Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Nature ; 614(7947): 303-308, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36697825

RESUMO

Flowering plants have evolved numerous intraspecific and interspecific prezygotic reproductive barriers to prevent production of unfavourable offspring1. Within a species, self-incompatibility (SI) is a widely utilized mechanism that rejects self-pollen2,3 to avoid inbreeding depression. Interspecific barriers restrain breeding between species and often follow the SI × self-compatible (SC) rule, that is, interspecific pollen is unilaterally incompatible (UI) on SI pistils but unilaterally compatible (UC) on SC pistils1,4-6. The molecular mechanisms underlying SI, UI, SC and UC and their interconnections in the Brassicaceae remain unclear. Here we demonstrate that the SI pollen determinant S-locus cysteine-rich protein/S-locus protein 11 (SCR/SP11)2,3 or a signal from UI pollen binds to the SI female determinant S-locus receptor kinase (SRK)2,3, recruits FERONIA (FER)7-9 and activates FER-mediated reactive oxygen species production in SI stigmas10,11 to reject incompatible pollen. For compatible responses, diverged pollen coat protein B-class12-14 from SC and UC pollen differentially trigger nitric oxide, nitrosate FER to suppress reactive oxygen species in SC stigmas to facilitate pollen growth in an intraspecies-preferential manner, maintaining species integrity. Our results show that SRK and FER integrate mechanisms underlying intraspecific and interspecific barriers and offer paths to achieve distant breeding in Brassicaceae crops.


Assuntos
Brassicaceae , Flores , Hibridização Genética , Proteínas de Plantas , Polinização , Brassicaceae/genética , Brassicaceae/metabolismo , Depressão por Endogamia , Óxido Nítrico/metabolismo , Fosfotransferases/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie , Flores/metabolismo , Autofertilização
2.
Nano Lett ; 24(5): 1620-1628, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38277130

RESUMO

Neuromorphic devices have attracted significant attention as potential building blocks for the next generation of computing technologies owing to their ability to emulate the functionalities of biological nervous systems. The essential components in artificial neural networks such as synapses and neurons are predominantly implemented by dedicated devices with specific functionalities. In this work, we present a gate-controlled transition of neuromorphic functions between artificial neurons and synapses in monolayer graphene transistors that can be employed as memtransistors or synaptic transistors as required. By harnessing the reliability of reversible electrochemical reactions between carbon atoms and hydrogen ions, we can effectively manipulate the electric conductivity of graphene transistors, resulting in a high on/off resistance ratio, a well-defined set/reset voltage, and a prolonged retention time. Overall, the on-demand switching of neuromorphic functions in a single graphene transistor provides a promising opportunity for developing adaptive neural networks for the upcoming era of artificial intelligence and machine learning.

3.
J Am Chem Soc ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842938

RESUMO

Cinnamoyl-containing nonribosomal peptides (CCNPs) constitute a unique family of natural products. The enzyme mechanism for the biaryl phenol coupling reaction of the bicyclic CCNPs remains unclear. Herein, we report the discovery of two new arabinofuranosylated bicyclic CCNPs cihanmycins (CHMs) A (1) and B (2) from Amycolatopsis cihanbeyliensis DSM 45679 and the identification of the CHM biosynthetic gene cluster (cih BGC) by heterologous expression in Streptomyces lividans SBT18 to afford CHMs C (3) and D (4). The structure of 1 was confirmed by X-ray diffraction analysis. Three cytochrome P450 enzyme (CYP)-encoding genes cih26, cih32, and cih33 were individually inactivated in the heterologous host to produce CHMs E (5), F (6), and G (7), respectively. The structures of 5 and 6 indicated that Cih26 was responsible for the hydroxylation and epoxidation of the cinnamoyl moiety, and Cih32 should catalyze the ß-hydroxylation of three amino acid residues. Cih33 and its homologues DmlH and EpcH were biochemically verified to convert CHM G (7) with a monocyclic structure to a bicyclic skeleton of CHM C (3) through an intramolecular C-O phenol coupling reaction. The substrate 7-bound crystal structure of DmlH not only established the structure of 7, which was difficult for NMR analysis for displaying anomalous splitting signals, but also provided the binding mode of macrocyclic peptides recognized by these intramolecular C-O coupling CYPs. In addition, computational studies revealed a water-mediated diradical mechanism for the C-O phenol coupling reaction. These findings have shed important mechanistic insights into the CYP-catalyzed phenol coupling reactions.

4.
Appl Environ Microbiol ; : e0056924, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916292

RESUMO

Microbial community adaptability to pH stress plays a crucial role in biofilm formation. This study aims to investigate the regulatory mechanisms of exogenous putrescine on pH stress, as well as enhance understanding and application for the technical measures and molecular mechanisms of biofilm regulation. Findings demonstrated that exogenous putrescine acted as a switch-like distributor affecting microorganism pH stress, thus promoting biofilm formation under acid conditions while inhibiting it under alkaline conditions. As pH decreases, the protonation degree of putrescine increases, making putrescine more readily adsorbed. Protonated exogenous putrescine could increase cell membrane permeability, facilitating its entry into the cell. Subsequently, putrescine consumed intracellular H+ by enhancing the glutamate-based acid resistance strategy and the γ-aminobutyric acid metabolic pathway to reduce acid stress on cells. Furthermore, putrescine stimulated ATPase expression, allowing for better utilization of energy in H+ transmembrane transport and enhancing oxidative phosphorylation activity. However, putrescine protonation was limited under alkaline conditions, and the intracellular H+ consumption further exacerbated alkali stress and inhibits cellular metabolic activity. Exogenous putrescine promoted the proportion of fungi and acidophilic bacteria under acidic stress and alkaliphilic bacteria under alkali stress while having a limited impact on fungi in alkaline biofilms. Increasing Bdellovibrio under alkali conditions with putrescine further aggravated the biofilm decomposition. This research shed light on the unclear relationship between exogenous putrescine, environmental pH, and pH stress adaptability of biofilm. By judiciously employing putrescine, biofilm formation could be controlled to meet the needs of engineering applications with different characteristics.IMPORTANCEThe objective of this study is to unravel the regulatory mechanism by which exogenous putrescine influences biofilm pH stress adaptability and understand the role of environmental pH in this intricate process. Our findings revealed that exogenous putrescine functioned as a switch-like distributor affecting the pH stress adaptability of biofilm-based activated sludge, which promoted energy utilization for growth and reproduction processes under acidic conditions while limiting biofilm development to conserve energy under alkaline conditions. This study not only clarified the previously ambiguous relationship between exogenous putrescine, environmental pH, and biofilm pH stress adaptability but also offered fresh insights into enhancing biofilm stability within extreme environments. Through the modulation of energy utilization, exerting control over biofilm growth and achieving more effective engineering goals could be possible.

6.
Molecules ; 29(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543018

RESUMO

Que Zui tea (QT) is an important herbal tea in the diet of the 'Yi' people, an ethnic group in China, and it has shown significant antioxidant, anti-inflammatory, and hepatoprotective effects in vitro. This study aims to explore the protective effects of the aqueous-ethanol extract (QE) taken from QT against ᴅ-galactose (ᴅ-gal)-induced oxidative stress damage in mice and its potential mechanisms. QE was identified as UHPLC-HRMS/MS for its chemical composition and possible bioactive substances. Thus, QE is rich in phenolic and flavonoid compounds. Twelve compounds were identified, the main components of which were chlorogenic acid, quinic acid, and 6'-O-caffeoylarbutin. Histopathological and biochemical analysis revealed that QE significantly alleviated brain, liver, and kidney damage in ᴅ-gal-treated mice. Moreover, QE remarkably attenuated oxidative stress by activating the Nrf2/HO-1 pathway to increase the expression of antioxidant indexes, including GSH, GSH-Px, CAT, SOD, and T-AOC. In addition, QE administration could inhibit the IL-1ß and IL-6 levels, which suppress the inflammatory response. QE could noticeably alleviate apoptosis by inhibiting the expressions of Caspase-3 and Bax proteins in the brains, livers, and kidneys of mice. The anti-apoptosis mechanism may be related to the upregulation of the SIRT1 protein and the downregulation of the p53 protein induced by QE in the brain, liver, and kidney tissues of mice. Molecular docking analysis demonstrated that the main components of QE, 6'-O-caffeoylarbutin, chlorogenic acid, quinic acid, and robustaside A, had good binding ability with Nrf2 and SIRT1 proteins. The present study indicated that QE could alleviate ᴅ-gal-induced brain, liver and kidney damage in mice by inhibiting the oxidative stress and cell apoptosis; additionally, the potential mechanism may be associated with the SIRT1/Nrf2 signaling pathway.


Assuntos
Antioxidantes , Arbutina/análogos & derivados , Ácidos Cafeicos , Galactose , Humanos , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Galactose/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Sirtuína 1/metabolismo , Ácido Clorogênico/farmacologia , Simulação de Acoplamento Molecular , Ácido Quínico/farmacologia , Estresse Oxidativo , Transdução de Sinais , Chá
7.
Molecules ; 29(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38675610

RESUMO

A chemselective catalyst-free three-component 1,3-dipolar cycloaddition has been described. The unique polycyclic THPI and THIQs were creatively employed as dipolarophiles, which led to the formation of functionalized ß-tetrahydrocarboline- and tetrahydroisoquinoline-fused spirooxindoles in 60-94% of yields with excellent diastereoselectivities (10: 1->99: 1 dr). This reaction not only realizes a concise THPI- or THIQs-based 1,3-dipolar cycloaddition, but also provides a practical strategy for the construction of two distinctive spirooxindole skeletons.

8.
J Neurochem ; 166(6): 943-959, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507360

RESUMO

Alcohol exposure has detrimental effects on both the developing and mature brain. Endoplasmic reticulum (ER) stress is one of the mechanisms that contributes to alcohol-induced neuronal damages. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an ER stress-responsive protein and is neuroprotective in multiple neuronal injury and neurodegenerative disease models. MANF deficiency has been shown to exacerbate alcohol-induced ER stress and neurodegeneration. However, it is unknown whether MANF supplement is sufficient to protect against alcohol neurotoxicity. Alcohol alters MANF expression in the brain, but the mechanisms underlying alcohol modulation of MANF expression remain unclear. This study was designed to determine how alcohol alters MANF expression in neuronal cells and whether exogeneous MANF can alleviate alcohol neurotoxicity. We showed that alcohol increased MANF transcription and secretion without affecting MANF mRNA stability and protein degradation. ER stress was necessary for alcohol-induced MANF upregulation, as pharmacological inhibition of ER stress by 4-PBA diminished alcohol-induced MANF expression. In addition, the presence of ER stress response element II (ERSE-II) was required for alcohol-stimulated MANF transcription. Mutations or deletion of this sequence abolished alcohol-regulated transcriptional activity. We generated MANF knockout (KO) neuronal cells using CRISPR/Cas9. MANF KO cells exhibited increased unfolded protein response (UPR) and were more susceptible to alcohol-induced cell death. On the other hand, MANF upregulation by the addition of recombinant MANF protein or adenovirus gene transduction protected neuronal cells against alcohol-induced cell death. Further studies using early postnatal mouse pups demonstrated that enhanced MANF expression in the brain by intracerebroventricular (ICV) injection of MANF adeno-associated viruses ameliorated alcohol-induced cell death. Thus, alcohol increased MANF expression through inducing ER stress, which could be a protective response. Exogenous MANF was able to protect against alcohol-induced neurodegeneration.


Assuntos
Astrócitos , Doenças Neurodegenerativas , Camundongos , Animais , Regulação para Cima , Astrócitos/metabolismo , Fatores de Crescimento Neural/genética , Neurônios/metabolismo , Estresse do Retículo Endoplasmático , Proteínas Recombinantes/metabolismo , Etanol/toxicidade
9.
Growth Factors ; 41(3): 115-129, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37403648

RESUMO

Knee osteoarthritis (KOA) is a degenerative joint illness which leads to knee pain and functional limitation. In this study, we combined microfracture surgery with kartogenin (KGN), a small bioactive molecule used to promote the differentiation of mesenchymal stem cells (MSCs), and explored its impact on cartilage repair and possible latent mechanisms of action. The research offers a brand-new idea for the clinical cure of KOA. The microfracture technique in combination with KNG treatment was performed on a rabbit model of KOA. Animal behaviour was evaluated after the intra-articular injection of miR-708-5p and Special AT-rich sequence binding protein 2 (SATB2) lentiviruses. Later, the expression of the tumour necrosis factor α (TNF-α) and interleukin- 1 (IL-1), the pathology of synovial tissue and cartilage tissue, and the positive cartilage type II collagen, MMP-1, MMP-3 and TIMP-1 were detected. Finally, a luciferase assay was conducted to verify the interaction of miR-708-5p and SATB2. Our results showed that miR-708-5p was elevated in the rabbit KOA model; however, the expression of SATB2 was reduced. Meanwhile, the microfracture technology combined with MSCs inducer KGN drove cartilage repair and regeneration in rabbit KOA by repressing the miR-708-5p expression. We also found that miR-708-5p directly targeted the SATB2 mRNA to regulate its expression. Furthermore, our data urged that elevating miR-708-5p or restraining SATB2 may reverse the therapeutic effect of the microfracture technique combined with MSCs inducer on rabbit KOA. Microfracture technique combined with MSCs inducer represses miR-708-5p to target SATB2 to drive cartilage repair and regeneration in rabbit KOA. This indicates that the microfracture technique combined with MSCs inducers is supposed to be an effective latent method for osteoarthritis cure.


Assuntos
Fraturas de Estresse , Células-Tronco Mesenquimais , MicroRNAs , Osteoartrite do Joelho , Animais , Coelhos , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/terapia , Osteoartrite do Joelho/metabolismo , Fraturas de Estresse/metabolismo , Cartilagem/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
10.
Chembiochem ; 24(10): e202300036, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-36866719

RESUMO

Covalent catalytic intermediates provide valuable information for revealing the catalytic mechanism, probing the enzyme activity and identifying substrate specificity. However, naturally formed covalent intermediates are too rapidly degraded for general biological studies. In order to capture transient covalent intermediates, a variety of chemical strategies have been developed over decades to extend the half-life of the enzyme-substrate intermediates (or close analogues) required for the downstream structural and functional studies. This review summarizes three general mechanism-based strategies for trapping covalent catalytic intermediates. In particular, enzyme mutant-based approaches, especially the introduction of genetically encoded 2,3-diaminopropionic acid to replace the catalytic cysteine/serine in proteases for acyl-enzyme intermediate trapping are described. In addition, the applications of trapped intermediates in structural, functional and protein labeling studies are presented, and the potential new directions of using enzyme substrate traps are discussed at the end of the review.


Assuntos
Proteínas , Catálise , Especificidade por Substrato
11.
Opt Express ; 31(23): 37365-37380, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017867

RESUMO

Accurate estimation of the diffuse attenuation coefficient of photosynthetically active radiation, Kd(PAR), is critical for understanding and modeling key physical, chemical, and biological processes in waters. In this study, a deep learning model (DLKPAR) was developed for remotely estimating Kd(PAR). Compared to the traditional empirical algorithms and semi-analytical algorithm, DLKPAR demonstrated an improvement in the model's stability and accuracy. By using in situ NOMAD data to evaluate the model's performance, DLKPAR had lower root mean square difference (RMSD; 0.028 vs. 0.030-0.048 m-1) and mean absolute relative difference (MARD; 0.14 vs. 0.17-0.25) and higher R2 (0.94 vs. 0.82-0.94). The statistical results of the matchup NOMAD and Argo data to the MODIS also indicated DLKPAR improves the inversion accuracy of Kd(PAR) and could be applied to remotely estimate Kd(PAR) in the global oceans. Therefore, we anticipate that DLKPAR could yield reliable Kd(PAR) values from ocean color remote sensing, providing an accurate estimation of visible light attenuation in the upper ocean and facilitating biogeochemical cycle research.

12.
Chemistry ; 29(28): e202300297, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-36825432

RESUMO

Using benzylamines as the C4 source of 1,4-dihydropyridines (1,4-DHPs), a Cu-catalyzed oxidative [1+2+1+2] cascade cyclization for the synthesis of 1,4-DHPs was firstly developed. A broad range of easily available N,N-dimethyl enaminones and benzylamines are employed smoothly to provide a diverse range of 1,4-DHPs with high efficiency. This method is performed by a one-pot cascade C(sp3 )-H bond functionalization/C(sp3 )-N cleavage/cyclization strategy to form simultaneously two C(sp3 )-C(sp2 ) bonds, two C(sp2 )-N bonds, and a 1,4-DHP ring.

13.
BMC Cardiovasc Disord ; 23(1): 327, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369993

RESUMO

BACKGROUND: Taking statins for a long time is associated with an increased risk of new-onset diabetes mellitus. Sodium-glucose cotransporter-2 (SGLT2) inhibitors can reduce insulin resistance and improve pancreatic ß-cell function. METHODS AND RESULTS: In total, 333 non-diabetes patients with heart failure with reduced ejection fraction (HFrEF) after percutaneous coronary intervention (PCI) are included. The enrolled patients are divided into a matched group (n = 198) and an SGLT2 inhibitors group (n = 135). There are no statistical differences in general information between the two groups before treatment. After a mean follow-up time of 13 months, abnormal blood glucose levels are significantly higher in the matched group than in the SGLT2 inhibitors group (6.06 vs. 0.74%, P < 0.05). There are no statistically significant differences in the alanine aminotransferase (ALT), uric acid (UA), and estimated glomerular filtration (eGFR) levels between the two groups. CONCLUSION: SGLT2 inhibitors play a significant protective role in reducing the risk of statins-induced abnormal blood glucose in non-diabetes patients with HFrEF after PCI, without increasing the burden on the heart, kidneys, and liver.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Inibidores de Hidroximetilglutaril-CoA Redutases , Intervenção Coronária Percutânea , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Glicemia , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Incidência , Volume Sistólico , Intervenção Coronária Percutânea/efeitos adversos , Glucose
14.
Ecotoxicol Environ Saf ; 254: 114756, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36924595

RESUMO

Salinity stress hampers the growth of most crop plants and reduces yield considerably. In addition to its role in metabolism, γ-aminobutyric acid (GABA) plays a special role in the regulation of salinity stress tolerance in plants, though the underlying physiological mechanism remains poorly understood. In order to study the physiological mechanism of GABA pathway regulated carbon and nitrogen metabolism and tis relationship with salt resistance of maize seedlings, we supplemented seedlings with exogenous GABA under salt stress. In this study, we showed that supplementation with 0.5 mmol·L-1 (0.052 mg·g-1) GABA alleviated salt toxicity in maize seedling leaves, ameliorated salt-induced oxidative stress, and increased antioxidant enzyme activity. Applying exogenous GABA maintained chloroplast structure and relieved chlorophyll degradation, thus improving the photosynthetic performance of the leaves. Due to the improvement in photosynthesis, sugar accumulation also increased. Endogenous GABA content and GABA transaminase (GABA-T) and succinate semialdehyde dehydrogenase (SSADH) activity were increased, while glutamate decarboxylase (GAD) activity was decreased, via the exogenous application of GABA under salt stress. Meanwhile, nitrogen metabolism and the tricarboxylic acid (TCA) cycle were activated by the supply of GABA. In general, through the regulation of GABA-shunt metabolism, GABA activated enzymes related to nitrogen metabolism and replenished the key substrates of the TCA cycle, thereby improving the balance of carbon and nitrogen metabolism of maize and improving salt tolerance.


Assuntos
Ciclo do Ácido Cítrico , Plântula , Plântula/metabolismo , Zea mays/metabolismo , Ácido gama-Aminobutírico/farmacologia , Ácido gama-Aminobutírico/metabolismo , Antioxidantes/metabolismo , Carbono/metabolismo , Nitrogênio/farmacologia , Nitrogênio/metabolismo , Estresse Fisiológico
15.
Nano Lett ; 22(18): 7606-7614, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36123350

RESUMO

A boundary helical Luttinger liquid (HLL) with broken bulk time-reversal symmetry belongs to a unique topological class that may occur in antiferromagnets (AFM). Here, we search for signatures of HLL on the edge of a recently discovered topological AFM, MnBi2Te4 even-layer. Using a scanning superconducting quantum interference device, we directly image helical edge current in the AFM ground state appearing at its charge neutral point. Such a helical edge state accompanies an insulating bulk which is topologically distinct from the ferromagnetic Chern insulator phase, as revealed in a magnetic field driven quantum phase transition. The edge conductance of the AFM order follows a power law as a function of temperature and source-drain bias which serves as strong evidence for HLL. Such HLL scaling is robust at finite fields below the quantum critical point. The observed HLL in a layered AFM semiconductor represents a highly tunable topological matter compatible with future spintronics and quantum computation.

16.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835183

RESUMO

N-fused pyrrolidinyl spirooxindole belongs to a class of privileged heterocyclic scaffolds and is prevalent in natural alkaloids and synthetic pharmaceutical molecules. To realize the switchable synthesis of divergent N-fused pyrrolidinyl spirooxindoles for further biological activity evaluation via a substrate-controlled strategy, a chemically sustainable, catalysis-free, and dipolarophile-controlled three-component 1,3-dipolar cycloaddition of isatin-derived azomethine ylides with diverse dipolarophiles is described in this work. A total of 40 functionalized N-fused pyrrolidinyl spirooxindoles were synthesized in 76-95% yields with excellent diastereoselectivities (up to >99:1 dr). The scaffolds of these products can be well-controlled by employing different 1,4-enedione derivatives as dipolarophiles in EtOH at room temperature. This study provides an efficient strategy to afford a spectrum of natural-like and potentially bioactive N-fused pyrrolidinyl spirooxindoles.


Assuntos
Isatina , Reação de Cicloadição , Isatina/química
17.
Small ; 18(35): e2204063, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35934833

RESUMO

Engineering Pt-free catalysts for hydrogen evolution reaction (HER) with high activity and stability is of great significance in electrochemical hydrogen production. Herein, in situ chemical H intercalation into ultrafine Pd to activate this otherwise HER-inferior material to form the ultrafine IrPdH hydride as an efficient and stable HER electrocatalyst is proposed. The formation of PdIrH depends on a new hydrogenation strategy via using ethanol as the hydrogen resource. It is demonstrated that H atoms in IrPdH originate from the OH and CH2  of ethanol, which fills the gap of ethanol as the hydrogen source for the preparation of Pd hydride. Thanks to the incorporation of H/Ir atoms and ultrafine structure, the IrPdH exhibits superior HER activity and stability in the whole pH range. The IrPdH delivers very low overpotentials of 14, 25 and 60 mV at a current density of 10 mA cm-2 respectively in 0.5 m H2 SO4 , 1 m KOH, and 1 m PBS electrolytes, which are much better than those of commercial Pt/C and most reported noble metal electrocatalysts. Theoretical calculations confirm that interstitial hydrogen availably refines the electronic density of Pd and Ir sites, which optimizes the adsorption of *H and leads to the significant enhancement of HER performance.

18.
Opt Express ; 30(5): 6640-6655, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35299445

RESUMO

In this study, six algorithms (both empirical and semi-analytical) developed for the estimation of Kd in the ultraviolet (UV) domain (specifically 360, 380, and 400 nm) were evaluated from a dataset of 316 stations covering oligotrophic ocean and coastal waters. In particular, the semi-analytical algorithm (Lee et al. 2013) used remote sensing reflectance in these near-blue UV bands estimated from a recently developed deep learning system as the input. For Kd(380) in a range of 0.018 - 2.34 m-1, it is found that the semi-analytical algorithm has the best performance, where the mean absolute relative difference (MARD) is 0.19, and the coefficient of determination (R2) is 0.94. For the empirical algorithms, the MARD values are 0.23-0.90, with R2 as 0.70-0.92, for this evaluation dataset. For a VIIRS and in situ matchup dataset (N = 62), the MARD of Kd(380) is 0.21 (R2 as 0.94) by the semi-analytical algorithm. These results indicate that a combination of deep learning system and semi-analytical algorithms can provide reliable Kd(UV) for past and present satellite ocean color missions that have no spectral bands in the UV, where global Kd(UV) products are required for comprehensive studies of UV radiation on marine primary productivity and biogeochemical processes in the ocean.


Assuntos
Algoritmos , Tecnologia de Sensoriamento Remoto , Raios Ultravioleta
19.
BMC Infect Dis ; 22(1): 332, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379167

RESUMO

BACKGROUND: The current surveillance system only focuses on notifiable infectious diseases in China. The arrival of the big-data era provides us a chance to elaborate on the full spectrum of infectious diseases. METHODS: In this population-based observational study, we used multiple health-related data extracted from the Shandong Multi-Center Healthcare Big Data Platform from January 2013 to June 2017 to estimate the incidence density and describe the epidemiological characteristics and dynamics of various infectious diseases in a population of 3,987,573 individuals in Shandong province, China. RESULTS: In total, 106,289 cases of 130 infectious diseases were diagnosed among the population, with an incidence density (ID) of 694.86 per 100,000 person-years. Besides 73,801 cases of 35 notifiable infectious diseases, 32,488 cases of 95 non-notifiable infectious diseases were identified. The overall ID continuously increased from 364.81 per 100,000 person-years in 2013 to 1071.80 per 100,000 person-years in 2017 (χ2 test for trend, P < 0.0001). Urban areas had a significantly higher ID than rural areas, with a relative risk of 1.25 (95% CI 1.23-1.27). Adolescents aged 10-19 years had the highest ID of varicella, women aged 20-39 years had significantly higher IDs of syphilis and trichomoniasis, and people aged ≥ 60 years had significantly higher IDs of zoster and viral conjunctivitis (all P < 0.05). CONCLUSIONS: Infectious diseases remain a substantial public health problem, and non-notifiable diseases should not be neglected. Multi-source-based big data are beneficial to better understand the profile and dynamics of infectious diseases.


Assuntos
Doenças Transmissíveis , Sífilis , Adolescente , Adulto , Big Data , Criança , China/epidemiologia , Doenças Transmissíveis/epidemiologia , Feminino , Humanos , Incidência , Pessoa de Meia-Idade , Adulto Jovem
20.
Appl Opt ; 61(29): 8664-8670, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36255999

RESUMO

Small water bodies are an important part of the Earth's freshwater system, protecting biodiversity and providing ecosystem services. Because of various surrounding features, it is unknown to what extent we can obtain accurate remote-sensing reflectance (Rrs) of such an environment by the conventional above-water approach (AWA). In this study, we used both AWA and the skylight-blocked approach (SBA) side-by-side to measure Rrs in a typical small water body. It was found that the variation of Rrs in the UV-blue domain from AWA is around 50% and is inconsistent with the variation of the total absorption coefficient (at) obtained from water samples; on the contrary, the variation of Rrs obtained from SBA is highly consistent, with a coefficient of variation under ∼5%. These results highlight the large uncertainties in the measured Rrs from AWA due to the complexity of such an environment and further echo the robustness of SBA to measure Rrs in the field, even in such challenge environments.


Assuntos
Ecossistema , Água , Tecnologia de Sensoriamento Remoto , Água Doce , Biodiversidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA