose tolerance, and a higher ß cell mass in vivo compared with control islets. Our results show that hAMSCs shielding provides an immune privileged microenvironment for islets and promotes graft revascularization in vivo. In addition, hAMSC-islet organoids show higher viability and reduced dysfunction after exposure to hypoxia and inflammatory cytokines in vitro. Finally, our results show that shielding with hAMSCs leads to the activation of PKA-CREB-IRS2-PI3K and PKA-PDX1 signaling pathways, up-regulation of SIL1 mRNA levels, and down-regulation of MT1 mRNA levels in ß cells, which ultimately promotes the synthesis, folding and secretion of insulin, respectively. SIGNIFICANCE: hAMSC-islet organoids can evidently increase the efficiency of islet engraftment and might develop into a promising alternative for the clinical treatment of T1DM.


Assuntos
Âmnio , Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Organoides , Animais , Células-Tronco Mesenquimais/citologia , Camundongos , Humanos , Transplante das Ilhotas Pancreáticas/métodos , Diabetes Mellitus Experimental/terapia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/citologia , Âmnio/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Diabetes Mellitus Tipo 1/terapia , Camundongos Endogâmicos C57BL , Masculino
7.
Genet. mol. biol ; 41(1): 18-26, Jan.-Mar. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-892468

RESUMO

Abstract This study aimed to determine the association between the polymorphisms and haplotypes in the xeroderma pigmentosum group D (XPD) gene and the risk of pancreatic cancer in the Chinese Han population. SNaPshot was used for genotyping six SNP sites of the XPD gene. Comparisons of the correlations between different genotypes in combination with smoking and the susceptibility to pancreatic cancer were performed. Individual pancreatic cancer risk in patients who carry mutant C alleles (AC, CC, and AC+CC) at rs13181 increased (p < 0.05). Taking non-smoking individuals who carry the AA genotype as a reference, and non-smoking individuals who carry mutant allele C (AC+CC), the risk of pancreatic cancer increased by 3.343 times in individuals who smoked ≥ 20 cigarettes daily, 3.309 times in individuals who smoked ≥ 14 packs per year, 5.011 times in individuals who smoked ≥ 24 packs per year, and 4.013 times in the individuals who smoked ≥ 37 packs per year (P < 0.05). In addition, haplotype analysis revealed that haplotype AGG, which comprised rs13181, rs3916874 and rs238415, was associated with a 1.401-fold increase in pancreatic cancer risk (p < 0.05). We conclude that the polymorphism of XPD Lys751Gln (rs13181) in combination with smoking contributes to increased risk of pancreatic cancer in the Chinese Han population. Haplotype AGG might be a susceptibility haplotype for pancreatic cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA