Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38674958

RESUMO

Polymer flooding has achieved considerable success in medium-high permeability reservoirs. However, when it comes to low-permeability reservoirs, polymer flooding suffers from poor injectivity due to the large molecular size of the commonly used high-molecular-weight (high-MW) partially hydrolyzed polyacrylamides (HPAM). Herein, an amphiphilic polymer (LMWAP) with a low MW (3.9 × 106 g/mol) was synthesized by introducing an amphiphilic monomer (Allyl-OP-10) and a chain transfer agent into the polymerization reaction. Despite the low MW, LMWAP exhibited better thickening capability in brine than its counterparts HPAM-1800 (MW = 1.8 × 107 g/mol) and HPAM-800 (MW = 8 × 106 g/mol) due to the intermolecular hydrophobic association. LMWAP also exhibited more significant shear-thinning behavior and stronger elasticity than the two counterparts. Furthermore, LMWAP possesses favorable oil-water interfacial activity due to its amphiphilicity. The oil-water interfacial tension (IFT) could be reduced to 0.88 mN/m and oil-in-water (O/W) emulsions could be formed under the effect of LMWAP. In addition, the reversible hydrophobic association endows the molecular chains of LMWAP with dynamic association-disassociation transition ability. Therefore, despite the similar hydrodynamic sizes in brine, LMWAP exhibited favorable injectivity under low-permeability conditions, while the counterpart HPAM-1800 led to fatal plugging. Furthermore, LMWAP could enhance oil recovery up to 21.5%, while the counterpart HPAM-800 could only enhance oil recovery by up to 11.5%, which could be attributed to the favorable interfacial activity of LMWAP.

2.
Heliyon ; 10(12): e33140, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38984307

RESUMO

Understanding the reservoir feature changes is essential for optimizing oil exploitation throughout the development lifecycle. This paper proposed an analytical displacement unit method to character the features of water-flooded, low-permeability oil reservoirs. The method hinges the ratio of fluid flux to area and average water saturation, providing a fine description of reservoir dynamics. It has been implemented in a case study of a five-spot waterflooding scheme. The reservoir can be categorized into sixteen distinct unit types, each with specific attributes. This paper delves into the evolution of these displacement units and the key factors that influence their behavior. The findings provide insights into the degree of waterflooding and oil distribution following continuous waterflooding. Furthermore, the proposed method offers a valuable framework for analyzing the development of dominant water flow channels and exploiting the residual oil.

3.
Huan Jing Ke Xue ; 45(5): 2905-2912, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629552

RESUMO

The objective of this study was to explore the effects of different amounts of biochar on the migration process and characteristics of NO3--N in loessial soil. In this study, six groups of mixed soil samples with biochar and loessial soil mass ratios of 0% (T0), 1% (T1), 2% (T2), 3% (T3), 4% (T4), and 5% (T5) were used as research objects. NO3--N was used as the tracer. Through the indoor soil column solute transport simulation tests, the effects of different biochar application amounts on the NO3--N transport process in loessial soil were simulated and studied. The results showed that the breakthrough curve of NO3--N in loessial soil shifted to the right with the increasing of biochar application, and the peak value gradually decreased. The initial penetration time, complete penetration time, and total penetration time increased with the increasing of biochar application amount. The total penetration time of NO3- in the T1, T2, T3, T4, and T5 treatments was 1.26, 2.31, 2.72, 3.22, and 3.57 times that of T0, respectively. The R2 was > 0.997 and RMSE was < 2.083 of the two-zone model (TRM). Compared with the convection-dispersion equation (CDE), the TRM model had higher fitting accuracy and could better simulate the NO3--N migration process in loessial soil after the application of different contents of biochar. The analysis of the fitting parameters of the TRM model showed that the average pore velocity, hydrodynamic dispersion coefficient, and water content ratio in the movable zone gradually decreased with the increasing of biochar application, whereas the dispersion and mass exchange coefficient showed an increasing trend. The results showed that biochar application could effectively enhance the ability of loessial soil to fix NO3--N, reduce the leakage of NO3--N to groundwater, and play an important role in maintaining soil fertility and preventing groundwater pollution.


Assuntos
Carvão Vegetal , Solo , Nitrogênio
4.
Sci Rep ; 14(1): 16426, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013931

RESUMO

The investigation into the impact of gravel on water infiltration process and hydraulic parameters in stony soil could offer a theoretical basis to enhance water availability in rocky mountain area. A one-dimensional vertical infiltration experiment was used in this study. Six groups of gravel content of 0% (CK), 10% (W1), 20% (W2), 30% (W3), 40% (W4) and 50% (W5) were established to explore the changes in the wetting front, cumulative infiltration volume and infiltration rate. Then the accuracy of four infiltration models in simulating soil water infiltration processes was evaluated. Finally, Hydrus-1D was used to perform numerical inversion of the soil water content after infiltration. The findings revealed that: (1) When the infiltration time reached 300 min, the wetting front of the W1, W2, W3, W4 and W5 treatments was 11.00%, 17.00%, 32.25%, 38.75% and 54.50% lower than CK, the cumulative infiltration volume was 29.80%, 38.97%, 45.62%, 54.74% and 73.17% lower than CK, and the stable infiltration rate was 50.98%, 52.94%, 66.67%, 68.63% and 86.27% lower than CK. (2) The soil-water infiltration processes were accurately described by the Horton model, the coefficient of determination (R2) > 0.935. (3) The simulation results of Hydrus-1D showed that with the increase of gravel content, the values of the retention water content (θr), saturated water content (θs), shape coefficient (n) and saturated hydraulic conductivity (Ks) were decreased, the values of the reciprocal of air-entry (α) were increased. The value of R2 was more than 0.894, the root mean square error (RMSE) and mean absolute error (MAE) were less than 2%, which demonstrated that the Hydrus-1D model exhibited superior capability in simulating the changes of water content in stony soil in rocky mountain area. The findings of this study demonstrated that gravel could decrease the water infiltration process and affect the water availability. It could provide data support for the water movement process of stony soil and rational utilization of limited water resources in mountainous area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA