Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Xenotransplantation ; 31(3): e12862, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38761019

RESUMO

Prolonged survival in preclinical renal xenotransplantation demonstrates that early antibody mediated rejection (AMR) can be overcome. It is now critical to evaluate and understand the pathobiology of late graft failure and devise new means to improve post xenograft outcomes. In renal allotransplantation the most common cause of late renal graft failure is transplant glomerulopathy-largely due to anti-donor MHC antibodies, particularly anti-HLA DQ antibodies. We evaluated the pig renal xenograft pathology of four long-surviving (>300 days) rhesus monkeys. We also evaluated the terminal serum for the presence of anti-SLA class I and specifically anti-SLA DQ antibodies. All four recipients had transplant glomerulopathy and expressed anti-SLA DQ antibodies. In one recipient tested for anti-SLA I antibodies, the recipient had antibodies specifically reacting with two of three SLA I alleles tested. These results suggest that similar to allotransplantation, anti-MHC antibodies, particularly anti-SLA DQ, may be a barrier to improved long-term xenograft outcomes.


Assuntos
Rejeição de Enxerto , Xenoenxertos , Antígenos de Histocompatibilidade Classe I , Transplante de Rim , Macaca mulatta , Transplante Heterólogo , Animais , Transplante Heterólogo/métodos , Rejeição de Enxerto/imunologia , Transplante de Rim/métodos , Antígenos de Histocompatibilidade Classe I/imunologia , Suínos , Xenoenxertos/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Sobrevivência de Enxerto/imunologia , Isoanticorpos/imunologia , Humanos
2.
Xenotransplantation ; 31(3): e12872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38924560

RESUMO

Attack of donor tissues by pre-formed anti-pig antibodies is well known to cause graft failure in xenotransplantation. Genetic engineering of porcine donors to eliminate targets of these pre-formed antibodies coupled with advances in immunosuppressive medicines have now made it possible to achieve extended survival in the pre-clinical pig-to-non-human primate model. Despite these improvements, antibodies remain a risk over the lifetime of the transplant, and many patients continue to have pre-formed donor-specific antibodies even to highly engineered pigs. While therapeutics exist that can help mitigate the detrimental effects of antibodies, they act broadly potentially dampening beneficial immunity. Identifying additional xenoantigens may enable more targeted approaches, such as gene editing, to overcome these challenges by further eliminating antibody targets on donor tissue. Because we have found that classical class I swine leukocyte antigens are targets of human antibodies, we now examine whether related pig proteins may also be targeted by human antibodies. We show here that non-classical class I swine leukocyte proteins (SLA-6, -7, -8) can be expressed at the surface of mammalian cells and act as antibody targets.


Assuntos
Antígenos Heterófilos , Antígenos de Histocompatibilidade Classe I , Transplante Heterólogo , Animais , Suínos , Transplante Heterólogo/métodos , Antígenos Heterófilos/imunologia , Humanos , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Rejeição de Enxerto/imunologia , Animais Geneticamente Modificados
3.
Opt Express ; 31(3): 4569-4579, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36785421

RESUMO

The hybrid microcavity composed of different materials shows unique thermal-optical properties such as resonance frequency shift and small thermal noise fluctuations with the temperature variation. Here, we have fabricated the hybrid Si3N4 - TiO2 microring, which decreases the effective thermo-optical coefficients (TOC) from 23.2pm/K to 11.05pm/K due to the opposite TOC of these two materials. In this hybrid microring, we experimentally study the thermal dynamic with different input powers and scanning speeds. The distorted transmission and thermal oscillation are observed, which results from the non-uniform scanning speed and the different thermal relaxation times of the Si3N4 and the TiO2. We calibrate the distorted transmission spectrum for the resonance measurement at the reverse scanning direction and explain the thermal oscillation with a thermal-optical coupled model. Finally, we analyse the thermal oscillation condition and give the diagram about the oscillation region, which has significant guidance for the occurrence and avoidance of the thermal oscillation in practical applications.

4.
Xenotransplantation ; 30(6): e12834, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37971870

RESUMO

Pig liver xenotransplantation is limited by a thrombocytopenic coagulopathy that occurs immediately following graft reperfusion. In vitro and ex vivo studies from our lab suggested that the thrombocytopenia may be the result of a species incompatibility in platelet glycosylation. Realization that platelet α-granules contain antibodies caused us to reevaluate whether the thrombocytopenia in liver xenotransplantation could occur because IgM and IgG from inside platelet α-granules bound to pig liver sinusoidal endothelial cells (LSECs). Our in vitro analysis of IgM and IgG from inside α-granules showed that platelets do carry xenoreactive antibodies that can bind to known xenoantigens. This study suggests that thrombocytopenia occurring following liver xenotransplantation could occur because of xenoreactive antibodies tethering human platelets to the pig LSEC enabling the platelet to be phagocytosed. These results suggest genetic engineering strategies aimed at reducing xenoantigens on the surface of pig LSEC will be effective in eliminating the thrombocytopenia that limits survival in liver xenotransplantation.


Assuntos
Células Endoteliais , Trombocitopenia , Suínos , Animais , Humanos , Transplante Heterólogo/métodos , Fígado , Plaquetas , Trombocitopenia/etiologia , Antígenos Heterófilos , Imunoglobulina G , Imunoglobulina M
5.
Opt Express ; 30(8): 13690-13698, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472976

RESUMO

Dissipative Kerr solitons in high quality microresonators have attracted much attention in the past few years. They provide ideal platforms for a number of applications. Here, we fabricate the Si3N4 microring resonator with anomalous dispersion for the generation of single soliton and soliton crystal. Based on the strong thermal effect in the high-Q microresonator, the location and strength of the avoided mode crossing in the device can be changed by the intracavity power. Because the existence of the avoided mode crossing can induce the perfect soliton crystal with specific soliton number, we could choose the appropriate pumped resonance mode and appropriate pump power to obtain the perfect soliton crystals on demand.

6.
Appl Opt ; 61(15): 4329-4335, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36256269

RESUMO

We theoretically investigate the athermal constructions to cancel the thermorefractive effect of a hybrid Si3N4-TiO2 microring, which merges two materials with opposite thermo-optical coefficients (TOCs). The analytical and numerical results predict that the thermorefractive effect can be reduced under the appropriate parameters. In addition, the soliton state is easily accessed under the athermal condition. The thermorefractive noise due to the fluctuation of the microresonator temperature caused by the heat exchange between the microresonator and the surrounding environment is also suppressed by one order of magnitude, which is critical for the potential applications of soliton microcombs, such as spectroscopy, optical clocks and microwave generation.

7.
Xenotransplantation ; 28(4): e12701, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34053125

RESUMO

The current evidence is that sensitization to a pig xenograft does not result in the development of antibodies that cross-react with alloantigens, and therefore, sensitization to a pig xenograft would not be detrimental to the outcome of a subsequent allograft. This evidence relates almost entirely to the transplantation of cells or organs from wild-type or α1,3-galactosyltransferase gene-knockout (GTKO) pigs. However, it is not known whether recipients of triple-knockout (TKO) pig grafts who become sensitized to TKO pig antigens develop antibodies that cross-react with alloantigens and thus be detrimental to a subsequent organ allotransplant. We identified a single baboon (B1317) in which no (or minimal) serum anti-TKO pig antibodies could be measured-in our experience unique among baboons. We sensitized it by repeated subcutaneous injections of TKO pig peripheral blood mononuclear cells (PBMCs) in the absence of any immunosuppressive therapy. After TKO pig PBMC injection, there was a transient increase in anti-TKO pig IgM, followed by a sustained increase in IgG binding to TKO cells. In contrast, there was no serum IgM or IgG binding to PBMCs from any of a panel of baboon PBMCs (n = 8). We conclude that sensitization to TKO pig PBMCs in the baboon did not result in the development of antibodies that also bound to baboon cells, suggesting that there would be no detrimental effect of sensitization on a subsequent organ allotransplant.


Assuntos
Leucócitos Mononucleares , Animais , Animais Geneticamente Modificados , Xenoenxertos , Papio , Suínos , Transplante Heterólogo
8.
Clin Transplant ; 35(1): e14139, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33131148

RESUMO

Pig organ xenotransplantation offers a solution to the shortage of deceased human organs for transplantation. The pathobiological response to a pig xenograft is complex, involving antibody, complement, coagulation, inflammatory, and cellular responses. To overcome these barriers, genetic manipulation of the organ-source pigs has largely been directed to two major aims-(a) deletion of expression of the known carbohydrate xenoantigens against which humans have natural (preformed) antibodies, and (b) transgenic expression of human protective proteins, for example, complement- and coagulation-regulatory proteins. Conventional (FDA-approved) immunosuppressive therapy is unsuccessful in preventing an adaptive immune response to pig cells, but blockade of the CD40:CD154 costimulation pathway is successful. Survival of genetically engineered pig kidneys in immunosuppressed nonhuman primates can now be measured in months. Non-immunological aspects, for example, pig renal function, a hypovolemia syndrome, and rapid growth of the pig kidney after transplantation, are briefly discussed. We suggest that patients on the wait-list for a deceased human kidney graft who are unlikely to receive one due to long waiting times are those for whom kidney xenotransplantation might first be considered. The potential risk of infection, public attitudes to xenotransplantation, and ethical, regulatory, and financial aspects are briefly addressed.


Assuntos
Transplante de Rim , Animais , Animais Geneticamente Modificados , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto , Xenoenxertos , Humanos , Rim , Suínos , Transplante Heterólogo
9.
J Cell Physiol ; 235(5): 4520-4529, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31680239

RESUMO

Diabetic nephropathy (DN) is a severe end-stage kidney disease developed from diabetes mellitus. The involvement of circular RNAs (circRNAs) in modulating DN pathogenesis has been implied, but underlying mechanism is still lacking. In this study, we demonstrated that the expression of circ_0080425 correlated with the DN progression, and exerted positive effect on cell proliferation and fibrosis in mesangial cells. Further assessment suggested that circ_0080425 function as sponge harboring miR-24-3p. Moreover, miR-24-3p negatively correlated with the DN progression, and showed an antagonistic effect to circ_0080425on regulating MCs cell proliferation and fibrosis. Bioinformatics analysis predicted fibroblast growth factor 11 (FGF11) acting as direct downstream target of miR-24-3p. Indeed, the expression of FGF11 was significantly activated by circ_0080425 while suppressed by miR-24-3p. Knockdown of FGF11 resulted in a significant reduced cell proliferation rate and fibrosis. In addition, miR-24-3p inhibitor rescued the suppression of si-circ_0080425 on FGF11, suggesting that circ_0080425 competitive binding to miR-24-3p could release FGF11 from miR-24-3p suppression, which subsequently promoted DN progression.In conclusion, we have reported a novel circ_0080425-miR-24-3p-FGF11 axis, and explored the underlying mechanism in regulating DN pathogenesis.


Assuntos
Proliferação de Células , Neuropatias Diabéticas/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Células Mesangiais/metabolismo , MicroRNAs/metabolismo , RNA Circular/metabolismo , Animais , Células Cultivadas , Diabetes Mellitus Experimental/induzido quimicamente , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/patologia , Fatores de Crescimento de Fibroblastos/genética , Fibrose , Regulação da Expressão Gênica , Masculino , Células Mesangiais/patologia , Camundongos , MicroRNAs/genética , RNA Circular/genética , Transdução de Sinais , Estreptozocina
10.
J Cell Physiol ; 235(3): 3013-3021, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31566711

RESUMO

Several studies have shown that low expression of epoxide hydrolase 1 (EPHX1) is closely associated with varying human cancers, including hepatocellular carcinoma (HCC). This study aims to explore the potential mechanism of EPHX1 silencing and revealed a novel regulatory pathway in the pathogenesis of HCC. In this study, micro ribonucleic acid (miR)-184 was predicted and validated to be a regulator of EPHX1 through experiments, and its expression was negatively correlated with the messenger RNA (mRNA) levels of EPHX1 in primary tumors. Elevation of EPHX1 suppressed cell proliferation and migration as well as cell cycle progression, and induced apoptosis, while downregulation of miR-184 exhibited the opposite effect on cellular processes. Moreover, LINC00205 interacted with miR-184 and was markedly downregulated in tumors. The effects of the miR-184 inhibitor on cell proliferation, apoptosis, and migration were reversed in part by the transfection with LINC00205 small interfering RNAs. In addition, LINC00205 acted as a molecular sponge to positively regulate the mRNA and protein levels of EPHX1 via regulating miR-184. The tumorigenicity of HCC cells was enhanced by LINC00205 shRNA but diminished by overexpression of EPHX1 in vivo. Clinically, the EPHX1 expression in patients with HCC was markedly downregulated. Taken together, the results of this study suggest that as a competing endogenous RNA, LINC00205 may regulate EPHX1 by inhibiting miR-184 in the progression of HCC and that targeting the LINC00205/miR-184/EPHX1 axis may provide a treatment protocol for patients.


Assuntos
Carcinoma Hepatocelular/genética , Epóxido Hidrolases/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , RNA Interferente Pequeno/genética , Carcinoma Hepatocelular/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Epóxido Hidrolases/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo
11.
Xenotransplantation ; 27(6): e12629, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32697003

RESUMO

Progress has been made in overcoming antibody-mediated rejection of porcine xenografts by deleting pig genes that produce unique carbohydrate epitopes. Pigs deficient in galactose α-1,3 galactose (gene modified: GGTA1) and neu5Gc (gene modified: CMAH) have reduced levels of human antibody binding. Previously we identified α-fucose as a glycan that was expressed in high levels on cells of GGTA1/CMAH KO pigs. To validate the α-fucose phenotype observed previously we compared lectin affinity toward human and pig serum glycoproteins by dot blot analysis and confocal microscopy. Human anti-fucose antibody isolated by affinity chromatography was tested for specificity to L-fucose by custom macroarray. The affinity and cytotoxicity of the isolated human anti-fucose antibody toward human and GGTA1/CMAH KO pig PBMCs was determined by flow cytometry. Dot blot and confocal analysis support out previous findings that α-fucose is more highly expressed in pigs than humans. Pig kidney glomeruli and tubules contain abundant α-fucose and may represent focal sites for anti-α-fucose antibody binding. The Isolated human anti-fucose IgA, IgG and IgM bound to GGTA1/CMAH KO pig PBMC and were cytotoxic. Interestingly, the isolated human IgG cross reacted with the methyl pentose, L-rhamnose. Human anti-fucose antibody bound and was cytotoxic to GGTA1/CMAH KO pig peripheral blood monocytes. We have shown that α-fucose is an abundant target for cytotoxic human antibody in the organs of genetically modified pigs important to xenotransplantation.


Assuntos
Animais Geneticamente Modificados , Antígenos Heterófilos/imunologia , Fucose , Transplante Heterólogo , Animais , Fucose/imunologia , Galactosiltransferases , Técnicas de Inativação de Genes , Humanos , Leucócitos Mononucleares , Oxigenases de Função Mista , Suínos
12.
Xenotransplantation ; 27(5): e12596, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32585053

RESUMO

Genetically engineered pigs are now available for xenotransplantation in which all three known carbohydrate xenoantigens, against which humans have natural antibodies, have been deleted (triple-knockout [TKO] pigs). Furthermore, multiple human transgenes have been expressed in the TKO pigs, all of which are aimed at protecting the cells from the human immune response. Many human sera demonstrate no or minimal antibody binding to, and little or no cytotoxicity of, cells from these pigs, and this is associated with a relatively low T-cell proliferative response. Unfortunately, baboons and other Old World NHPs have antibodies against TKO pig cells, apparently directed to a fourth xenoantigen that appears to be exposed after TKO. In our experience, most, if not all, humans do not have natural antibodies against this fourth xenoantigen. This discrepancy between NHPs and humans is providing a hurdle to successful translation of pig organ transplantation into the clinic, and making it difficult to provide pre-clinical data that support initiation of a clinical trial. The potential methods by which this obstacle might be overcome are discussed. We conclude that, whatever currently available genetically engineered pig is selected for the final pre-clinical studies, this may not be the optimal pig for clinical trials.


Assuntos
Antígenos Heterófilos , Rejeição de Enxerto , Transplante Heterólogo , Animais , Animais Geneticamente Modificados , Rejeição de Enxerto/prevenção & controle , Xenoenxertos , Humanos , Papio , Suínos
13.
J Immunol ; 200(8): 2957-2964, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29540579

RESUMO

Genetically engineered pig organs could provide transplants to all patients with end-stage organ failure, but Ab-mediated rejection remains an issue. This study examines the class II swine leukocyte Ag (SLA) as a target of epitope-restricted Ab binding. Transfection of individual α- and ß-chains into human embryonic kidney cells resulted in both traditional and hybrid class II SLA molecules. Sera from individuals on the solid organ transplant waiting list were tested for Ab binding and cytotoxicity to this panel of class II SLA single-Ag cells. A series of elution studies from an SLA-DQ cell line were performed. Our results indicate that human sera contain Abs specific for and cytotoxic against class II SLA. Our elution studies revealed that sera bind the SLA-DQ molecule in an epitope-restricted pattern. Site-specific mutation of one of these epitopes resulted in statistically decreased Ab binding. Humans possess preformed, specific, and cytotoxic Abs to class II SLA that bind in an epitope-restricted fashion. Site-specific epitope mutagenesis may decrease the Ab binding of highly sensitized individuals to pig cells.


Assuntos
Anticorpos Heterófilos , Antígenos de Histocompatibilidade Classe I/imunologia , Transplante Heterólogo , Animais , Humanos , Suínos
14.
J Cell Biochem ; 120(5): 8044-8052, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30525214

RESUMO

Gastric cancer (GC) is a frequent type of malignant tumor worldwide. GC metastasis results in the majority of clinical treatment failures. MicroRNAs (miRNA) are identified to exhibit crucial roles in GC. Our current study aimed to explore the biological roles of miR-505 in GC progression. It was observed that miR-505 was robustly decreased in GC cells compared with human normal gastric epithelial GES-1 cells. Overexpression of miR-505 was able to repress GC progression in AGS and BGC-823 cells. In addition, high-mobility group box 1 (HMGB1) has been identified as a crucial oncogene in several cancer types. By carrying out bioinformatics analysis, HMGB1 was predicted as a direct target of miR-505. Meanwhile, HMGB1 was found to be significantly increased in GC cells and it was confirmed in our study that miR-505 can directly target HMGB1 in vitro. miR-505 mimics can inhibit HMGB1 messenger RNA and protein expression dramatically. Subsequently, knockdown of HMGB1 can inhibit GC cell proliferation, colony formation, and induce cell apoptosis. Furthermore, HMGB1 silence suppressed GC cell migration and invasion greatly in vitro. Finally, it was validated that miR-505 can inhibit GC progression by targeting HMGB1 in vivo. Taken these together, it was indicated that miR-505/HMGB1 axis was involved in the development of GC. miR-505 can serve as a potential prognostic indicator in GC therapy.

15.
Cancer Cell Int ; 18: 60, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29713243

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is the main subtype of non-small cell lung cancer with a low survival prognosis. We aimed to generate a prognostic model for the postoperative recurrence of LUAD. METHODS: The methylated DNA data of LUAD patients were downloaded from the Cancer Genome Atlas (TCGA). The differentially methylated genes were identified and protein-protein interacting network was constructed, with which prognostic signature of this cancer was generated. Survival and functional pathways analysis w used to evaluate the clustering ability of the prognostic signature. RESULTS: We identified 151 differentially methylated genes related to relapse-free survival of patients with LUAD. Nine hub genes were identified in PPI network, with which 4 gene pair signature was selected as prognostic signature. The potential functions of 6 genes (JDP2, SERPINA5, PLG, SEMG2, RFX5, and POLR3B) in the 4-gene pair signature were enriched in intracellular protein synthesis and transportation. CONCLUSION: The four gene pair signature can predict the prognosis of patients with stage I LUAD. Our study provides a reference for patients with postoperative adjuvant therapy.

16.
J Surg Res ; 229: 28-40, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29937002

RESUMO

BACKGROUND: Tools for genome editing in pigs are improving rapidly so that making precise cuts in DNA for the purposes of deleting genes is straightforward. Development of means to replace pig genes with human genes with precision is very desirable for the future development of donor pigs for xenotransplantation. MATERIALS AND METHODS: We used Cas9 to cut pig thrombomodulin (pTHBD) and replace it with a plasmid containing a promoterless antibiotic selection marker and the exon for human thrombomodulin. PhiC31 recombinase was used to remove the antibiotic selection marker to create porcine aortic endothelial cells expressing human instead of pTHBD, driven by the endogenous pig promoter. RESULTS: The promoterless selection cassette permitted efficient enrichment of cells containing correctly inserted transgene. Recombinase treatment of selected cells excised the resistance marker permitting expression of the human transgene by the endogenous pTHBD promoter. Gene regulation was maintained after gene replacement because pig endogenous promoter was kept intact in the correct position. CONCLUSIONS: Cas9 and recombinase technology make orthotopic human for pig gene exchange feasible and pave the way for creation of pigs with human genes that can be expressed in the appropriate tissues preserving gene regulation.


Assuntos
Edição de Genes/métodos , Suínos/genética , Trombomodulina/genética , Coleta de Tecidos e Órgãos/métodos , Transplante Heterólogo , Animais , Animais Geneticamente Modificados/genética , Bacteriófagos/genética , Sistemas CRISPR-Cas/genética , Células Cultivadas , Células Endoteliais , Cultura Primária de Células , Recombinases/genética , Transfecção/métodos , Proteínas Virais/genética
17.
J Surg Res ; 212: 238-245, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28550913

RESUMO

BACKGROUND: Nuclease-based genome editing has rapidly sped the creation of new models of human disease. These techniques also hold great promise for the future of clinical xenotransplantation and cell-based therapies for cancer or immunodeficient pathology. However, to fully realize the potential of nuclease editing tools, the efficiency and precision of their application must be optimized. The object of this study was to use nonintegrating selection and nuclease-directed homologous recombination to efficiently control the genetic modification of the porcine genome. METHODS: Clustered randomly integrating spaced palindromic repeats and associated Cas9 protein (CRISPR/Cas9)-directed mutagenesis with a single-guide RNA target was designed to target the alpha-1,3-galactosyltransferase locus (GGTA1) of the porcine genome. A vector expressing a single-guide RNA, Cas9 protein, and green fluorescent protein was used to increase plasmid-delivered mutational efficiency when coupled with fluorescence sorting. Single and double-strand DNA oligonucleotides with a restriction site replacing the start codon were created with variable homology lengths surrounding the mutational event site. Finally, a transgene construct was flanked with 50 base pairs of homology directed immediately 5' to a nuclease cut site. These products were introduced to cells with a constant concentration of CRISPR/cas9 vector. Phenotype-specific mutational efficiency was measured by flow cytometer. Controlled homologous insertion was measured by Sanger sequence, restriction enzyme digest and flow cytometry. RESULTS: Expression of a fluorescence protein on the Cas9 vector functioned as a nonintegrating selection marker. Selection by this marker increased phenotype-silencing mutation rates from 3.5% to 82% (P = 0.0002). Insertion or deletion mutation increased from 11% to 96% (P = 0.0007). Co-transfection with homologous DNA oligonucleotides increased the aggregate phenotype-silencing mutation rates up to 22% and increased biallelic events. Single-strand DNA was twice as efficient as double-strand DNA. Furthermore, nuclease-mediated insertion by homology-directed repair successfully drove locus-specific transgene expression in the porcine genome. CONCLUSIONS: A nonintegrating selection strategy based on fluorescence expression can increase the mutational efficiency of the CRISPR/Cas9 system. The precision of this system can be increased by the addition of a very short homologous template sequence and can serve as a method for locus-specific transgene delivery. Together these strategies may be used to efficiently control mutational events. This system may be used to better use the potential of nuclease-mediated genomic editing.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endonucleases , Galactosiltransferases/genética , Edição de Genes/métodos , Recombinação Homóloga , Mutação , Animais , Linhagem Celular , Suínos
18.
J Surg Res ; 200(2): 698-706, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26375504

RESUMO

BACKGROUND: Thrombocytopenia may represent a significant challenge to the clinical application of solid-organ xenotransplantation. When studied in a pig-to-primate model, consumptive coagulopathy has challenged renal xenografts. New strategies of genetic manipulation have altered porcine carbohydrate profiles to significantly reduce human antibody binding to pig cells. As this process continues to eliminate immunologic barriers to clinical xenotransplantation, the relationship between human platelets and pig organs must be considered. METHODS: Genetically modified pigs that were created by the CRISPR/Cas9 system with α-1,3-galactosyltransferase (GGTA1)(-/-) or GGTA1(-/-) cytidine monophosphate-N-acetylneuraminic acid hydroxylase(-/-) phenotype, as well as domestic pigs, were used in this study. Autologous porcine platelets were isolated from donor animal blood collection, and human platelets were obtained from a blood bank. Platelets were fluorescently labeled and in a single-pass model, human, or autologous platelets were perfused through porcine organs at a constant concentration and controlled temperature. Platelet uptake was measured by sampling venous output and measuring sample florescence against input florescence. In vitro study of the interaction between human platelets and porcine endothelial cells was accomplished by immunohistochemical stain and confocal microscopy. RESULTS: Differences between human and autologous platelet loss through the porcine kidney were not significant in any genetic background tested (WT P = 0.15, GGTA1(-/-)P = 0.12, GGTA1(-/-) cytidine monophosphate-N-acetylneuraminic acid hydroxylase(-/-)P = 0.25). The unmodified porcine liver consumed human platelets in a single-pass model of platelet perfusion in fewer than 10 min. WT suprahepatic inferior vena cava fluoresce reached a maximum of 76% of input fluoresce within the human platelet cohort and was significantly lower than the autologous platelet control cohort (P = 0.001). Confocal microscopic analysis did not demonstrate a significant association between human platelets and porcine renal endothelial cells compared with porcine liver endothelial positive controls. CONCLUSIONS: Our results suggest that in the absence of immunologic injury, human platelets respond in a variable fashion to organ-specific porcine endothelial surfaces. Human platelets are not removed from circulation by exposure to porcine renal endothelium but are removed by unmodified porcine hepatic endothelium. Kidneys possessing genetic modifications currently relevant to clinical xenotransplantation failed to consume human platelets in an isolated single-pass model. Human platelets did not exhibit significant binding to renal endothelial cells by in vitro assay.


Assuntos
Animais Geneticamente Modificados , Plaquetas/imunologia , Transplante de Rim/métodos , Complicações Pós-Operatórias/prevenção & controle , Sus scrofa/genética , Trombocitopenia/prevenção & controle , Transplante Heterólogo/métodos , Animais , Plaquetas/metabolismo , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Endotélio/imunologia , Endotélio/metabolismo , Galactosiltransferases/genética , Galactosiltransferases/imunologia , Técnicas de Inativação de Genes , Humanos , Rim/imunologia , Rim/metabolismo , Fígado/imunologia , Fígado/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/imunologia , Distribuição Aleatória , Sus scrofa/imunologia , Suínos , Trombocitopenia/etiologia
19.
J Immunol ; 193(11): 5751-7, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25339675

RESUMO

Pigs are emerging as important large animal models for biomedical research, and they may represent a source of organs for xenotransplantation. The MHC is pivotal to the function of the immune system in health and disease, and it is particularly important in infection and transplant rejection. Pigs deficient in class I MHC could serve as important reagents to study viral immunity as well as allograft and xenograft rejection. In this study, we report the creation and characterization of class I MHC knockout pigs using the Cas9 nuclease and guide RNAs. Pig fetal fibroblasts were genetically engineered using Cas9 and guide RNAs, and class I MHC(-) cells were then used as nuclear donors for somatic cell nuclear transfer. We produced three piglets devoid of all cell surface class I proteins. Although these animals have reduced levels of CD4(-)CD8(+) T cells in peripheral blood, the pigs appear healthy and are developing normally. These pigs are a promising reagent for immunological research.


Assuntos
Fibroblastos/fisiologia , Técnicas de Silenciamento de Genes/métodos , Antígenos de Histocompatibilidade Classe I/genética , Suínos/imunologia , Linfócitos T/imunologia , Transplante Heterólogo , Viroses/imunologia , Animais , Células Cultivadas , Endonucleases/metabolismo , Engenharia Genética , Rejeição de Enxerto , Modelos Animais , Técnicas de Transferência Nuclear , RNA Guia de Cinetoplastídeos/genética , Suínos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA