Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(14): e2317492121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547056

RESUMO

Energy metabolism is highly interdependent with adaptive cell migration in vivo. Mechanical confinement is a critical physical cue that induces switchable migration modes of the mesenchymal-to-amoeboid transition (MAT). However, the energy states in distinct migration modes, especially amoeboid-like stable bleb (A2) movement, remain unclear. In this report, we developed multivalent DNA framework-based nanomachines to explore strategical mitochondrial trafficking and differential ATP levels during cell migration in mechanically heterogeneous microenvironments. Through single-particle tracking and metabolomic analysis, we revealed that fast A2-moving cells driven by biomimetic confinement recruited back-end positioning of mitochondria for powering highly polarized cytoskeletal networks, preferentially adopting an energy-saving mode compared with a mesenchymal mode of cell migration. We present a versatile DNA nanotool for cellular energy exploration and highlight that adaptive energy strategies coordinately support switchable migration modes for facilitating efficient metastatic escape, offering a unique perspective for therapeutic interventions in cancer metastasis.


Assuntos
Amoeba , Linhagem Celular Tumoral , Movimento Celular , Fenômenos Físicos
2.
Cell Mol Life Sci ; 81(1): 123, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459149

RESUMO

Maintaining genomic stability is a prerequisite for proliferating NPCs to ensure genetic fidelity. Though histone arginine methylation has been shown to play important roles in safeguarding genomic stability, the underlying mechanism during brain development is not fully understood. Protein arginine N-methyltransferase 5 (PRMT5) is a type II protein arginine methyltransferase that plays a role in transcriptional regulation. Here, we identify PRMT5 as a key regulator of DNA repair in response to double-strand breaks (DSBs) during NPC proliferation. Prmt5F/F; Emx1-Cre (cKO-Emx1) mice show a distinctive microcephaly phenotype, with partial loss of the dorsal medial cerebral cortex and complete loss of the corpus callosum and hippocampus. This phenotype is resulted from DSBs accumulation in the medial dorsal cortex followed by cell apoptosis. Both RNA sequencing and in vitro DNA repair analyses reveal that PRMT5 is required for DNA homologous recombination (HR) repair. PRMT5 specifically catalyzes H3R2me2s in proliferating NPCs in the developing mouse brain to enhance HR-related gene expression during DNA repair. Finally, overexpression of BRCA1 significantly rescues DSBs accumulation and cell apoptosis in PRMT5-deficient NSCs. Taken together, our results show that PRMT5 maintains genomic stability by regulating histone arginine methylation in proliferating NPCs.


Assuntos
Células-Tronco Neurais , Reparo de DNA por Recombinação , Animais , Camundongos , Arginina/metabolismo , Reparo do DNA , Instabilidade Genômica , Genômica , Histonas/genética , Histonas/metabolismo , Células-Tronco Neurais/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo
3.
Biotechnol Bioeng ; 121(5): 1532-1542, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38265115

RESUMO

Carbonyl reductases are useful for producing optically active alcohols from their corresponding prochiral ketones. Herein, we applied a computer-assisted strategy to increase the thermostability of a previously constructed carbonyl reductase, LsCRM4 (N101D/A117G/F147L/E145A), which showed an outstanding activity in the synthesis of the ticagrelor precursor (1S)-2-chloro-1-(3,4-difluorophenyl)ethanol. The stability changes introduced by mutations at the flexible sites were predicted using the computational tools FoldX, I-Mutant 3.0, and DeepDDG, which demonstrated that 12 virtually screened mutants could be thermally stable; 11 of these mutants exhibited increased thermostability. Then a superior mutant LsCRM4-V99L/D150F was screened out from the library that was constructed by iteratively combining the beneficial sites, which showed a 78% increase in activity and a 17.4°C increase in melting temperature compared to LsCRM4. Our computer-assisted design and combinatorial strategy dramatically increased the efficiency of thermostable enzyme production.


Assuntos
Oxirredutases do Álcool , Etanol , Ticagrelor , Estabilidade Enzimática , Oxirredutases do Álcool/genética , Temperatura , Computadores
4.
J Fish Dis ; 47(3): e13896, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38054569

RESUMO

Nocardia seriolae is the primary aetiological agent of nocardiosis in fish, which causes mass mortality in freshwater and marine fish. ß-ketoacyl-ACP synthase (KAS) is one of the essential enzymes in the synthesis of mycolic acids (MASs) in Mycobacterium spp. and has been chosen as the target for therapeutic intervention in mycobacterial diseases. In the present study, a kasB homologue gene (kasB) was identified in the genome of N. seriolae, and the gene-deficient mutant (ΔkasB) was generated based on a clinical isolate, XSYC-Ns. Compared to the wild-type (WT) strain, the ΔkasB showed a measurably growth defect in vitro but retained the acid-fastness in acid-fast staining. Observation of the cell ultrastructure showed some alterations in the cell wall of the ΔkasB strain. Compared to its original strain, the cell wall lipid layer seemed sparser, and a wider electron-transparent zone was observed in the cell wall of ΔkasB strain. Moreover, the ΔkasB strain showed impaired ability of cell invasion as well as intracellular survival in the cell line originating from the head-kidney of the large yellow croaker (LYC-hK), compared to its original strain. In addition, the deficiency of ΔkasB significantly attenuated the virulence of N. seriolae in largemouth bass. The present study suggested that the ΔkasB gene might be involved in the synthesis of extracellular cell-wall lipids in N. seriolae and play a crucial role in its pathogenicity.


Assuntos
Bass , Doenças dos Peixes , Nocardiose , Nocardia , Animais , Virulência/genética , Doenças dos Peixes/microbiologia , Nocardia/genética , Nocardiose/veterinária , Nocardiose/microbiologia
5.
Nano Lett ; 23(14): 6727-6735, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37459599

RESUMO

Cell migration occurs in confined microenvironments, which plays a vital role in the process of tumor metastasis. However, it is challenging to study their behaviors in vivo. Here we developed a cell squeeze system that can be scaled down to micrometers to mimic native physical confined microenvironments, wherein degrees of surface adhesion and mechanical constraints could be manipulated in order to investigate cell-migrating behaviors. Based on the microscale cell squeeze system, we found the synergistic role of lamin A/C and vimentin in cell transition and migration under strong confinement. The dynamic variations in lamin A/C and vimentin expression establish a positive feedback loop in response to confinement, effectively promoting amoeboid migration by modulating nuclear deformability while ensuring cell viability. This work shed light on modulating cell response to microenvironments by altering the expression of lamin A/C and/or vimentin, which may be a more efficient way of inhibiting cancer metastasis.


Assuntos
Movimento Celular , Lamina Tipo A , Núcleo Celular/metabolismo , Filamentos Intermediários , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Vimentina/metabolismo , Humanos , Células HeLa
6.
Anal Chem ; 95(4): 2366-2374, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36655581

RESUMO

Before fertilization, sperms adhere to oviductal epithelium cells, and only a restrictive number of winner sperms can escape to reach the egg. To study the sperm escape behavior from the oviductal surface, we developed a microfluidic chip to fabricate an adhesive surface and to create a gradient of progesterone (P4) for mimicking the oviduct microenvironment in vivo. We identified three sperm motion patterns in such a microenvironment─anchored spin, run-and-spin, and escaped mode. By using kinetic analysis, we verified the hypothesis that the responsive rotation energy anchored with the adhered sperm head determines whether the sperm is trapped or detaching, which is defined as the hammer flying strategy of successful escape after accumulating energy in the process of rotating. Intriguingly, this hammer-throw escaping is able to be triggered by the P4 biochemical stimulation. Our results revealed the tangled process of sperm escape before fertilization in the ingenious microfluidic system.


Assuntos
Biomimética , Sêmen , Humanos , Feminino , Masculino , Animais , Cinética , Espermatozoides , Oviductos
7.
J Med Virol ; 95(8): e29041, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37621182

RESUMO

The emerging outbreak of monkeypox is closely associated with the viral infection and spreading, threatening global public health. Virus-induced cell migration facilitates viral transmission. However, the mechanism underlying this type of cell migration remains unclear. Here we investigate the motility of cells infected by vaccinia virus (VACV), a close relative of monkeypox, through combining multi-omics analyses and high-resolution live-cell imaging. We find that, upon VACV infection, the epithelial cells undergo epithelial-mesenchymal transition-like transformation, during which they lose intercellular junctions and acquire the migratory capacity to promote viral spreading. After transformation, VACV-hijacked RhoA signaling significantly alters cellular morphology and rearranges the actin cytoskeleton involving the depolymerization of robust actin stress fibers, leading-edge protrusion formation, and the rear-edge recontraction, which coordinates VACV-induced cell migration. Our study reveals how poxviruses alter the epithelial phenotype and regulate RhoA signaling to induce fast migration, providing a unique perspective to understand the pathogenesis of poxviruses.


Assuntos
Mpox , Vaccinia virus , Humanos , Movimento Celular , Surtos de Doenças , Células Epiteliais
8.
Crit Rev Biotechnol ; 43(1): 121-141, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34865578

RESUMO

Glycoside hydrolases (GHs) exhibit high activity and stability under harsh conditions, such as high temperatures and extreme pHs, given their wide use in industrial biotechnology. However, strategies for improving the acidophilic and alkalophilic adaptations of GHs are poorly summarized due to the complexity of the mechanisms of these adaptations. This review not only highlights the adaptation mechanisms of acidophilic and alkalophilic GHs under extreme pH conditions, but also summarizes the recent advances in engineering the pH performances of GHs with a focus on four strategies of protein engineering, enzyme immobilization, chemical modification, and medium engineering (additives). The examples described here summarize the methods used in modulating the pH performances of GHs and indicate that methods integrated in different protein engineering techniques or methods are efficient to generate industrial biocatalysts with the desired pH performance and other adapted enzyme properties.


Assuntos
Glicosídeo Hidrolases , Engenharia de Proteínas , Glicosídeo Hidrolases/química , Biotecnologia , Enzimas Imobilizadas/química
9.
Biotechnol Bioeng ; 120(12): 3427-3445, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37638646

RESUMO

Structural information can help engineer enzymes. Usually, specific amino acids in particular regions are targeted for functional reconstruction to enhance the catalytic performance, including activity, stereoselectivity, and thermostability. Appropriate selection of target sites is the key to structure-based design, which requires elucidation of the structure-function relationships. Here, we summarize the mutations of residues in different specific regions, including active center, access tunnels, and flexible loops, on fine-tuning the catalytic performance of enzymes, and discuss the effects of altering the local structural environment on the functions. In addition, we keep up with the recent progress of structure-based approaches for enzyme engineering, aiming to provide some guidance on how to take advantage of the structural information.


Assuntos
Aminoácidos , Engenharia de Proteínas , Biocatálise , Catálise , Estabilidade Enzimática
10.
Biotechnol Bioeng ; 120(12): 3543-3556, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641876

RESUMO

Aldo-keto reductases (AKRs) are important biocatalysts that can be used to synthesize chiral pharmaceutical alcohols. In this study, the catalytic activity and stereoselectivity of a NADPH-dependent AKR from Kluyveromyces dobzhanskii (KdAKR) toward t-butyl 6-chloro (5S)-hydroxy-3-oxohexanoate ((5S)-CHOH) were improved by mutating its residues in the loop regions around the substrate-binding pocket. And the thermostability of KdAKR was improved by a consensus sequence method targeted on the flexible regions. The best mutant M6 (Y28A/L58I/I63L/G223P/Y296W/W297H) exhibited a 67-fold higher catalytic efficiency compared to the wild-type (WT) KdAKR, and improved R-selectivity toward (5S)-CHOH (dep value from 47.6% to >99.5%). Moreover, M6 exhibited a 6.3-fold increase in half-life (t1/2 ) at 40°C compared to WT. Under the optimal conditions, M6 completely converted 200 g/L (5S)-CHOH to diastereomeric pure t-butyl 6-chloro-(3R, 5S)-dihydroxyhexanoate ((3R, 5S)-CDHH) within 8.0 h, with a space-time yield of 300.7 g/L/day. Our results deepen the understandings of the structure-function relationship of AKRs, providing a certain guidance for the modification of other AKRs.


Assuntos
Caproatos , Kluyveromyces , Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/química , Catálise , Aldeído Redutase/genética
11.
Biotechnol Bioeng ; 120(6): 1521-1530, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36799475

RESUMO

Carbonyl reductase (CR)-catalyzed bioreduction in the organic phase and the neat substrate reaction system is a lasting challenge, placing higher requirements on the performance of enzymes. Protein engineering is an effective method to enhance the properties of enzymes for industrial applications. In the present work, a single point mutation E145A on our previously constructed CR mutant LsCRM3 , coevolved thermostability, and activity. Compared with LsCRM3 , the catalytic efficiency kcat /KM of LsCRM3 -E145A (LsCRM4 ) was increased from 6.6 to 21.9 s-1 mM-1 . Moreover, E145A prolonged the half-life t1/2 at 40°C from 4.1 to 117 h, T m ${T}_{m}$ was increased by 5°C, T 50 30 ${T}_{50}^{30}$ was increased by 14.6°C, and Topt was increased by 15°C. Only 1 g/L of lyophilized Escherichia coli cells expressing LsCRM4 completely reduced up to 600 g/L 2-chloro-1-(3,4-difluorophenyl)ethanone (CFPO) within 13 h at 45°C, yielding the corresponding (1S)-2-chloro-1-(3,4-difluorophenyl)ethanol ((S)-CFPL) in 99.5% eeP , with a space-time yield of 1.0 kg/L d, the substrate to catalyst ratios (S/C) of 600 g/g. Compared with LsCRM3 , the substrate loading was increased by 50%, with the S/C increased by 14 times. Compared with LsCRWT , the substrate loading was increased by 6.5 times. In contrast, LsCRM4 completely converted 600 g/L CFPO within 12 h in the neat substrate bioreaction system.


Assuntos
Mutação Puntual , Engenharia de Proteínas , Catálise , Etanol , Especificidade por Substrato
12.
Anal Chem ; 94(9): 4030-4038, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35213802

RESUMO

Spatial imaging of RNAs in single cells is extremely charming for deciphering of regulatory mechanisms in multiple migration modes during tumor metastasis. Herein, enzyme-free-mediated cascade amplified nanoprobes were designed for in situ single-molecule imaging of dual-microRNAs (miRNAs) in switchable migrating cells. Differential expression and localization of dual-miRNAs were clearly exhibited in multiple cell lines attributed to enhanced sensitivity via the cascade signal amplification strategy. Significantly, in situ three-dimensional (3D) imaging of dual-miRNAs in transition of cell migration phenotypes was successfully reconstructed in both non-confined and confined microenvironments in vitro, of which differential spatial distribution was observed in a single cell. This is very promising for exploring key roles of spatial RNA distribution in migrating cells at the single-molecule level, which will advance revealing the molecular mechanism and physical principle in 3D cell migration in vivo.


Assuntos
MicroRNAs , Biomimética , Movimento Celular , MicroRNAs/genética , MicroRNAs/metabolismo , Nanotecnologia , Imagem Individual de Molécula
13.
Anal Chem ; 94(2): 768-776, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34928127

RESUMO

Deep mining the proteome of trace biological samples is critical for biomedical applications. However, it remains a challenge due to the loss of analytes caused by current sample preparation procedures. To address this, we recently developed a single-pot and miniaturized in-solution digestion (SMID) method for minute sample handling with three streamlined steps and completed within 3 h. The SMID approach outperformed the traditional workflow in substantially saving time, reducing sample loss, and exhibiting extensive applicability for 10-100 000 cell analysis. This user-friendly and high-sensitivity strategy enables ∼5300 proteins and 53 000 peptides to be confidently identified within 1 h of mass spectrometry (MS) time from a small amount of 1000 HeLa cells. In addition, we accurately and robustly detected proteomes in 10 mouse oocytes with excellent reproducibility. We further adopted SMID for the proteome analysis in cell migration under confinement, which induced cells to undergo a mesenchymal-amoeboid transition (MAT). During the MAT, a systematic quantitative proteome map of 1000 HeLa cells was constructed with seven expression profile clusters, which illustrated the application of SMID and provided a fundamental resource to investigate the mechanism of MAT.


Assuntos
Amoeba , Proteoma , Proteômica , Amoeba/química , Amoeba/metabolismo , Animais , Células HeLa , Humanos , Camundongos , Proteoma/análise , Proteômica/métodos , Reprodutibilidade dos Testes
14.
PLoS Biol ; 17(10): e3000461, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31600191

RESUMO

Dendritic spine development is crucial for the establishment of excitatory synaptic connectivity and functional neural circuits. Alterations in spine morphology and density have been associated with multiple neurological disorders. Autism candidate gene disconnected-interacting protein homolog 2 A (DIP2A) is known to be involved in acetylated coenzyme A (Ac-CoA) synthesis and is primarily expressed in the brain regions with abundant pyramidal neurons. However, the role of DIP2A in the brain remains largely unknown. In this study, we found that deletion of Dip2a in mice induced defects in spine morphogenesis along with thin postsynaptic density (PSD), and reduced synaptic transmission of pyramidal neurons. We further identified that DIP2A interacted with cortactin, an activity-dependent spine remodeling protein. The binding activity of DIP2A-PXXP motifs (P, proline; X, any residue) with the cortactin-Src homology 3 (SH3) domain was critical for maintaining the level of acetylated cortactin. Furthermore, Dip2a knockout (KO) mice exhibited autism-like behaviors, including excessive repetitive behaviors and defects in social novelty. Importantly, acetylation mimetic cortactin restored the impaired synaptic transmission and ameliorated repetitive behaviors in these mice. Altogether, our findings establish an initial link between DIP2A gene variations in autism spectrum disorder (ASD) and highlight the contribution of synaptic protein acetylation to synaptic processing.


Assuntos
Acetilcoenzima A/genética , Transtorno do Espectro Autista/genética , Cortactina/genética , Espinhas Dendríticas/metabolismo , Morfogênese/genética , Proteínas Nucleares/genética , Processamento de Proteína Pós-Traducional , Acetilcoenzima A/deficiência , Acetilação , Motivos de Aminoácidos , Animais , Animais Recém-Nascidos , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Sítios de Ligação , Cortactina/metabolismo , Espinhas Dendríticas/ultraestrutura , Modelos Animais de Doenças , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Teste de Complementação Genética , Camundongos , Camundongos Knockout , Proteínas Nucleares/deficiência , Densidade Pós-Sináptica/metabolismo , Densidade Pós-Sináptica/ultraestrutura , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Células Piramidais/metabolismo , Células Piramidais/ultraestrutura , Transmissão Sináptica
15.
Bioorg Chem ; 127: 105991, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35816872

RESUMO

Traditional screening methods of enzyme engineering often require building large mutant libraries to screen for potentially beneficial sites, which are often time-consuming and labor-intensive with low mining efficiency. In this study, a novel enzyme engineering strategy was established to modify carbonyl reductase LsCR for the synthesis of (1S)-2-chloro-1-(3,4-difluorophenyl) ethanol ((S)-CFPL), which is a key intermediate of anticoagulant drug ticagrelor. The strategy was developed by combining HotSpot, FireProt and multiple sequence alignment, resulting in the construction of a "small and smart" mutant library including 10 mutations. Among them, 5 mutations were positive, resulting in a 50% mining accuracy of beneficial sites. Finally, a highly active mutant LsCRM3 (N101D/A117G/F147L) was obtained by further screening through saturation mutation and iterative mutation. Compared with wild type (WT) LsCR, the catalytic activity of LsCRM3 was increased by 4.7 times, the catalytic efficiency kcat/KM value was increased by 2.9 times, and the half-life t1/2 at 40 °C was increased by 1.3 times. Due to the low aqueous solubility of the substrate 2-chloro-1-(3,4-difluorophenyl) ethanone (CFPO), isopropanol was used as not only the co-substrate but also co-solvent. In the presence of 40% (v/v) isopropanol, LsCRM3 completely reduced 400 g/L CFPO to enantiomerically pure CFPL (99.9%, e.e.) in 11 h with a space-time yield (STY) as high as 809 g/L∙d.


Assuntos
2-Propanol , Etanol , Oxirredutases do Álcool/genética , Catálise , Estereoisomerismo
16.
Acta Pharmacol Sin ; 43(5): 1299-1310, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34381182

RESUMO

Osteoarthritis (OA) is the most common arthritis with a rapidly increasing prevalence. Disease progression is irreversible, and there is no curative therapy available. During OA onset, abnormal mechanical loading leads to excessive osteoclastogenesis and bone resorption in subchondral bone, causing a rapid subchondral bone turnover, cyst formation, sclerosis, and finally, articular cartilage degeneration. Moreover, osteoclast-mediated angiogenesis and sensory innervation in subchondral bone result in abnormal vascularization and OA pain. The traditional Chinese medicine Panax notoginseng (PN; Sanqi) has long been used in treatment of bone diseases including osteoporosis, bone fracture, and OA. In this study we established two-dimensional/bone marrow mononuclear cell/cell membrane chromatography/time of flight mass spectrometry (2D/BMMC/CMC/TOFMS) technique and discovered that diterbutyl phthalate (DP) was the active constituent in PN inhibiting osteoclastogenesis. Then we explored the therapeutic effect of DP in an OA mouse model with anterior cruciate ligament transaction (ACLT). After ACLT was conducted, the mice received DP (5 mg·kg-1·d-1, ip) for 8 weeks. Whole knee joint tissues of the right limb were harvested at weeks 2, 4, and 8 for analysis. We showed that DP administration impeded overactivated osteoclastogenesis in subchondral bone and ameliorated articular cartilage deterioration. DP administration blunted aberrant H-type vessel formation in subchondral bone marrow and alleviated OA pain assessed in Von Frey test and thermal plantar test. In RANKL-induced RAW264.7 cells in vitro, DP (20 µM) retarded osteoclastogenesis by suppressing osteoclast fusion through inhibition of the ERK/c-fos/NFATc1 pathway. DP treatment also downregulated the expression of dendritic cell-specific transmembrane protein (DC-STAMP) and d2 isoform of the vacuolar (H+) ATPase V0 domain (Atp6v0d2) in the cells. In conclusion, we demonstrate that DP prevents OA progression by inhibiting abnormal osteoclastogenesis and associated angiogenesis and neurogenesis in subchondral bone.


Assuntos
Osteoartrite , Osteoclastos , Animais , Ligamento Cruzado Anterior/metabolismo , Camundongos , Fatores de Transcrição NFATC/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/etiologia , Osteoartrite/metabolismo , Osteoclastos/metabolismo , Dor/metabolismo , Ácidos Ftálicos
17.
Biotechnol Bioeng ; 118(11): 4441-4452, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34374988

RESUMO

Enzyme engineering usually generates trade-offs between activity, stability, and selectivity. Herein, we report semirational engineering of an aldo-keto reductase (AKR) KmAKR for simultaneously enhancing its thermostability and catalytic activity. Previously, we constructed KmAKRM9 (W297H/Y296W/K29H/Y28A/T63M/A30P/T302S/N109K/S196C), which showed outstanding activity towards t-butyl 6-chloro-(3R,5S)-dihydroxyhexanoate ((3R,5S)-CDHH), and t-butyl 6-cyano-(3R,5R)-dihydroxyhexanoate, the key chiral building blocks of rosuvastatin and atorvastatin. Under the guidance of computer-aided design including consensus residues analysis and molecular dynamics (MD) simulations, K164, S182, S232, and Q266 were dug out for their thermostability conferring roles, generating the "best" mutant KmAKRM13 (W297H/Y296W/K29H/Y28A/T63M/A30P/T302S/N109K/S196C/K164E/S232A/S182H/Q266D). The Tm and T5015 values of KmAKRM13 were 10.4 and 6.1°C higher than that of KmAKRM9 , respectively. Moreover, it displayed a significantly elevated organic solvent tolerance over KmAKRM9 . Structural analysis indicated that stabilization of the α-helixes mainly contributed to thermostability enhancement. Under the optimized conditions, KmAKRM13 completely asymmetrically reduced 400 g/l t-butyl 6-chloro-(5S)-hydroxy-3-oxohexanoate ((5S)-CHOH) in 8.0 h at a high substrate to catalyst ratio (S/C) of 106.7 g/g, giving diastereomerically pure (3R,5S)-CDHH (>99.5% d.e.P ) with a space-time yield (STY) of 449.2 g/l·d.


Assuntos
Aldo-Ceto Redutases/química , Candida parapsilosis/enzimologia , Proteínas Fúngicas/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Engenharia de Proteínas , Aldo-Ceto Redutases/genética , Candida parapsilosis/genética , Proteínas Fúngicas/genética
18.
Biotechnol Bioeng ; 118(12): 4643-4654, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34436762

RESUMO

Enzyme engineering toward catalytic-tetrad residues usually results in activity loss. Unexpectedly, we found that a directed evolution campaign yielded a beneficial residue A100 in KmCR (a carbonyl reductase from Kluyveromyces marxianus ZJB14056), which is a residue of catalytic tetrad and conserved according to multiple sequence alignment. Inspired by this finding, we performed saturation mutagenesis on all the four residues of catalytic tetrad of KmCR. A number of variants with improved enzymatic activities were obtained. Among them, the variant KmCR_A100S exhibited increased catalytic efficiency (kcat /KM = 47.3 s-1 ·mM-1 ), improved stereoselectivity (from moderate selectivity (deP = 66.7%) to strict (S)-selectivity (deP > 99.5%)), and extended substrate scope, compared to those of KmCR_WT. In silico analysis showed that a relay system was rebuilt in KmCR via the beneficial residue S100. Furthermore, comparison of 11 protein engineering campaigns indicated that the beneficial position is easily overlooked due to the long distance (>10 Å) from ketone substrates. Since CRs share similar catalytic mechanism, the knowledge gained from this study has universal significance to CR engineering.


Assuntos
Oxirredutases do Álcool , Domínio Catalítico/genética , Engenharia de Proteínas/métodos , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Biocatálise , Escherichia coli/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Kluyveromyces/enzimologia , Kluyveromyces/genética , Simulação de Acoplamento Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Bioorg Chem ; 109: 104712, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33735657

RESUMO

t-Butyl 6-cyano-(3R,5R)-dihydroxyhexanoate ((3R,5R)-2) is an advanced chiral diol intermediate of the cholesterol-lowering drug atorvastatin. KmAKRM5 (W297H/Y296W/K29H/Y28A/T63M) constructed in our previous work, displayed good biocatalytic performance on (3R,5R)-2. In the present work, stepwise evolution was applied to further enhance the thermostability and activity of KmAKRM5. For thermostability enhancement, N109 and S196 located far from the active site were picked out by structure-guided consensus engineering, and mutated by site-directed mutagenesis (SDM). For catalytic efficiency improvement, the residues A30 and T302 adjacent to the substrate-binding pocket were subjected to site-saturation mutagenesis (SSM). As a result, the "best" mutant KmAKRM9 (W297H/Y296W/K29H/Y28A/T63M/A30P/T302S/N109K/S196C) was developed, of which T5015 and Tm were 5.0 °C and 8.2 °C higher than those of KmAKRM5. Moreover, compared to KmAKRM5, KmAKRM9 displayed a 1.9-fold (846 vs 2436 min) and 6.7-fold (126 vs 972 min) longer half-lives at 40 and 50 °C, respectively. Structural analysis suggested that beneficial mutations introduced additional hydrophobic interactions and hydrogen bonds, contributing rigidification of the flexible loops and the increase of internal forces, hence increasing the thermostability and activity. 5 g DCW (dry cell weight) L-1KmAKRM9 completely reduced 350 g L-1t-butyl 6-cyano-(5R)-hydroxy-3-oxo-hexanoate ((5R)-1), within 3.7 h at 40 °C, yielding optically pure (3R,5R)-2 (d.e.p > 99.5%) with a space-time yield (STY) of 1.82 kg L-1 d-1. Hence, KmAKRM9 is a robust biocatalyst for the synthesis of (3R,5R)-2.


Assuntos
Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/metabolismo , Proteínas Fúngicas/metabolismo , Kluyveromyces/enzimologia , Aldo-Ceto Redutases/química , Domínio Catalítico , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação Enzimológica da Expressão Gênica , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Engenharia de Proteínas , Proteínas Recombinantes
20.
Hemoglobin ; 45(6): 349-350, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31437061

RESUMO

We report a novel variant found in a female from Guilin municipality in the Guangxi Zhuang Autonomous Region of the People's Republic of China. This variant can be readily detected by both cation exchange high performance liquid chromatography (HPLC) and capillary electrophoresis (CE). Sanger sequencing revealed a novel mutation on the ß-globin gene [ß65(E9)Lys→Glu (AAG>GAG); HBB: c.196A>G]. We named this novel hemoglobin (Hb) variant Hb Guangxi for the place of origin of the proband.


Assuntos
Hemoglobinas Anormais , Globinas beta , China , Cromatografia Líquida de Alta Pressão , Eletroforese Capilar , Feminino , Hemoglobinas Anormais/genética , Humanos , Mutação , Globinas beta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA