Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 774
Filtrar
1.
J Immunol ; 211(1): 91-102, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37184367

RESUMO

The mechanism of the development of granulocyte progenitor cells into neutrophils under steady-state and pathological conditions remains unclear. In this study, our results showed that with the development of neutrophils from hematopoietic stem cells to mature neutrophils, the expression level of the Hippo kinase MST1 gradually increased. Mst1-specific deficiency in myeloid cells caused neutrophilia, with an expanded granulocytic compartment resulting from a cell-autonomous increase in the number of granulocyte-macrophage progenitors under steady-state conditions and during Listeria monocytogenes infection. Mechanistically, mTOR and HIF1α signaling are required for regulating the balance between glycolysis and succinate dehydrogenase-mediated oxidative phosphorylation, which is crucial for Mst1-/--induced proliferation of granulocyte-monocyte progenitors, lineage-decision factor C/EBPα expression, and granulopoiesis. HIF1α directly regulated C/EBPα promoter activities. Blocking mTOR and HIF1α or adjusting the balance between glycolysis and succinate dehydrogenase-mediated oxidative phosphorylation reversed the granulopoiesis induced by Mst1-/- under steady-state conditions or infection in mice. Thus, our findings identify a previously unrecognized interplay between Hippo kinase MST1 signaling and mTOR-HIF1α metabolic reprogramming in granulocyte progenitor cells that underlies granulopoiesis.


Assuntos
Células Precursoras de Granulócitos , Succinato Desidrogenase , Animais , Camundongos , Diferenciação Celular/fisiologia , Homeostase , Serina-Treonina Quinases TOR
2.
J Am Chem Soc ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952302

RESUMO

Precise manipulation of the coordination configuration within substances can modulate the band structure and catalytic properties of the target material. Metal-covalent organic frameworks (MCOFs), a crystal material amalgamating the benefits of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), can integrate a predetermined coordination environment into the frameworks for amplifying the catalytic effect. In this study, we delicately synthesize isomeric MCOFs using bis(glycinato)copper as the aminoligand via kinetically and thermodynamically favorable pathways to yield cis-MCOF and trans-MCOF products, respectively, thereby introducing a cis-trans isomeric coordination field into the framework. Moreover, the twisted skeleton derived from the flexibility of amino acid and ß-ketoenamine linkages endows trans-MCOF with surprising water dispersibility. Compared to cis-MCOF, the trans isomerism displays a significant enhancement in cathodic electrochemiluminescence via the catalysis of Cu nodes toward K2S2O8. The density of states analysis shows that the d-band center of trans-MCOF is closer to the Fermi level, leading to more stable adsorption binding to promote the catalysis. This study is the first report on constructing predesign coordination configuration MCOFs via an easy-handling method, which gives the guidelines for the design of amino acid-based MCOF materials.

3.
J Am Chem Soc ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837248

RESUMO

Electrochemiluminescence (ECL) involves charge transfer between electrochemical redox intermediates to produce an excited state for light emission. Ensuring precise control of charge transfer is essential for decoding ECL fundamentals, yet guidelines on how to achieve this for conventional emitters remain unexplored. Molecular ratchets offer a potential solution, as they enable the directional transfer of energy or chemicals while impeding the reverse movement. Herein, we designed 10 pairs of imine-based covalent organic frameworks as reticular ratchets to delicately manipulate the intrareticular charge transfer for directing ECL transduction from electric and chemical energies. Aligning the donor and acceptor (D-A) directions with the imine dipole effectively facilitates charge migration, whereas reversing the D-A direction impedes it. Notably, the ratchet effect of charge transfer directionality intensified with increasing D-A contrast, resulting in a remarkable 680-fold improvement in the ECL efficiency. Furthermore, dipole-controlled exciton binding energy, electron/hole decay kinetics, and femtosecond transient absorption spectra identified the electron transfer tendency from the N-end toward the C-end of reticular ratchets during ECL transduction. An exponential correlation between the ECL efficiency and the dipole difference was discovered. Our work provides a general approach to manipulate charge transfer and design next-generation electrochemical devices.

4.
J Am Chem Soc ; 146(17): 11764-11772, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38625675

RESUMO

Direct imaging of single molecules at nanostructured interfaces is a grand challenge with potential to enable new, precise material architectures and technologies. Of particular interest are the structural morphology and spectroscopic signatures of the adsorbed molecule, where modern probes are only now being developed with the necessary spatial and energetic resolution to provide detailed information at the molecule-surface interface. Here, we directly characterize the adsorption of individual m-terphenyl isocyanide ligands on a reconstructed Au(111) surface through scanning tunneling microscopy and inelastic electron tunneling spectroscopy. The site-dependent steric pressure of the various surface features alters the vibrational fingerprints of the m-terphenyl isocyanides, which are characterized with single-molecule precision through joint experimental and theoretical approaches. This study provides molecular-level insights into the steric-pressure-enabled surface binding selectivity as well as its effect on the chemical properties of individual surface-binding ligands.

5.
Mol Cancer ; 23(1): 8, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195534

RESUMO

Treatment for renal cell carcinoma (RCC) has improved dramatically over the last decade, shifting from high-dose cytokine therapy in combination with surgical resection of tumors to targeted therapy, immunotherapy, and combination therapies. However, curative treatment, particularly for advanced-stage disease, remains rare. Cell therapy as a "living drug" has achieved hematological malignancy cures with a high response rate, and significant research efforts have been made to facilitate its translation to solid tumors. Herein, we overview the cellular therapies for RCC focusing on allogeneic hematopoietic stem cell transplantation, T cell receptor gene-modified T cells, chimeric antigen receptor (CAR) T cells, CAR natural killer (NK) cells, lymphokine-activated killer (LAK) cells, γδ T cells, and dendritic cell vaccination. We have also included perspectives for using other recent approaches, such as CAR macrophages, dendritic cell-cytokine induced killer cells and regulatory CAR-T cells to shed light on preclinical development of cell therapy and advancing cell therapy into clinic to achieve cures for RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/terapia , Imunoterapia , Terapia Baseada em Transplante de Células e Tecidos , Terapia Combinada , Neoplasias Renais/terapia
6.
Mol Cancer ; 23(1): 56, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491381

RESUMO

One of the major hurdles that has hindered the success of chimeric antigen receptor (CAR) T cell therapies against solid tumors is on-target off-tumor (OTOT) toxicity due to sharing of the same epitopes on normal tissues. To elevate the safety profile of CAR-T cells, an affinity/avidity fine-tuned CAR was designed enabling CAR-T cell activation only in the presence of a highly expressed tumor associated antigen (TAA) but not when recognizing the same antigen at a physiological level on healthy cells. Using direct stochastic optical reconstruction microscopy (dSTORM) which provides single-molecule resolution, and flow cytometry, we identified high carbonic anhydrase IX (CAIX) density on clear cell renal cell carcinoma (ccRCC) patient samples and low-density expression on healthy bile duct tissues. A Tet-On doxycycline-inducible CAIX expressing cell line was established to mimic various CAIX densities, providing coverage from CAIX-high skrc-59 tumor cells to CAIX-low MMNK-1 cholangiocytes. Assessing the killing of CAR-T cells, we demonstrated that low-affinity/high-avidity fine-tuned G9 CAR-T has a wider therapeutic window compared to high-affinity/high-avidity G250 that was used in the first anti-CAIX CAR-T clinical trial but displayed serious OTOT effects. To assess the therapeutic effect of G9 on patient samples, we generated ccRCC patient derived organotypic tumor spheroid (PDOTS) ex vivo cultures and demonstrated that G9 CAR-T cells exhibited superior efficacy, migration and cytokine release in these miniature tumors. Moreover, in an RCC orthotopic mouse model, G9 CAR-T cells showed enhanced tumor control compared to G250. In summary, G9 has successfully mitigated OTOT side effects and in doing so has made CAIX a druggable immunotherapeutic target.


Assuntos
Anidrases Carbônicas , Carcinoma de Células Renais , Neoplasias Renais , Receptores de Antígenos Quiméricos , Animais , Camundongos , Humanos , Anidrase Carbônica IX/genética , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/patologia , Receptores de Antígenos Quiméricos/genética , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/uso terapêutico , Antígenos de Neoplasias , Anticorpos , Linfócitos T/metabolismo
7.
Int J Cancer ; 154(5): 773-785, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815294

RESUMO

Neutrophil extracellular trap (NET) is one of the defense functions of neutrophils, which has a rapid ability to kill infections and is also crucial in a variety of immune-associated diseases including infections, tumors and autoimmune diseases. Recent studies have shown that NETs are closely related to the development of tumors. The regulatory role of NETs in tumors has been of interest to researchers. In addition to awakening latent tumor cells, NETs can also promote the proliferation and development of tumor cells and their metastasis to other sites. At the same time, NETs also have the effect of inhibiting tumors. At present, there are some new advances in the impact of NETs on tumor development, which will provide a more theoretical basis for developing NET-targeted drugs. Therefore, this review just summarized the formation process of NETs, the regulation of tumor development and the treatment methods based on NETs.


Assuntos
Doenças Autoimunes , Armadilhas Extracelulares , Neoplasias , Humanos , Neutrófilos , Neoplasias/patologia
8.
Funct Integr Genomics ; 24(1): 30, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358412

RESUMO

LTBP1 is closely related to TGF-ß1 function as an essential component, which was unclear in gastric cancer (GC). Harbin Medical University (HMU)-GC cohort and The Cancer Genome Atlas (TCGA) dataset were combined to form a training cohort to calculate the connection between LTBP1 mRNA expression, prognosis and clinicopathological features. The training cohort was also used to verify the biological function of LTBP1 and its relationship with immune microenvironment and chemosensitivity. In the tissue microarrays (TMAs), immunohistochemical (IHC) staining was performed to observe LTBP1 protein expression. The correlation between LTBP1 protein expression level and prognosis was also analyzed, and a nomogram model was constructed. Western blotting (WB) was used in cell lines to assess LTBP1 expression. Transwell assays and CCK-8 were employed to assess LTBP1's biological roles. In compared to normal gastric tissues, LTBP1 expression was upregulated in GC tissues, and high expression was linked to a bad prognosis for GC patients. Based on a gene enrichment analysis, LTBP1 was primarily enriched in the TGF-ß and EMT signaling pathways. Furthermore, high expression of LTBP1 in the tumor microenvironment was positively correlated with an immunosuppressive response. We also found that LTBP1 expression (p = 0.006) and metastatic lymph node ratio (p = 0.044) were independent prognostic risk factors for GC patients. The prognostic model combining LTBP1 expression and lymph node metastasis ratio reliably predicted the prognosis of GC patients. In vitro proliferation and invasion of MKN-45 GC cells were inhibited and their viability was decreased by LTBP1 knockout. LTBP1 plays an essential role in the development and progression of GC, and is a potential prognostic biomarker and therapeutic target for GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Prognóstico , Transição Epitelial-Mesenquimal , Linhagem Celular , Metástase Linfática , Microambiente Tumoral , Proteínas de Ligação a TGF-beta Latente/genética
9.
J Gene Med ; 26(1): e3615, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123364

RESUMO

BACKGROUND: The aim of this study was to determine the effect of human urine-derived stem cells (HUSCs) for the treatment of spinal cord injury (SCI) and investigate associated the molecular network mechanism by using bioinformatics combined with experimental validation. METHODS: After the contusive SCI model was established, the HUSC-expressed specific antigen marker was implanted into the injury site immediately, and the Basso, Beattie and Bresnahan locomotor rating scale (BBB scale) was utilized to evaluate motor function so as to determine the effect of HUSCs for the neural repair after SCI. Then, the geneCards database was used to collect related gene targets for both HUSCs and SCI, and cross genes were merged with the findings of PubMed screen. Subsequently, protein-protein interaction (PPI) network, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment, as well as core network construction, were performed using Cytoscape software. Lastly, real-time quantitative polymerase chain reaction (PCR) and immunofluorescence were employed to validate the mRNA expression and localization of 10 hub genes, and two of the most important, designated as cadherin 1 (CDH1) and integrin subunit beta 1 (ITGB1), were identified successfully. RESULTS: The immunophenotypes of HUSCs were marked by CD90+ and CD44+ but not CD45, and flow cytometry confirmed their character. The expression rates of CD90, CD73, CD44 and CD105 in HUSCs were 99.49, 99.77, 99.82 and 99.51%, respectively, while the expression rates of CD43, CD45, CD11b and HLA-DR were 0.08, 0.30, 1.34 and 0.02%, respectively. After SCI, all rats appeared to have severe motor dysfunction, but the BBB score was increased in HUSC-transplanted rats compared with control rats at 28 days. By using bioinformatics, we obtained 6668 targets for SCI and 1095 targets for HUSCs and identified a total of 645 cross targets between HUSCs and SCI. Based on the PPI and Cytoscape analysis, CD44, ACTB, FN1, ITGB1, HSPA8, CDH1, ALB, HSP90AA1 and GAPDH were identified as possible therapeutic targets. Enrichment analysis revealed that the involved signal pathways included complement and coagulation cascades, lysosome, systemic lupus erythematosus, etc. Lastly, quantificational real-time (qRT)-PCR confirmed the mRNA differential expression of CDH1/ITGB1 after HUSC therapy, and glial fibrillary acidic protein (GFAP) immunofluorescence staining showed that the astrocyte proliferation at the injured site could be reduced significantly after HUSC treatment. CONCLUSIONS: We validated that HUSC implantation is effective for the treatment of SCI, and the underlying mechanisms associated with the multiple molecular network. Of these, CDH1 and ITGB1 may be considered as important candidate targets. Those findings therefore provided the crucial evidence for the potential use of HUSCs in SCI treatment in future clinic trials.


Assuntos
Traumatismos da Medula Espinal , Ratos , Humanos , Animais , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/metabolismo , Células-Tronco , RNA Mensageiro/metabolismo , Integrinas/uso terapêutico
10.
Small ; : e2401307, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801308

RESUMO

With the guidance of density functional theory (DFT), a high-performance hafnium (Hf) cathode for an air/water vapor plasma torch is designed and the concepts and principles for high performance are elucidated. A quasi-nanocrystalline hexagonal close-packed (HCP) Hf-La2O3 cathode based on these design principles is successfully fabricated via a powder metallurgy route. Under identical voltage and temperature conditions, the thermal emission current density of this quasi-nanocrystalline Hf-La2O3 cathode is ≈20 times greater than that of conventional Hf cathodes. Additionally, its cathodic lifespan is significantly extended. Quasi-nanocrystalline Hf-La2O3 products are manufactured into cathode devices with standard dimensions. This fabrication process is straightforward, requires minimal doped oxides, and is cost-effective. Consequently, the approach offers substantial performance enhancements over traditional Hf melting methods without incurring significantly additional costs.

11.
Small ; 20(16): e2307786, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38161248

RESUMO

To date, transforming environmental energy into electricity through a non-mechanical way is challenging. Herein, a series of photomechaelectric (PME) polyurethanes containing azobenzene-based photoisomer units and ionic liquid-based dipole units are synthesized, and corresponding PME nanogenerators (PME-NGs) to harvest electricity are fabricated. The dependence of the output performance of PME-NGs on the structure of the polyurethane is evaluated. The results show that the UV light energy can directly transduce into alternating-current (AC) electricity by PME-NGs via a non-mechanical way. The optimal open-circuit voltage and short-circuit current of PME-NGs under UV illumination reach 17.4 V and 696 µA, respectively. After rectification, the AC electricity can be further transformed into direct-current (DC) electricity and stored in a capacitor to serve as a power system to actuate typical microelectronics. The output performance of PME-NGs is closely related to the hard segment content of the PME polyurethane and the radius of counter anions in the dipole units. Kelvin probe force microscopy is used to confirm the existence of the PME effect and the detailed mechanism about the generation of AC electricity in PME-NGs is proposed, referring to the back and forth drift of induced electrons on the two electrodes in contact with the PME polyurethanes.

12.
Small ; : e2400770, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934533

RESUMO

Increased expression of immune check point genes, such as PD-L1, is one of the main reasons for immunosuppression, especially for colon cancer. Development of novel therapeutic strategies is of great importance to improve the prognosis. In this study, outer membrane vesicles (OMV) derived from Gram-negative bacteria are engineered to immune checkpoint blockade nanosystem for efficient elicitation of anti-tumor immunity. Briefly, the OMVs are engineered with Lyp1-Traptavidin (S52G, R53D mutant of streptavidin) fusion protein displayed on the surface. The Lyp-1 endows the OMV with the capacity to target tumor tissues, while the Traptavidin ensures easy decoration of biotinylated anti-PD-L1 and biotinylated M6P (mannose 6-phosphate). The simultaneously anchored anti-PD-L1 and M6P (ligand for cation-independent mannose 6-phosphate receptor) on the engineered OMVs coordinately direct the membrane PD-L1 to lysosome for degradation, and thus unleash the anti-tumor immunity. With syngeneic tumor model, the engineered OMVs are confirmed to boost immunity, inhibit cancer growth, and thus prolong survival. Together, A proposed OMV-based modular nanosystem that enables assembly of biotinylated anti-PD-L1 and M6P on the surface for tumor-targeted immune checkpoint blockade.

13.
Toxicol Appl Pharmacol ; 487: 116957, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735590

RESUMO

Heart failure is associated with histone deacetylase (HDAC) regulation of gene expression, the inhibition of which is thought to be beneficial for heart failure therapy. Here, we explored the cardioprotective effects and underlying mechanism of a novel selenium-containing HDAC inhibitor, Se-SAHA, on isoproterenol (ISO)-induced heart failure. We found that pretreatment with Se-SAHA attenuated ISO-induced cardiac hypertrophy and fibrosis in neonatal rat ventricular myocytes (NRVMs). Se-SAHA significantly attenuated the generation of ISO-induced reactive oxygen species (ROS) and restored the expression levels of superoxide dismutase 2 (SOD2) and heme oxygenase-1 (HO-1) in vitro. Furthermore, Se-SAHA pretreatment prevented the accumulation of autophagosomes. Se-SAHA reversed the high expression of HDAC1 and HDAC6 induced by ISO incubation. However, after the addition of the HDAC agonist, the effect of Se-SAHA on blocking autophagy was inhibited. Using ISO-induced mouse models, cardiac ventricular contractile dysfunction, hypertrophy, and fibrosis was reduced treated by Se-SAHA. In addition, Se-SAHA inhibited HDAC1 and HDAC6 overexpression in ISO-treated mice. Se-SAHA treatment significantly increased the activity of SOD2 and improved the ability to eliminate free radicals. Se-SAHA hindered the excessive levels of the microtubule-associated protein 1 light chain 3 (LC3)-II and Beclin-1 in heart failure mice. Collectively, our results indicate that Se-SAHA exerts cardio-protection against ISO-induced heart failure via antioxidative stress and autophagy inhibition.


Assuntos
Autofagia , Insuficiência Cardíaca , Inibidores de Histona Desacetilases , Isoproterenol , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Estresse Oxidativo , Ratos Sprague-Dawley , Animais , Isoproterenol/toxicidade , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/prevenção & controle , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/tratamento farmacológico , Autofagia/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Masculino , Ratos , Camundongos , Superóxido Dismutase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Fibrose , Células Cultivadas , Cardiomegalia/induzido quimicamente , Cardiomegalia/prevenção & controle , Cardiomegalia/patologia
14.
Opt Lett ; 49(11): 3078-3081, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824332

RESUMO

Diode lasers with high beam quality and high power have many promising applications. However, high beam quality is always in conflict with high power. In this Letter, we theoretically and experimentally confirm the mode instability property of supersymmetric structures at higher operating currents. Meanwhile, we propose a loss-tailoring diode laser based on a supersymmetric structure, which enables the higher-order lateral modes to obtain higher losses, raises the excitation threshold of the higher-order lateral modes, and achieves a stable fundamental-lateral-mode output at higher current operation. The device obtained a quasi-single-lobe lateral far-field distribution with the full width at half maximum (FWHM) of 7.58° at 350 mA under room temperature, which is a 65% reduction compared to the traditional Fabry-Perot (FP) diode lasers. Moreover, the M2 of 2.181@350 mA has an improvement of about 37% over traditional FP and supersymmetric structure lasers.

15.
Stem Cells ; 41(1): 77-92, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36208284

RESUMO

Hypoxia as a microenvironment or niche stimulates proliferation of neural stem cells (NSCs). However, the underlying mechanisms remain elusive. Autophagy is a protective mechanism by which recycled cellular components and energy are rapidly supplied to the cell under stress. Whether autophagy mediates the proliferation of NSCs under hypoxia and how hypoxia induces autophagy remain unclear. Here, we report that hypoxia facilitates embryonic NSC proliferation through HIF-1/mTORC1 signaling pathway-mediated autophagy. Initially, we found that hypoxia greatly induced autophagy in NSCs, while inhibition of autophagy severely impeded the proliferation of NSCs in hypoxia conditions. Next, we demonstrated that the hypoxia core regulator HIF-1 was necessary and sufficient for autophagy induction in NSCs. Considering that mTORC1 is a key switch that suppresses autophagy, we subsequently analyzed the effect of HIF-1 on mTORC1 activity. Our results showed that the mTORC1 activity was negatively regulated by HIF-1. Finally, we provided evidence that HIF-1 regulated mTORC1 activity via its downstream target gene BNIP3. The increased expression of BNIP3 under hypoxia enhanced autophagy activity and proliferation of NSCs, which was mediated by repressing the activity of mTORC1. We further illustrated that BNIP3 can interact with Rheb, a canonical activator of mTORC1. Thus, we suppose that the interaction of BNIP3 with Rheb reduces the regulation of Rheb toward mTORC1 activity, which relieves the suppression of mTORC1 on autophagy, thereby promoting the rapid proliferation of NSCs. Altogether, this study identified a new HIF-1/BNIP3-Rheb/mTORC1 signaling axis, which regulates the NSC proliferation under hypoxia through induction of autophagy.


Assuntos
Proteínas de Membrana , Células-Tronco Neurais , Humanos , Proteínas de Membrana/genética , Hipóxia Celular , Hipóxia/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Autofagia , Células-Tronco Neurais/metabolismo , Proliferação de Células , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
16.
BMC Cancer ; 24(1): 187, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331776

RESUMO

BACKGROUND: Endostar, an anti-angiogenic drug, has been approved for treating non-small cell lung cancer (NSCLC). At present, endostar combined with radiotherapy or chemotherapy has achieved ideal results in the treatment of some tumors, but there is a lack of application and study in NSCLC. This study investigated the therapeutic effect and potential mechanism of endostar combined with cisplatin (EC) in NSCLC. METHODS: HE staining, TUNEL staining, immunofluorescence, colony formation ability, and cell migration ability were used to evaluate the anti-tumor activity of EC. The expressions of FMOD, VEGF, FGF-2, and PDGF-B were detected by western blotting and qPCR. The target of combination therapy was analyzed by m6A sequencing and RNA sequencing. METTL3 knockdown and overexpressed A549 cells were constructed and co-cultured with HUVECs to further evaluate the effect of METLL3 on combination therapy. RESULTS: Combination therapy significantly reduced the colony formation and migration ability of NSCLC cells, induced cell apoptosis, and inhibited the tube formation ability of HUVECs. The results of m6A sequencing and RNA sequencing showed that the EC could down-regulate the expression level of FMOD in tumor tissues, which might be related to the reduction of its m6A methylation modification regulatory enzyme METTL3. Restricting FMOD expression could reduce the expression of FGF2, TGF-ß1, VEGF and PDGF-B. Moreover, overexpression of METTLE almost abolished the anti-tumor effect of EC and promoted angiogenesis. CONCLUSIONS: Endostar combined with cisplatin might exert anti-tumor effects by down-regulating the expression of METTL3 and FMOD.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Endostatinas , Neoplasias Pulmonares , Proteínas Recombinantes , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Multiômica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular Tumoral , Metiltransferases/genética
17.
Biomacromolecules ; 25(5): 2701-2714, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38608139

RESUMO

Over decades of development, while phosphoramidite chemistry has been known as the leading method in commercial synthesis of oligonucleotides, it has also revolutionized the fabrication of sequence-defined polymers (SDPs), offering novel functional materials in polymer science and clinical medicine. This review has introduced the evolution of phosphoramidite chemistry, emphasizing its development from the synthesis of oligonucleotides to the creation of universal SDPs, which have unlocked the potential for designing programmable smart biomaterials with applications in diverse areas including data storage, regenerative medicine and drug delivery. The key methodologies, functions, biomedical applications, and future challenges in SDPs, have also been summarized in this review, underscoring the significance of breakthroughs in precisely synthesized materials.


Assuntos
Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Oligonucleotídeos , Compostos Organofosforados , Polímeros , Medicina Regenerativa , Medicina Regenerativa/métodos , Materiais Biocompatíveis/química , Polímeros/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Oligonucleotídeos/química , Compostos Organofosforados/química , Animais
18.
J Immunol ; 208(6): 1434-1444, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35246496

RESUMO

Protein tyrosine phosphatase (PTPase) is critically involved in the regulation of hematopoietic stem cell development and differentiation. Roles of novel isolated receptor PTPase PTPRO from bone marrow hematopoietic stem cells in granulopoiesis have not been investigated. PTPRO expression is correlated with granulocytic differentiation, and Ptpro -/- mice developed neutrophilia, with an expanded granulocytic compartment resulting from a cell-autonomous increase in the number of granulocyte progenitors under steady-state and potentiated innate immune responses against Listeria monocytogenes infection. Mechanistically, mTOR and HIF1α signaling engaged glucose metabolism and initiated a transcriptional program involving the lineage decision factor C/EBPα, which is critically required for the PTPRO deficiency-directed granulopoiesis. Genetic ablation of mTOR or HIF1α or perturbation of glucose metabolism suppresses progenitor expansion, neutrophilia, and higher glycolytic activities by Ptpro -/- In addition, Ptpro -/- upregulated HIF1α regulates the lineage decision factor C/EBPα promoter activities. Thus, our findings identify a previously unrecognized interplay between receptor PTPase PTPRO signaling and mTOR-HIF1α metabolic reprogramming in progenitor cells of granulocytes that underlies granulopoiesis.


Assuntos
Células Precursoras de Granulócitos , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores , Animais , Glucose/metabolismo , Células Precursoras de Granulócitos/metabolismo , Granulócitos/metabolismo , Camundongos , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
19.
J Phys Chem A ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950340

RESUMO

The role of Dy-S coordination in a single-molecule magnet (SMM) is investigated via an ab initio study in a group of mononuclear structures. The SMM performance of this group is well interpreted via a concise criterion consisting of long quantum tunneling of magnetization (QTM) time τQTM and high effective barrier for magnetic reversal Ueff. The best SMMs in the selected group, i.e., 1Dy (CCDC refcode: PUKFAF) and 2Dy (CCDC refcode: NIKSEJ), are just those holding the longest τQTM and the highest Ueff simultaneously. Further analysis based on the crystal field model and ab initio magneto-structural exploration indicates that the influence of Dy-S coordination on the SMM performance of 1Dy is weaker than that of axial Dy-O coordination. Thus, Dy-S coordination is more likely to play an auxiliary role rather than a dominant one. However, if placed at the suitable equatorial position, Dy-S coordination could provide important support for good SMM performance. Consequently, starting from 1Dy, we built two new structures where Dy-S coordination only exists at the equatorial position and two axial positions are occupied by strong Dy-O/Dy-F coordination. Compared to 1Dy and 2Dy, these new ones are predicted to have significantly longer τQTM and higher Ueff, as well as a nearly doubled blocking temperature TB. Thus, they are probable candidates of SMM having clearly improved performance.

20.
Acta Pharmacol Sin ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760543

RESUMO

Bevacizumab is a recombinant humanized monoclonal immunoglobulin (Ig) G1 antibody of VEGF, and inhibits angiogenesis and tumor growth in hepatocellular carcinoma (HCC). Ferroptosis, a new form of regulated cell death function independently of the apoptotic machinery, has been accepted as an attractive target for pharmacological intervention; the ferroptosis pathway can enhance cell immune activity of anti-PD1 immunotherapy in HCC. In this study we investigated whether and how bevacizumab regulated ferroptosis and immune activity in liver cancer. Firstly, we performed RNA-sequencing in bevacizumab-treated human liver cancer cell line HepG2 cells, and found that bevacizumab significantly altered the expression of a number of genes including VEGF, PI3K, HAT1, SLC7A11 and IL-9 in liver cancer, bevacizumab upregulated 37 ferroptosis-related drivers, and downregulated 17 ferroptosis-related suppressors in particular. We demonstrated that bevacizumab triggered ferroptosis in liver cancer cells by driving VEGF/PI3K/HAT1/SLC7A11 axis. Clinical data confirmed that the expression levels of VEGF were positively associated with those of PI3K, HAT1 and SLC7A11 in HCC tissues. Meanwhile, we found that bevacizumab enhanced immune cell activity in tumor immune-microenvironment. We identified that HAT1 up-regulated miR-143 targeting IL-9 mRNA 3'UTR in liver cancer cells; bevacizumab treatment resulted in the increase of IL-9 levels and its secretion via VEGF/PI3K/HAT1/miR-143/IL-9 axis, which led to the inhibition of tumor growth in vivo through increasing the release of IL-2 and Granzyme B from activated CD8+ T cells. We conclude that in addition to inhibiting angiogenesis, bevacizumab induces ferroptosis and enhances CD8+ T cell immune activity in liver cancer. This study provides new insight into the mechanisms by which bevacizumab synergistically modulates ferroptosis and CD8+ T cell immune activity in liver cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA