Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Curr Issues Mol Biol ; 45(7): 6024-6039, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37504296

RESUMO

X-rays can induce morphological as well as functional changes in cells. Platelets are anuclear cellular fragments originating from megakaryocytes and are the major regulators in hemostasis and thrombosis. Platelet products are irradiated to avoid medical complications associated with platelet transfusion. So far, gamma, UV, and laser radiation have been used for this purpose. However, scientists are divided about the effects of radiation on platelet quality. The present study was designed to explore the possible effects of X-rays in washed human platelets and understand the molecular mechanism behind them. In the present study, we exposed washed human platelets to 10 or 30 Gy X-rays at 0.25 Gy/min. Flow cytometry, aggregometry, and western blot were performed to investigate the effect of X-rays on platelet degranulation, integrin activation, platelet aggregation, and apoptosis. It was found that X-rays immediately induced granular secretions with no effect on GP IIb/IIIa activation. Not surprisingly, due to granule secretions in irradiated platelets, platelet aggregation was significantly reduced. In contrast to granular secretions and platelet aggregation, X-rays induced mitochondrial transmembrane potential depolarization in a time-dependent manner to induce apoptosis and activated protein kinase C (PKC) signaling. This study revealed and explained the molecular mechanism activated by X-rays in washed human platelets. Here we also introduced Gö 6983, a PKC inhibitor, as an agent that counteracts X-ray-induced changes and maintains the integrity of platelets.

2.
N Engl J Med ; 382(5): 416-426, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-31995687

RESUMO

BACKGROUND: Acute kidney injury is common, with a major effect on morbidity and health care utilization. Soluble urokinase plasminogen activator receptor (suPAR) is a signaling glycoprotein thought to be involved in the pathogenesis of kidney disease. We investigated whether a high level of suPAR predisposed patients to acute kidney injury in multiple clinical contexts, and we used experimental models to identify mechanisms by which suPAR acts and to assess it as a therapeutic target. METHODS: We measured plasma levels of suPAR preprocedurally in patients who underwent coronary angiography and patients who underwent cardiac surgery and at the time of admission to the intensive care unit in critically ill patients. We assessed the risk of acute kidney injury at 7 days as the primary outcome and acute kidney injury or death at 90 days as a secondary outcome, according to quartile of suPAR level. In experimental studies, we used a monoclonal antibody to urokinase plasminogen activator receptor (uPAR) as a therapeutic strategy to attenuate acute kidney injury in transgenic mice receiving contrast material. We also assessed cellular bioenergetics and generation of reactive oxygen species in human kidney proximal tubular (HK-2) cells that were exposed to recombinant suPAR. RESULTS: The suPAR level was assessed in 3827 patients who were undergoing coronary angiography, 250 who were undergoing cardiac surgery, and 692 who were critically ill. Acute kidney injury developed in 318 patients (8%) who had undergone coronary angiography. The highest suPAR quartile (vs. the lowest) had an adjusted odds ratio of 2.66 (95% confidence interval [CI], 1.77 to 3.99) for acute kidney injury and 2.29 (95% CI, 1.71 to 3.06) for acute kidney injury or death at 90 days. Findings were similar in the surgical and critically ill cohorts. The suPAR-overexpressing mice that were given contrast material had greater functional and histologic evidence of acute kidney injury than wild-type mice. The suPAR-treated HK-2 cells showed heightened energetic demand and mitochondrial superoxide generation. Pretreatment with a uPAR monoclonal antibody attenuated kidney injury in suPAR-overexpressing mice and normalized bioenergetic changes in HK-2 cells. CONCLUSIONS: High suPAR levels were associated with acute kidney injury in various clinical and experimental contexts. (Funded by the National Institutes of Health and others.).


Assuntos
Injúria Renal Aguda/sangue , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Angiografia Coronária/efeitos adversos , Receptores de Ativador de Plasminogênio Tipo Uroquinase/sangue , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Idoso , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Biomarcadores/sangue , Estado Terminal , Modelos Animais de Doenças , Feminino , Humanos , Unidades de Terapia Intensiva , Túbulos Renais/citologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Razão de Chances , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/etiologia , Medição de Risco/métodos , Ativador de Plasminogênio Tipo Uroquinase/farmacologia
3.
Hum Brain Mapp ; 44(2): 571-584, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36129066

RESUMO

Neuroimaging studies have demonstrated that migraine is accompanied by spontaneous brain activity alterations in specific regions. However, these findings are inconsistent, thus hindering our understanding of the potential neuropathology. Hence, we performed a quantitative whole-brain meta-analysis of relevant resting-state functional imaging studies to identify brain regions consistently involved in migraine. A systematic search of studies that investigated the differences in spontaneous brain activity patterns between migraineurs and healthy controls up to April 2022 was conducted. We then performed a whole-brain voxel-wise meta-analysis using the anisotropic effect size version of seed-based d mapping software. Complementary analyses including jackknife sensitivity analysis, heterogeneity test, publication bias test, subgroup analysis, and meta-regression analysis were conducted as well. In total, 24 studies that reported 31 datasets were finally eligible for our meta-analysis, including 748 patients and 690 controls. In contrast to healthy controls, migraineurs demonstrated consistent and robust decreased spontaneous brain activity in the angular gyrus, visual cortex, and cerebellum, while increased activity in the caudate, thalamus, pons, and prefrontal cortex. Results were robust and highly replicable in the following jackknife sensitivity analysis and subgroup analysis. Meta-regression analyses revealed that a higher visual analog scale score in the patient sample was associated with increased spontaneous brain activity in the left thalamus. These findings provided not only a comprehensive overview of spontaneous brain activity patterns impairments, but also useful insights into the pathophysiology of dysfunction in migraine.


Assuntos
Imageamento por Ressonância Magnética , Transtornos de Enxaqueca , Humanos , Encéfalo , Mapeamento Encefálico/métodos , Neuroimagem Funcional , Imageamento por Ressonância Magnética/métodos , Transtornos de Enxaqueca/patologia , Neuroimagem
4.
FEMS Yeast Res ; 21(3)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33705544

RESUMO

Amphotericin B (AmB) is a very effective antifungal agent, and resistance in clinical isolates is rare. However, clinical treatment with AmB is often associated with severe side effects. Reducing the administration dose of AmB by combining it with other agents is a promising strategy to minimize this toxicity. In this study, we screened a small compound library and observed that the anti-obesity drug rimonabant exhibited synergistic antifungal action with AmB against Candida species and Cryptococcus neoformans. Moreover, the combination of AmB and rimonabant exhibited synergistic or additive effects against Candida albicans biofilm formation and cell viability in preformed biofilms. The effects of this combination were further confirmed in vivo using a murine systemic infection model. Exploration of the mechanism of synergy revealed that rimonabant enhances the fungicidal activity of AmB by increasing cellular oxidative stress and cell membrane permeability. These findings provide a foundation for the possible development of AmB-rimonabant polytherapies for fungal infections.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Fungos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Rimonabanto/farmacologia , Animais , Candida albicans/efeitos dos fármacos , Candidemia/tratamento farmacológico , Criptococose/tratamento farmacológico , Cryptococcus neoformans/efeitos dos fármacos , Sinergismo Farmacológico , Fungos/classificação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Bibliotecas de Moléculas Pequenas/farmacologia
5.
Int J Cancer ; 146(6): 1730-1740, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31840816

RESUMO

Immune checkpoint blockade (ICB) has shown long-term survival benefits, but only in a small fraction of cancer patients. Recent studies suggest that improved vessel perfusion by ICB positively correlates with its therapeutic outcomes. However, the underlying mechanism of such a process remains unclear. Here, we show that anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA4) treatment-induced tumor vessel normalization was accompanied by an increased infiltration of eosinophils into breast tumors. Eosinophil accumulation was positively correlated with the responsiveness of a breast tumor to anti-CTLA4 therapy. Depletion of eosinophils subsequently negated vessel normalization, reduced antitumor immunity and attenuated tumor growth inhibition by anti-CTLA4 therapy. Moreover, intratumoral accumulation of eosinophils relied on T lymphocytes and interferon γ production. Together, these results suggest that eosinophils partially mediate the antitumor effects of CTLA4 blockade through vascular remodeling. Our findings uncover an unidentified role of eosinophils in anti-CTLA4 therapy, providing a potential new target to improve ICB therapy and to predict its efficacy.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Antígeno CTLA-4/antagonistas & inibidores , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores , Linhagem Celular Tumoral , Eosinófilos/imunologia , Feminino , Humanos , Imunidade , Imunomodulação/efeitos dos fármacos , Imunofenotipagem , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Depleção Linfocítica , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neovascularização Patológica/tratamento farmacológico , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
6.
FASEB J ; 33(2): 2646-2658, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30307770

RESUMO

CD133 (AC133/prominin-1) has been identified as a stem cell marker and a putative cancer stem cell marker in many solid tumors. Its biologic function and molecular mechanisms remain largely elusive. Here, we show that a fly mutant for prominin-like, a homolog of mammalian CD133, shows a larger body size and excess weight accompanied with higher fat deposits as compared with the wild type. The expression levels of prominin-like are mediated by ecdysone signaling where its protein levels increase dramatically in the fat body during metamorphosis. Prominin-like mutants exhibit higher Drosophila insulin-like peptide 6 (di lp6) levels during nonfeeding stages and increased Akt/ Drosophila target of rapamycin (dTOR) signaling. On an amino acid-restricted diet, prominin-like mutants exhibit a significantly larger body size than the wild type does, similar to that which occurs upon the activation of the dTOR pathway in the fat body. Our data suggest that prominin-like functions by suppressing TOR and dilp6 signaling to control body size and weight. The identification of the physiologic function of prominin-like in Drosophila may provide valuable insight into the understanding of the metabolic function of CD133 in mammals.-Zheng, H., Zhang, Y., Chen, Y., Guo, P., Wang, X., Yuan, X., Ge, W., Yang, R., Yan, Q., Yang, X., Xi, Y. Prominin-like, a homolog of mammalian CD133, suppresses di lp6 and TOR signaling to maintain body size and weight in Drosophila.


Assuntos
Antígeno AC133/metabolismo , Tamanho Corporal , Peso Corporal , Proteínas de Drosophila/antagonistas & inibidores , Drosophila melanogaster/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Somatomedinas/antagonistas & inibidores , Antígeno AC133/genética , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mutação , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Somatomedinas/genética , Somatomedinas/metabolismo
8.
J Am Soc Nephrol ; 29(2): 409-415, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29061651

RESUMO

Transient receptor potential channel 5 (TRPC5) is highly expressed in brain and kidney and mediates calcium influx and promotes cell migration. In the kidney, loss of TRPC5 function has been reported to benefit kidney filter dynamics by balancing podocyte cytoskeletal remodeling. However, in vivo gain-in-function studies of TRPC5 with respect to kidney function have not been reported. To address this gap, we developed two transgenic mouse models on the C57BL/6 background by overexpressing either wild-type TRPC5 or a TRPC5 ion-pore mutant. Compared with nontransgenic controls, neither transgenic model exhibited an increase in proteinuria at 8 months of age or a difference in LPS-induced albuminuria. Moreover, activation of TRPC5 by Englerin A did not stimulate proteinuria, and inhibition of TRPC5 by ML204 did not significantly lower the level of LPS-induced proteinuria in any group. Collectively, these data suggest that the overexpression or activation of the TRPC5 ion channel does not cause kidney barrier injury or aggravate such injury under pathologic conditions.


Assuntos
Albuminúria/genética , Nefropatias/genética , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Albuminúria/induzido quimicamente , Animais , Encéfalo/metabolismo , Feminino , Indóis/farmacologia , Nefropatias/induzido quimicamente , Nefropatias/mortalidade , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Piperidinas/farmacologia , Podócitos/ultraestrutura , Sesquiterpenos de Guaiano/farmacologia , Canais de Cátion TRPC/agonistas , Canais de Cátion TRPC/antagonistas & inibidores
9.
Cytotherapy ; 20(5): 670-686, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29576501

RESUMO

BACKGROUND: This study explored the neural differentiation and therapeutic effects of stem cells from human exfoliated deciduous teeth (SHED) in a rat model of Parkinson's disease (PD). METHODS: The SHED were isolated from fresh dental pulp and were induced to differentiate to neurons and dopamine neurons by inhibiting similar mothers against dpp (SMAD) signaling with Noggin and increase conversion of dopamine neurons from SHED with CHIR99021, Sonic Hedgehog (SHH) and FGF8 in vitro. The neural-primed SHED were transplanted to the striatum of 6-hydroxydopamine (6-OHDA)-induced PD rats to evaluate their neural differentiation and functions in vivo. RESULTS: These SHED were efficiently differentiated to neurons (62.7%) and dopamine neurons (42.3%) through a newly developed method. After transplantation, the neural-induced SHED significantly improved recovery of the motor deficits of the PD rats. The grafted SHED were differentiated into neurons (61%), including dopamine neurons (22.3%), and integrated into the host rat brain by forming synaptic connections. Patch clamp analysis showed that neurons derived from grafted SHED have the same membrane potential profile as dopamine neurons, indicating these cells are dopamine neuron-like cells. The potential molecular mechanism of SHED transplantation in alleviating motor deficits of the rats is likely to be mediated by neuronal replacement and immune-modulation as we detected the transplanted dopamine neurons and released immune cytokines from SHED. CONCLUSION: Using neural-primed SHED to treat PD showed significant restorations of motor deficits in 6-OHDA-induced rats. These observations provide further evidence that SHED can be used for cell-based therapy of PD.


Assuntos
Corpo Estriado/transplante , Atividade Motora , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Transplante de Células-Tronco , Células-Tronco/citologia , Esfoliação de Dente/patologia , Dente Decíduo/citologia , Animais , Comportamento Animal , Diferenciação Celular , Sobrevivência Celular , Criança , Pré-Escolar , Citocinas/metabolismo , Neurônios Dopaminérgicos/citologia , Humanos , Masculino , Oxidopamina , Ratos Wistar
10.
FASEB J ; 31(5): 1964-1975, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28126734

RESUMO

In Drosophila, fat-body remodeling accompanied with fat mobilization is an ecdysone-induced dynamic process that only occurs during metamorphosis. Here, we show that the activated Drosophila platelet-derived growth factor/VEGF receptor (PVR) is sufficient to induce shape changes in the fat body, from thin layers of tightly conjugated polygonal cells to clusters of disaggregated round-shaped cells. These morphologic changes are reminiscent of those seen during early pupation upon initiation of fat-body remodeling. Activation of PVR also triggers an early onset of lipolysis and mobilization of internal storage, as revealed by the appearance of small lipid droplets and up-regulated lipolysis-related genes. We found that PVR displays a dynamic expression pattern in the fat body and peaks at the larval-prepupal transition under the control of ecdysone signaling. Removal of PVR, although it does not prevent ecdysone-induced fat-body remodeling, causes ecdysone signaling to be up-regulated. Our data reveal that PVR is active in a dual-secured mechanism that involves an ecdysone-induced fat-body remodeling pathway and a reinforced PVR pathway for effective lipid mobilization. Ectopic expression of activated c-kit-the mouse homolog of PVR in the Drosophila fat body-also results in a similar phenotype. This may suggest a novel function of c-kit as it relates to lipid metabolism in mammals.-Zheng, H., Wang, X., Guo, P., Ge, W., Yan, Q., Gao, W., Xi, Y., Yang, X. Premature remodeling of fat body and fat mobilization triggered by platelet-derived growth factor/VEGF receptor in Drosophila.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Corpo Adiposo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes de Insetos/genética , Metamorfose Biológica/fisiologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores Proteína Tirosina Quinases/genética , Ativação Transcricional/genética
11.
BMC Anesthesiol ; 18(1): 145, 2018 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-30342467

RESUMO

BACKGROUND: Postoperative pain is one of the most common symptoms after surgery, which brings physical discomfort to patients. In addition, it may cause a series of complications, and even affect the long-term quality of life. The purpose of this prospective, randomized, double-blinded, controlled trial is to investigate the efficacy and safety of dexmedetomidine combined with sufentanil to attenuate postoperative pain in patients after laparoscopic nephrectomy. METHODS: Ninety patients undergoing laparoscopic nephrectomy were randomized into three groups: the control (sufentanil 0.02 µg/kg/h, Group C), sufentanil plus low dose of dexmedetomidine (0.02 µg/kg/h each, Group D1), and sufentanil plus high dose of dexmedetomidine (0.04 µg/kg/h, Group D2). The patient-controlled analgesia was programmed to deliver a bolus dose of 0.5 ml, followed by an infusion of 2 ml/h and a lockout time of 10 min. The primary goal was to calculate the cumulative amount of self-administered sufentanil; the secondary goals were to estimate pain intensity using the numerical rating scale (NRS), level of sedation, the first bowel movement, concerning adverse effects as well as duration of postoperative hospital stay. RESULTS: The total consumption of sufentanil in group D1 and D2 were significantly lower than in group C during the first 8 h after surgery (P < 0.05), whereas there were no statistically significant differences (P > 0.05) between group D1 and D2. Compared with group C, the NRS scores at rest during first 8 h after surgery were significantly lower in group D1 (P < 0.05). The NRS scores, neither at rest nor with movement, show statistically significant differences between group D1 and D2 at each time point following surgery (P > 0.05). The time to first flatus was shorter in group D1 compared with the control group (P < 0.05). In addition, compared with group C, group D1 and D2 had a shorter time for first defecation (P < 0.05). CONCLUSIONS: Dexmedetomidine combined with sufentanil showed better postoperative analgesia without adverse effects, as well as facilitated bowel movements for patients undergoing laparoscopic nephrectomy. TRIAL REGISTRATION: We registered this study in a Chinese Clinical Trial Registry (ChiCTR) centre on Dec 23 2015 and received the registration number: ChiCTR-IPR-15007628 .

12.
Chin J Cancer Res ; 30(4): 415-424, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30210221

RESUMO

OBJECTIVE: To identify the differences among preinvasive lesions, minimally invasive adenocarcinomas (MIAs) and invasive pulmonary adenocarcinomas (IPAs) based on radiomic feature analysis with computed tomography (CT). METHODS: A total of 109 patients with ground-glass opacity lesions (GGOs) in the lungs determined by CT examinations were enrolled, all of whom had received a pathologic diagnosis. After the manual delineation and segmentation of the GGOs as regions of interest (ROIs), the patients were subdivided into three groups based on pathologic analyses: the preinvasive lesions (including atypical adenomatous hyperplasia and adenocarcinoma in situ) subgroup, the MIA subgroup and the IPA subgroup. Next, we obtained the texture features of the GGOs. The data analysis was aimed at finding both the differences between each pair of the groups and predictors to distinguish any two pathologic subtypes using logistic regression. Finally, a receiver operating characteristic (ROC) curve was applied to accurately evaluate the performances of the regression models. RESULTS: We found that the voxel count feature (P<0.001) could be used as a predictor for distinguishing IPAs from preinvasive lesions. However, the surface area feature (P=0.040) and the extruded surface area feature (P=0.013) could be predictors of IPAs compared with MIAs. In addition, the correlation feature (P=0.046) could distinguish preinvasive lesions from MIAs better. CONCLUSIONS: Preinvasive lesions, MIAs and IPAs can be discriminated based on texture features within CT images, although the three diseases could all appear as GGOs on CT images. The diagnoses of these three diseases are very important for clinical surgery.

13.
Physiol Genomics ; 49(3): 180-192, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130427

RESUMO

The kidneys play a vital role in the excretion of waste products and the regulation of electrolytes, maintenance of acid-base balance, regulation of blood pressure, and production of several hormones. Any alteration in the structure of the nephron (basic functional unit of the kidney) can have a major impact on the kidney's ability to work efficiently. Progressive decline in kidney function can lead to serious illness and ultimately death if not treated by dialysis or transplantation. While there have been numerous studies that implicate lower nephron numbers as being an important factor in influencing susceptibility to developing hypertension and chronic kidney disease, a direct association has been difficult to establish because of three main limitations: 1) the large variation in nephron number observed in the human population; 2) no established reliable noninvasive methods to determine nephron complement; and 3) to date, nephron measurements have been done after death, which doesn't adequately account for potential loss of nephrons with age or disease. In this review, we will provide an overview of kidney structure/function, discuss the current literature for both humans and other species linking nephron deficiency and cardio-renal complications, as well as describe the major molecular signaling factors involved in nephrogenesis that modulate variation in nephron number. As more detailed knowledge about the molecular determinants of nephron development and the role of nephron endowment in the cardio-renal system is obtained, it will hopefully provide clinicians the ability to accurately identify people at risk to develop CKD/hypertension and lead to a shift in patient care from disease treatment to prevention.


Assuntos
Hipertensão/genética , Hipertensão/fisiopatologia , Néfrons/patologia , Néfrons/fisiopatologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Modelos Biológicos , Néfrons/embriologia , Organogênese/genética
14.
Am J Physiol Renal Physiol ; 310(10): F1054-64, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26936874

RESUMO

There is little clinical data of how hypertension may influence individuals with nephron deficiency in the context of being born with a single kidney. We recently developed a new rat model (the heterogeneous stock-derived model of unilateral renal agenesis rat) that is born with a single kidney and exhibits progressive kidney injury and decline in kidney function with age. We hypothesized that DOCA-salt would induce a greater increase in blood pressure and therefore accelerate the progression of kidney injury in rats born with a solitary kidney compared with rats that have undergone unilateral nephrectomy. Time course evaluation of blood pressure, kidney injury, and renal hemodynamics was performed in the following six groups of animals from weeks 13 to 18: 1) DOCA-treated rats with a solitary kidney (DOCA+S group), 2) placebo-treated rats with a solitary kidney, 3) DOCA-treated control rats with two kidneys (DOCA+C group), 4) placebo-treated control rats with two kidneys, 5) DOCA-treated rats with two kidneys that underwent uninephrectomy (DOCA+UNX8 group), and 6) placebo-treated rats with two kidneys that underwent uninephrectomy. DOCA+S rats demonstrated a significant rise (P < 0.05) in blood pressure (192 ± 4 mmHg), proteinuria (205 ± 31 mg/24 h), and a decline in glomerular filtration rate (600 ± 42 µl·min(-1)·g kidney weight(-1)) relative to the DOCA+UNX8 (173 ± 3 mmHg, 76 ± 26 mg/24 h, and 963 ± 36 µl·min(-1)·g kidney weight(-1)) and DOCA+C (154 ± 2 mmHg, 7 ± 1 mg/24 h, and 1,484 ± 121 µl·min(-1)·g kidney weight(-1)) groups. Placebo-treated groups showed no significant change among the three groups. An assessment of renal injury markers via real-time PCR/Western blot analysis and histological analysis was concordant with the measured physiological parameters. In summary, congenital solitary kidney rats are highly susceptible to the induction of hypertension compared with uninephrectomized rats, suggesting that low nephron endowment is an important driver of elevated blood pressure, hastening nephron injury through the transmission of elevated systemic blood pressure and thereby accelerating decline in kidney function.


Assuntos
Hipertensão/induzido quimicamente , Nefropatias/congênito , Rim/anormalidades , Insuficiência Renal/etiologia , Animais , Anormalidades Congênitas , Acetato de Desoxicorticosterona , Progressão da Doença , Feminino , Hipertensão/complicações , Hipertensão/patologia , Rim/patologia , Nefropatias/complicações , Masculino , Miocárdio/patologia , Nefrectomia , Ratos , Sódio
15.
J Am Soc Nephrol ; 26(7): 1634-46, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25349207

RESUMO

Some studies have reported up to 40% of patients born with a single kidney develop hypertension, proteinuria, and in some cases renal failure. The increased susceptibility to renal injury may be due, in part, to reduced nephron numbers. Notably, children who undergo nephrectomy or adults who serve as kidney donors exhibit little difference in renal function compared with persons who have two kidneys. However, the difference in risk between being born with a single kidney versus being born with two kidneys and then undergoing nephrectomy are unclear. Animal models used previously to investigate this question are not ideal because they require invasive methods to model congenital solitary kidney. In this study, we describe a new genetic animal model, the heterogeneous stock-derived model of unilateral renal agenesis (HSRA) rat, which demonstrates 50%-75% spontaneous incidence of a single kidney. The HSRA model is characterized by reduced nephron number (more than would be expected by loss of one kidney), early kidney/glomerular hypertrophy, and progressive renal injury, which culminates in reduced renal function. Long-term studies of temporal relationships among BP, renal hemodynamics, and renal function demonstrate that spontaneous single-kidney HSRA rats are more likely than uninephrectomized normal littermates to exhibit renal impairment because of the combination of reduced nephron numbers and prolonged exposure to renal compensatory mechanisms (i.e., hyperfiltration). Future studies with this novel animal model may provide additional insight into the genetic contributions to kidney development and agenesis and the factors influencing susceptibility to renal injury in individuals with congenital solitary kidney.


Assuntos
Rim/anormalidades , Néfrons/fisiopatologia , Insuficiência Renal Crônica/etiologia , Anormalidades Urogenitais/complicações , Anormalidades Urogenitais/genética , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/fisiopatologia , Adulto , Análise de Variância , Animais , Causalidade , Criança , Modelos Animais de Doenças , Progressão da Doença , Feminino , Taxa de Filtração Glomerular , Humanos , Hipertrofia/patologia , Masculino , Modelos Genéticos , Nefrectomia/efeitos adversos , Proteinúria/fisiopatologia , Distribuição Aleatória , Ratos , Insuficiência Renal Crônica/fisiopatologia , Medição de Risco
16.
J Med Genet ; 51(3): 176-84, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24367055

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a primary disorder characterised by asymmetric thickening of septum and left ventricular wall, with a prevalence of 0.2% in the general population. OBJECTIVE: To describe a novel mitochondrial DNA mutation and its association with the pathogenesis of HCM. METHODS AND RESULTS: All maternal members of a Chinese family with maternally transmitted HCM exhibited variable severity and age at onset, and were implanted permanent pacemakers due to complete atrioventricular block (AVB). Nuclear gene screening (MYH7, MYBPC3, TNNT2 and TNNI3) was performed, and no potential pathogenic mutation was identified. Mitochondrial DNA sequencing analysis identified a novel homoplasmic 16S rRNA 2336T>C mutation. This mutation was exclusively present in maternal members and absent in non-maternal members. Conservation index by comparison to 16 other vertebrates was 94.1%. This mutation disturbs the 2336U-A2438 base pair in the stem-loop structure of 16S rRNA domain III, which is involved in the assembly of mitochondrial ribosome. Oxygen consumption rate of the lymphoblastoid cells carrying 2336T>C mutation had decreased by 37% compared with controls. A reduction in mitochondrial ATP synthesis and an increase in reactive oxidative species production were also observed. Electron microscopic analysis indicated elongated mitochondria and abnormal mitochondrial cristae shape in mutant cells. CONCLUSIONS: It is suggested that the 2336T>C mutation is one of pathogenic mutations of HCM. This is the first report of mitochondrial 16S rRNA 2336T>C mutation and an association with maternally inherited HCM combined with AVB. Our findings provide a new insight into the pathogenesis of HCM.


Assuntos
Cardiomiopatia Hipertrófica/genética , Proteínas Mitocondriais/genética , Mutação/genética , RNA Ribossômico 16S/genética , Adolescente , Adulto , Povo Asiático/genética , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo
17.
Mamm Genome ; 24(3-4): 95-104, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23404175

RESUMO

Cataracts are a major cause of blindness. The most common forms of cataracts are age- and UV-related and develop mostly in the elderly, while congenital cataracts appear at birth or in early childhood. The Dahl salt-sensitive (SS/Jr) rat is an extensively used model of salt-sensitive hypertension that exhibits concomitant renal disease. In the mid-1980s, cataracts appeared in a few animals in the Dahl S colony, presumably the result of a spontaneous mutation. The mutation was fixed and bred to establish the SS/Jr-Ctr substrain. The SS/Jr-Ctr substrain has been used exclusively by a single investigator to study the role of steroids and hypertension. Using a classical positional cloning approach, we localized the cataract gene with high resolution to a less than 1-Mbp region on chromosome 9 using an F1(SS/Jr-Ctr × SHR) × SHR backcross population. The 1-Mbp region contained only 13 genes, including 4 genes from the γ-crystallins (Cryg) gene family, which are known to play a role in cataract formation. All of the γ-crystallins were sequenced and a novel point mutation in the start codon (ATG → GTG) of the Crygd gene was identified. This led to the complete absence of the CRYGD protein in the eyes of the SS/Jr-Ctr strain. In summary, the identification of the genetic cause in this novel cataract model may provide an opportunity to better understand the development of cataracts, particularly in the context of hypertension.


Assuntos
Catarata/genética , Códon de Iniciação/genética , Mutação , gama-Cristalinas/genética , Animais , Catarata/diagnóstico , Catarata/patologia , Clonagem Molecular , Feminino , Ligação Genética , Genótipo , Hipertensão/genética , Masculino , Locos de Características Quantitativas , Ratos , Ratos Endogâmicos SHR , Análise de Sequência de DNA
18.
Nat Commun ; 13(1): 2422, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504916

RESUMO

Chronic kidney diseases and acute kidney injury are mechanistically distinct kidney diseases. While chronic kidney diseases are associated with podocyte injury, acute kidney injury affects renal tubular epithelial cells. Despite these differences, a cardinal feature of both acute and chronic kidney diseases is dysregulated actin cytoskeleton. We have shown that pharmacological activation of GTPase dynamin ameliorates podocyte injury in murine models of chronic kidney diseases by promoting actin polymerization. Here we establish dynamin's role in modulating stiffness and polarity of renal tubular epithelial cells by crosslinking actin filaments into branched networks. Activation of dynamin's crosslinking capability by a small molecule agonist stabilizes the actomyosin cortex of the apical membrane against injury, which in turn preserves renal function in various murine models of acute kidney injury. Notably, a dynamin agonist simultaneously attenuates podocyte and tubular injury in the genetic murine model of Alport syndrome. Our study provides evidence for the feasibility and highlights the benefits of novel holistic nephron-protective therapies.


Assuntos
Injúria Renal Aguda , Podócitos , Insuficiência Renal Crônica , Citoesqueleto de Actina , Injúria Renal Aguda/prevenção & controle , Animais , Dinaminas , Feminino , Humanos , Rim/fisiologia , Masculino , Camundongos , Insuficiência Renal Crônica/tratamento farmacológico
19.
Gene ; 736: 144417, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32006593

RESUMO

Sphingosine 1-phosphate receptor 1 (S1PR1) plays a pivotal role in mediating trafficking and migration of immune cells. Previous reports also identify S1PR1 as an important susceptibility gene of asthma and other autoimmune disorders. However, little has been known about the regulatory mechanism of S1PR1 expression. Thus we systematically investigated the transcriptional regulation of S1PR1 in this study. Promoter activity of S1PR1 gene was carefully screened using series of pGL3-Basic reporter vectors, containing full length (range from transcription start site to upstream -1 kb region) or several truncated fragments of S1PR1 promoter. We identified an area (from -29 to -12 bp) of the S1PR1 promoter as the minimal promoter region. Bioinformatics prediction results showed that several transcription factors were recruited to these sites. EMSA and ChIP assays demonstrated the transcriptional factor STAT1 could bind to the region. We also found that the level of S1PR1 level was significantly reduced when STAT1 was knocked-down. Consistent with the reduction of S1PR1 caused by depletion of STAT1, overexpression of STAT1 resulted in up-regulation of S1PR1. In addition, both mRNA and protein levels of S1PR1 were increased when STAT1 was activated by IFN-γ, and decreased when STAT1 was inhibited by fludarabine. Besides, the levels of STAT1 and S1PR1 expression were positively correlated in peripheral blood leukocytes derived from 41 healthy individuals. Our study showed that transcription factor STAT1 could bind to upstream region of -29 bp to -12 bp of the S1PR1 promoter and stimulate the expression of S1PR1.


Assuntos
Regiões Promotoras Genéticas/genética , Fator de Transcrição STAT1/genética , Receptores de Esfingosina-1-Fosfato/genética , Transcrição Gênica/genética , Linhagem Celular , Linhagem Celular Tumoral , Regulação da Expressão Gênica/genética , Genes Reporter/genética , Células HEK293 , Células HeLa , Humanos , Interferon gama/genética , RNA Mensageiro/genética , Regulação para Cima/genética
20.
Open Med (Wars) ; 14: 25-31, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30886897

RESUMO

Methyltransferase-like 3 (METTL3) was originally known to be responsible for N6-methyladenosine (m6A) modification of mRNA. Recent studies have found that METTL3 plays important roles in a variety of tumors by regulating the translation of oncogenes. However, the functional and regulating mechanisms of METTL3 in human gastric cancer have not yet been understood. Here we knocked down METTL3 in human gastric cancer cell lines, AGS and MKN45, by using shRNA transfection. RT-qPCR assay and western blotting verified the effectiveness of RNA interference on mRNA and protein levels, respectively. Then we found that METTL3 knockdown inhibited cell proliferation, migration and invasion in AGS and MKN45 cells. Moreover, METTL3 knockdown decreased Bcl2 and increased Bax and active Caspase-3 in gastric cancer cells, which suggested the apoptotic pathway was activated. Mechanistic investigation suggested that METTL3 led to inactivation of the AKT signaling pathway in human gastric cancer cells, including decreased phosphorylation levels of AKT and expression of down-stream effectors p70S6K and Cyclin D1. In conclusion, our study reveals that down-regulation of METTL3 inhibits the proliferation and mobility of human gastric cancer cells and leads to inactivation of the AKT signaling pathway, suggesting that METTL3 may be a potential target for the treatment of human gastric cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA