Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(1): e2204454, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36382574

RESUMO

Piezoelectric materials should simultaneously possess the soft properties (high piezoelectric coefficient, d33 ; high voltage coefficient, g33 ; high electromechanical coupling factor, k) and hard properties (high mechanical quality factor, Qm ; low dielectric loss, tan δ) along with wide operation temperature (e.g., high rhombohedral-tetragonal phase transition temperature Tr-t ) for covering off-resonance (figure of merit (FOM), d33  × g33 ) and on-resonance (FOM, Qm  × k2 ) applications. However, achieving hard and soft piezoelectric properties simultaneously along with high transition temperature is quite challenging since these properties are inversely related to each other. Here, through a synergistic design strategy of combining composition/phase selection, crystallographic texturing, defect engineering, and water quenching technique, <001> textured 2 mol% MnO2 doped 0.19PIN-0.445PSN-0.365PT ceramics exhibiting giant FOM values of Qm  × k 31 2 $k_{31}^2$ (227-261) along with high d33  × g33 (28-35 × 10-12 m2 N-1 ), low tan δ (0.3-0.39%) and high Tr-t of 140-190 °C, which is far beyond the performance of the state-of-the-art piezoelectric materials, are fabricated. Further, a novel water quenching (WQ) room temperature poling technique, which results in enhanced piezoelectricity of textured MnO2 doped PIN-PSN-PT ceramics, is reported. Based upon the experiments and phase-field modeling, the enhanced piezoelectricity is explained in terms of the quenching-induced rhombohedral phase formation. These findings will have tremendous impact on development of high performance off-resonance and on-resonance piezoelectric devices with high stability.

2.
Langmuir ; 28(5): 2696-703, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22220683

RESUMO

Computer modeling and simulations are performed to investigate capillary bridges spontaneously formed between closely packed colloidal particles in phase separating liquids. The simulations reveal a self-stabilization mechanism that operates through diffusive equilibrium of two-phase liquid morphologies. Such mechanism renders desired microstructural stability and uniformity to the capillary bridges that are spontaneously formed during liquid solution phase separation. This self-stabilization behavior is in contrast to conventional coarsening processes during phase separation. The volume fraction limit of the separated liquid phases as well as the adhesion strength and thermodynamic stability of the capillary bridges are discussed. Capillary bridge formations in various compact colloid assemblies are considered. The study sheds light on a promising route to in situ (in-liquid) firming of fragile colloidal crystals and other compact colloidal microstructures via capillary bridges.

3.
Nat Commun ; 13(1): 3565, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732653

RESUMO

Electromechanical coupling factor, k, of piezoelectric materials determines the conversion efficiency of mechanical to electrical energy or electrical to mechanical energy. Here, we provide an fundamental approach to design piezoelectric materials that provide near-ideal magnitude of k, via exploiting the electrocrystalline anisotropy through fabrication of grain-oriented or textured ceramics. Coupled phase field simulation and experimental investigation on <001> textured Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 ceramics illustrate that k can reach same magnitude as that for a single crystal, far beyond the average value of traditional ceramics. To provide atomistic-scale understanding of our approach, we employ a theoretical model to determine the physical origin of k in perovskite ferroelectrics and find that strong covalent bonding between B-site cation and oxygen via d-p hybridization contributes most towards the magnitude of k. This demonstration of near-ideal k value in textured ceramics will have tremendous impact on design of ultra-wide bandwidth, high efficiency, high power density, and high stability piezoelectric devices.

4.
Adv Sci (Weinh) ; 9(14): e2105715, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35297225

RESUMO

Piezoelectric materials enable the conversion of mechanical energy into electrical energy and vice-versa. Ultrahigh piezoelectricity has been only observed in single crystals. Realization of piezoelectric ceramics with longitudinal piezoelectric constant (d33 ) close to 2000 pC N-1 , which combines single crystal-like high properties and ceramic-like cost effectiveness, large-scale manufacturing, and machinability will be a milestone in advancement of piezoelectric ceramic materials. Here, guided by phenomenological models and phase-field simulations that provide conditions for flattening the energy landscape of polarization, a synergistic design strategy is demonstrated that exploits compositionally driven local structural heterogeneity and microstructural grain orientation/texturing to provide record piezoelectricity in ceramics. This strategy is demonstrated on [001]PC -textured and Eu3+ -doped Pb(Mg1/3 Nb2/3 )O3 -PbTiO3 (PMN-PT) ceramics that exhibit the highest piezoelectric coefficient (small-signal d33 of up to 1950 pC N-1 and large-signal d33 * of ≈2100 pm V-1 ) among all the reported piezoelectric ceramics. Extensive characterization conducted using high-resolution microscopy and diffraction techniques in conjunction with the computational models reveals the underlying mechanisms governing the piezoelectric performance. Further, the impact of losses on the electromechanical coupling is identified, which plays major role in suppressing the percentage of piezoelectricity enhancement, and the fundamental understanding of loss in this study sheds light on further enhancement of piezoelectricity. These results on cost-effective and record performance piezoelectric ceramics will launch a new generation of piezoelectric applications.

5.
ACS Appl Mater Interfaces ; 12(40): 44981-44990, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32914950

RESUMO

Control of magnetic permeability through electric field in magnetoelectric materials promises to create novel voltage tunable inductors (VTIs). VTIs synthesized using co-fired ceramic processing exhibit many advantages over traditional epoxy bonding method, but the internal residual stress in co-fired VTIs resulting from thermal expansion mismatch hinders a full exploitation of the tunability of permeability. To find the optimal condition for high tunability of co-fired VTIs, domain-level phase field modeling and computer simulation are employed to study co-fired magnetoelectric composites comprising NiZn ferrite and PZT. Two key factors important toward increasing the inductor tunability are systematically investigated: intrinsic magnetocrystalline anisotropy of the ferrite material and internal residual stress caused by the co-firing process. The simulations indicate that in order to achieve a large tunability, the tuned permeability should be confined within the linear region of the reciprocal of susceptibility and stress. Additionally, both magnetocrystalline anisotropy and residual stress should be as small as possible. These results provide a design strategy for realizing high-tunability co-fired VTIs.

6.
Nat Commun ; 9(1): 4998, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30479327

RESUMO

The electrical modulation of magnetization through the magnetoelectric effect provides a great opportunity for developing a new generation of tunable electrical components. Magnetoelectric voltage tunable inductors (VTIs) are designed to maximize the electric field control of permeability. In order to meet the need for power electronics, VTIs operating at high frequency with large tunability and low loss are required. Here we demonstrate magnetoelectric VTIs that exhibit remarkable high inductance tunability of over 750% up to 10 MHz, completely covering the frequency range of state-of-the-art power electronics. This breakthrough is achieved based on a concept of magnetocrystalline anisotropy (MCA) cancellation, predicted in a solid solution of nickel ferrite and cobalt ferrite through first-principles calculations. Phase field model simulations are employed to observe the domain-level strain-mediated coupling between magnetization and polarization. The model reveals small MCA facilitates the magnetic domain rotation, resulting in larger permeability sensitivity and inductance tunability.

7.
ACS Appl Mater Interfaces ; 10(13): 11018-11025, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29309126

RESUMO

Enhanced and self-biased magnetoelectric (ME) coupling is demonstrated in a laminate heterostructure comprising 4 µm-thick Pb(Zr,Ti)O3 (PZT) film deposited on 50 µm-thick flexible nickel (Ni) foil. A unique fabrication approach, combining room temperature deposition of PZT film by granule spray in vacuum (GSV) process and localized thermal treatment of the film by laser radiation, is utilized. This approach addresses the challenges in integrating ceramic films on metal substrates, which is often limited by the interfacial chemical reactions occurring at high processing temperatures. Laser-induced crystallinity improvement in the PZT thick film led to enhanced dielectric, ferroelectric, and magnetoelectric properties of the PZT/Ni composite. A high self-biased ME response on the order of 3.15 V/cm·Oe was obtained from the laser-annealed PZT/Ni film heterostructure. This value corresponds to a ∼2000% increment from the ME response (0.16 V/cm·Oe) measured from the as-deposited PZT/Ni sample. This result is also one of the highest reported values among similar ME composite systems. The tunability of self-biased ME coupling in PZT/Ni composite has been found to be related to the demagnetization field in Ni, strain mismatch between PZT and Ni, and flexural moment of the laminate structure. The phase-field model provides quantitative insight into these factors and illustrates their contributions toward the observed self-biased ME response. The results present a viable pathway toward designing and integrating ME components for a new generation of miniaturized tunable electronic devices.

8.
Sci Rep ; 7(1): 12353, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28955052

RESUMO

Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. Here, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (<2.5%) over the required temperature ranges specified in the standard industrial classifications. The compositional grading resulted in generation of internal bias field which enhanced the tunability due to increased nonlinearity. The electric field tunability of MLCCs provides an important avenue for design of miniature filters and power converters.

9.
Sci Rep ; 7(1): 16008, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167475

RESUMO

Electric field modulation of magnetic properties via magnetoelectric coupling in composite materials is of fundamental and technological importance for realizing tunable energy efficient electronics. Here we provide foundational analysis on magnetoelectric voltage tunable inductor (VTI) that exhibits extremely large inductance tunability of up to 1150% under moderate electric fields. This field dependence of inductance arises from the change of permeability, which correlates with the stress dependence of magnetic anisotropy. Through combination of analytical models that were validated by experimental results, comprehensive understanding of various anisotropies on the tunability of VTI is provided. Results indicate that inclusion of magnetic materials with low magnetocrystalline anisotropy is one of the most effective ways to achieve high VTI tunability. This study opens pathway towards design of tunable circuit components that exhibit field-dependent electronic behavior.

10.
Eur Rev Med Pharmacol Sci ; 20(8): 1521-5, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27160124

RESUMO

OBJECTIVE: This study aimed to explore the clinicopathological and prognostic significance of miR-302c-3p in glioma. MATERIALS AND METHODS: The expression of miR-302c-3p in glioma tissues and normal brain tissues was measured using real-time PCR. Clinicopathological associations of miR-302c-3p expression in glioma were analyzed. The Kaplan-Meier method was used to determine the survival curves. Univariate and multivariate analysis were performed using the Cox proportional hazard analysis. RESULTS: The relative expression of miR-302c-3p in glioma tissues was significantly lower than that in non-neoplastic brain tissues (p < 0.001). The decreased expression of miR-302c-3p in glioma was positively associated with WHO grade (p < 0.001) and Karnofsky performance status (KPS) score (p = 0.016). We found patients with low miR-302c-3p expression had significantly poorer OS (p = 0.0057) and PFS (p = 0.0092) by Kaplan-Meier method. Furthermore, multivariate regression analysis identified low miR-302c-3p expression as an independent predictor of poor survival. CONCLUSIONS: Our results revealed that miR-302c-3p may serve as a tumor suppressor of malignant glioma and be used as a novel biomarker to predict the clinical prognostic of patients with gliomas.


Assuntos
Neoplasias Encefálicas , MicroRNAs/biossíntese , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma , Humanos , Estimativa de Kaplan-Meier , Prognóstico
11.
Nat Commun ; 7: 13089, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27725634

RESUMO

A rapid surge in the research on piezoelectric sensors is occurring with the arrival of the Internet of Things. Single-phase oxide piezoelectric materials with giant piezoelectric voltage coefficient (g, induced voltage under applied stress) and high Curie temperature (Tc) are crucial towards providing desired performance for sensing, especially under harsh environmental conditions. Here, we report a grain-oriented (with 95% <001> texture) modified PbTiO3 ceramic that has a high Tc (364 °C) and an extremely large g33 (115 × 10-3 Vm N-1) in comparison with other known single-phase oxide materials. Our results reveal that self-polarization due to grain orientation along the spontaneous polarization direction plays an important role in achieving large piezoelectric response in a domain motion-confined material. The phase field simulations confirm that the large piezoelectric voltage coefficient g33 originates from maximized piezoelectric strain coefficient d33 and minimized dielectric permittivity ɛ33 in [001]-textured PbTiO3 ceramics where domain wall motions are absent.

12.
J Colloid Interface Sci ; 402: 267-78, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23628204

RESUMO

The self-assembly behavior of shape-anisotropic particles at curved fluid interfaces is computationally investigated by diffuse interface field approach (DIFA). A Gibbs-Duhem-type thermodynamic formalism is introduced to treat heterogeneous pressure within the phenomenological model, in agreement with Young-Laplace equation. Computer simulations are performed to study the effects of capillary forces (interfacial tension and Laplace pressure) on particle self-assembly at fluid interfaces in various two-dimensional cases. For isolated particles, it is found that the equilibrium liquid interface remains circular and particles of different shapes do not disturb the homogeneous curvature of liquid interface, while the equilibrium position, orientation and stability of a particle at the liquid interface depend on its shape and initial location with respect to the liquid interface. For interacting particles, the curvature of local liquid interfaces is different from the apparent curvature of the particle shell; nevertheless, irrespective of the particle shapes, a particle-coated droplet always tends to deform into a circular morphology under positive Laplace pressure, loses mechanical stability and collapses under negative Laplace pressure, while adapts to any morphology and stays in neutral equilibrium under zero Laplace pressure. Finally, the collective behaviors of particles and Laplace pressure evolution in bicontinuous interfacially jammed emulsion gels (bijels) are investigated.

13.
Artigo em Inglês | MEDLINE | ID: mdl-25004533

RESUMO

This work focused on the interaction of polar ceramic particles with the hosting polymers to improve the distribution of particles and the dielectric properties of polymer composites. Polymers incorporating polar ceramic particles were shown to exhibit improved dielectric properties. Both computation and experimental observation were conducted to enhance the understanding of composite dielectric engineering. The electric field was found to be localized at the particle- polymer interface, likely contributing to the polarization of polar particles.

14.
Adv Colloid Interface Sci ; 165(2): 91-101, 2011 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-21296313

RESUMO

The DLVO theory treats the total interaction force between two surfaces in a liquid medium as an arithmetic sum of two components: Lifshitz-van der Waals and electric double layer forces. Despite the success of the DLVO model developed for homogeneous surfaces, a vast majority of surfaces of particles and materials in technological systems are of a heterogeneous nature with a mosaic structure composed of microscopic and sub-microscopic domains of different surface characteristics. In such systems, the heterogeneity of the surface can be more important than the average surface character. Attractions can be stronger, by orders of magnitude, than would be expected from the classical mean-field DLVO model when area-averaged surface charge or potential is employed. Heterogeneity also introduces anisotropy of interactions into colloidal systems, vastly ignored in the past. To detect surface heterogeneities, analytical tools which provide accurate and spatially resolved information about material surface chemistry and potential - particularly at microscopic and sub-microscopic resolutions - are needed. Atomic force microscopy (AFM) offers the opportunity to locally probe not only changes in material surface characteristic but also charges of heterogeneous surfaces through measurements of force-distance curves in electrolyte solutions. Both diffuse-layer charge densities and potentials can be calculated by fitting the experimental data with a DLVO theoretical model. The surface charge characteristics of the heterogeneous substrate as recorded by AFM allow the charge variation to be mapped. Based on the obtained information, computer modeling and simulation can be performed to study the interactions among an ensemble of heterogeneous particles and their collective motions. In this paper, the diffuse-layer charge mapping by the AFM technique is briefly reviewed, and a new Diffuse Interface Field Approach to colloid modeling and simulation is briefly discussed.

15.
J Colloid Interface Sci ; 353(1): 46-51, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20888570

RESUMO

We present a novel mesoscale simulation approach to modeling the evolution of solid particles segregated at fluid-fluid interfaces. The approach involves a diffuse-interface field description of each fluid phase in addition to the set of solid particles. The unique strength of the model is its generality to include particles of arbitrary shapes and orientations, as well as the ability to incorporate electrostatic particle interactions and external forces via a previous work [P.C. Millett, Y.U. Wang, Acta Mater. 57 (2009) 3101]. In this work, we verify that the model produces the correct capillary forces and contact angles by comparing with a well-defined analytical solution. In addition, simulation results of rotations of various-shaped particles at fluid-fluid interfaces, external force-induced capillary attraction/repulsion between particles, and spinodal decomposition arrest due to colloidal particle jamming at the interfaces are presented.

16.
ACS Nano ; 3(10): 3045-50, 2009 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-19754131

RESUMO

A novel approach to control the grain size of oxide thin film materials has been investigated. Perovskite BaTiO(3) shows interesting grain structures when deposited on gold predeposited, (111)-oriented, single-crystal SrTiO(3) substrates. Solid oxide films grow epitaxially on patterned seed layers and show variations in grain size relative to the films deposited on SrTiO(3) directly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA