RESUMO
The identification and characterization of spontaneous symmetry breaking is central to our understanding of strongly correlated two-dimensional materials. In this work, we utilize the angle-resolved measurements of transport non-reciprocity to investigate spontaneous symmetry breaking in twisted trilayer graphene. By analysing the angular dependence of non-reciprocity in both longitudinal and transverse channels, we are able to identify the symmetry axis associated with the underlying electronic order. We report that a hysteretic rotation in the mirror axis can be induced by thermal cycles and a large current bias, supporting the spontaneous breaking of rotational symmetry. Moreover, the onset of non-reciprocity with decreasing temperature coincides with the emergence of orbital ferromagnetism. Combined with the angular dependence of the superconducting diode effect, our findings uncover a direct link between rotational and time-reversal symmetry breaking. These symmetry requirements point towards exchange-driven instabilities in momentum space as a possible origin for transport non-reciprocity in twisted trilayer graphene.
RESUMO
Chelidonichthys spinosus, a secondary economic fish, is increasingly being exploited and valued in China. However, overfishing has led to it being recognized as one of the most depleted marine species in China. In this study, we generated a chromosome-level genome of C. spinosus using PacBio, Illumina, and Hi-C sequencing data. Ultimately, we assembled a 624.7 Mb genome of C. spinosus, with a contig N50 of 13.77 Mb and scaffold N50 of 28.11 Mb. We further anchored and oriented the assembled sequences onto 24 pseudo-chromosomes using Hi-C techniques. In total, 25,358 protein-coding genes were predicted, of which 24,072 (94.93%) genes were functionally annotated. The dot plot reveals a prominent co-linearity between C. spinosus and Cyclopterus lumpus, indicating a remarkably close phylogenetic relationship between these two species. The assembled genome sequences provide valuable information for elucidating the genetic adaptation and potential molecular basis of C. spinosus. They also have the potential to provide insight into the evolutionary investigation of teleost fish and vertebrates.
Assuntos
Genoma , Perciformes , Animais , Cromossomos/genética , Conservação dos Recursos Naturais , Perciformes/genética , FilogeniaRESUMO
The complete mitochondrial genome of Dictyosoma burgeri collected from Yellow and Bohai Seas was determined by next-generation sequencing. The mitogenome is a circular molecule 16,513 bp in length, including the typical structure of 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and a control region. The TAS, central CSB, and CSB were detected in the control region. The gene contents of the mitogenome are identical to those observed in most bony fishes.
RESUMO
The complete mitochondrial genome of the half-fin anchovy, Setipinna tenuifilis collected from Yellow and Bohai Seas was determined by next-generation sequencing. The mitogenome is a circular molecule 16,668 bp in length, including the typical structure of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and a control region. The termination-associated sequence (TAS), central conserved sequence block (CSB) and CSB are detected in the control region. The gene contents of the mitogenome are identical to those observed in most bony fishes.