Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 485, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632504

RESUMO

BACKGROUND: Patients-derived xenograft (PDX) model have been widely used for tumor biological and pathological studies. However, the metabolic similarity of PDX tumor to the primary cancer (PC) is still unknown. METHODS: In present study, we established PDX model by engrafting primary tumor of pancreatic ductal adenocarcinoma (PDAC), and then compared the tumor metabolomics of PC, the first generation of PDX tumor (PDXG1), and the third generation of PDX tumor (PDXG3) by using 1H NMR spectroscopy. Then, we assessed the differences in response to chemotherapy between PDXG1 and PDXG3 and corresponding metabolomic differences in drug-resistant tumor tissues. To evaluate the metabolomic similarity of PDX to PC, we also compared the metabolomic difference of cell-derived xenograft (CDX) vs. PC and PDX vs. PC. RESULTS: After engraftment, PDXG1 tumor had a low level of lactate, pyruvate, citrate and multiple amino acids (AAs) compared with PC. Metabolite sets enrichment and metabolic pathway analyses implied that glycolysis metabolisms were suppressed in PDXG1 tumor, and tricarboxylic acid cycle (TCA)-associated anaplerosis pathways, such as amino acids metabolisms, were enhanced. Then, after multiple passages of PDX, the altered glycolysis and TCA-associated anaplerosis pathways were partially recovered. Although no significant difference was observed in the response of PDXG1 and PDXG3 to chemotherapy, the difference in glycolysis and amino acids metabolism between PDXG1 and PDXG3 could still be maintained. In addition, the metabolomic difference between PC and CDX models were much larger than that of PDX model and PC, indicating that PDX model still retain more metabolic characteristics of primary tumor which is more suitable for tumor-associated metabolism research. CONCLUSIONS: Compared with primary tumor, PDX models have obvious difference in metabolomic level. These findings can help us design in vivo tumor metabolomics research legitimately and analyze the underlying mechanism of tumor metabolic biology thoughtfully.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Xenoenxertos , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Aminoácidos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Proteome Res ; 17(9): 3184-3194, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30024170

RESUMO

Ureteral obstruction will lead clinically to hydronephrosis, which may further develop into partial or complete loss of kidney function and even cause permanent histological damage. However, there is little knowledge of metabolic responses during the obstructed process and its recoverability. In this study, a complete unilateral ureteral obstruction (CUUO) model was established in the rabbit, and 1H NMR-based metabolomic analysis of urine was used to reveal the metabolic perturbations in rabbits caused by CUUO and the metabolic recovery after the CUUO was relieved. Univariate and multivariate statistical analyses were used to identify metabolic characteristics. The gradually decreased levels of 3-hydroxykynurenine, 3-methylhistidine, creatinine, guanidoacetate, meta- and para-hydroxyphenylacetate, and phenylacetylglycine and the gradually increased levels of acetate, alanine, citrate, glycine, lactate, and methionine in urine could be regarded as potential biomarkers for the occurrence and severity of ureteral obstruction. And the reduced levels of 3-methylhistidine, creatinine, guanidoacetate, hippurate, meta-hydroxyphenylacetate, and methylguanidine and the elevated levels of 2-aminoisobutyrate, acetylcholine, citrate, lactate, lysine, valine, and α-ketoglutarate in urine compared with the obstructed level could characterize the metabolic recovery of ureteral obstruction. Our results depicted the disturbed biochemical pathways involved in ureteral obstruction and demonstrated the practicability of recovering renal functions for the patients with severe hydronephrosis in clinical practice by removing causes for obstruction.


Assuntos
Hidronefrose/urina , Cinurenina/análogos & derivados , Metaboloma , Metilistidinas/urina , Obstrução Ureteral/urina , Ácido Acético/urina , Alanina/urina , Análise de Variância , Animais , Biomarcadores/urina , Ácido Cítrico/urina , Creatinina/urina , Modelos Animais de Doenças , Glicina/análogos & derivados , Glicina/urina , Hidronefrose/diagnóstico , Hidronefrose/patologia , Cinurenina/urina , Ácido Láctico/urina , Espectroscopia de Ressonância Magnética , Masculino , Metionina/urina , Fenilacetatos/urina , Coelhos , Ureter/metabolismo , Ureter/patologia , Ureter/cirurgia , Obstrução Ureteral/diagnóstico , Obstrução Ureteral/patologia
3.
J Phys Chem B ; 128(28): 6830-6837, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38959208

RESUMO

The i-motif, a secondary structure of a four-helix formed by cytosine-rich DNA (i-DNA) through C-C+ base pairing, is prevalent in human telomeres and promoters. This structure creates steric hindrance, thereby inhibiting both gene expression and protein coding. The conformation of i-DNA is intricately linked to the intracellular ionic environment. Hence, investigating its conformation under various ion conditions holds significant importance. In this study, we explored the impact of cations on the i-motif structure at the single-molecule level using the α-hemolysin (α-HL) nanochannel. Our findings reveal that the ability of i-DNA to fold into the i-motif structure follows the order Cs+ > Na+ > K+ > Li+ for monovalent cations. Furthermore, we observed the interconversion of single-stranded DNA (ss-DNA) and the i-motif structure at high and low concentrations of Mg2+ and Ba2+ electrolyte solutions. This study not only has the potential to extend the application of i-motif-based sensors in complex solution environments but also provides a new idea for the detection of metal ions.


Assuntos
Cátions , DNA , Proteínas Hemolisinas , Nanoporos , DNA/química , Cátions/química , Proteínas Hemolisinas/química , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Citosina/química , DNA de Cadeia Simples/química
4.
Anal Chim Acta ; 1318: 342960, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39067929

RESUMO

BACKGROUND: Enantiodiscrimination of chiral drugs is critical for understanding physiological phenomena and ensuring medical safety. Although enantiomers of these drugs share identical physicochemical properties, they exhibit significant differences in pharmacodynamic, pharmacokinetic, and toxicological properties due to the differences in their three-dimensional shapes. Therefore, the development of effective methods for chiral recognition is of great significance and has been a hot topic in chemo/biological studies. RESULTS: In this study, we designed a recognition receptor comprising a α-hemolysin (α-HL) nanopore and sulfobutyl ether-ß-cyclodextrin (SBEßCD) for identifying the enantiomers of the antidepressant duloxetine at the single-molecule level. Chiral molecules were discriminated based on the different current blockages within the recognition receptor. The results indicated a strong interaction between R-duloxetine and the recognition receptor. By combining the experimental data and molecular docking results, we explored the recognition mechanism of the designed nanopore recognition receptor for chiral drug molecules. It was found that hydrophobic and electrostatic interactions play key roles in chiral recognition. Additionally, by comparing the binding kinetics of enantiomers to cyclodextrins in confined nanospace and bulk solution, we found that enantiomeric identification was better facilitated in the confined nanospace. Finally, the enantiomeric excess (ee) of the enantiomeric duloxetine mixture was measured using this recognized receptor. SIGNIFICANCE: This strategy has the advantages of low cost, high sensitivity, and no need for additional derivative modifications, providing a new perspective on the development of chiral recognition sensors with excellent enantioselectivity in drug design, pharmaceuticals, and biological applications.


Assuntos
Cloridrato de Duloxetina , Simulação de Acoplamento Molecular , Nanoporos , Estereoisomerismo , Cloridrato de Duloxetina/química , Cloridrato de Duloxetina/metabolismo , Cloridrato de Duloxetina/farmacologia , beta-Ciclodextrinas/química
5.
PeerJ ; 12: e17618, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948218

RESUMO

Leaf inclination angle (LIA) and tillering impact the winter wheat (Triticum aestivum L.) population canopy structure. Understanding their effects on water use (WU) parameters and yield can guide water-saving strategies through population control. In this study, six near-isogenic lines (NILs) and their parents were selected as materials. These special materials were characterized by varying tillering at the current sowing density, a similar genetic background, and, particularly, a gradient in mean flag leaf LIA. The investigation focused on the jointing to early grain-filling stage, the peak water requirement period of wheat crops. Population-scale transpiration (PT) and evaporation from the soil surface (E) were partitioned from total evapotranspiration (ET) by the means of micro-lysimeters. The results showed decreased PT, E, and ET with increased population density (PD) within a narrow density range derived from varying tillering across genotypes. Significant correlations existed between PD and ET, E, and PT, especially in the wettest 2017-2018 growing season. Within such narrow PD range, all the correlations between WU parameters and PD were negative, although some correlations were not statistically significant, thereby suggesting the population structure's predominant impact. No significant correlation existed between LIA and both ET and PT within the LIA range of 35°-65°. However, significant correlations occurred between LIA and E in two growing seasons. Genotypes with similar LIA but different PD produced varied ET; while with similar PD, the four pairs of genotypes with different LIA each consumed similar ET, thus highlighting PD's more crucial role in regulating ET. The yield increased with higher LIA, and showed a significant correlation, emphasizing the LIA's significant effect on yield. However, no correlation was observed with PD, indicating the minor effect of tillering at the current sowing density. Therefore these results might offer valuable insights for breeding water-saving cultivars and optimizing population structures for effective field water conservation.


Assuntos
Folhas de Planta , Transpiração Vegetal , Solo , Triticum , Triticum/genética , Triticum/fisiologia , Triticum/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Solo/química , Estações do Ano , Água/metabolismo , Genótipo
6.
Metabolites ; 12(6)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35736497

RESUMO

Idiopathic thrombocytopenic purpura (ITP) is a common hematological disease and the abnormal platelet destruction in the spleen is a critical pathological mechanism for ITP. However, the metabolomic change in the spleen caused by ITP is still unclear. In the present study, the metabolomic information of 18 ITP and 20 normal spleen samples were detected by using 1H high-resolution magic angle spinning NMR spectroscopy (1H MAS NMR). Compared with normal spleen, the concentrations of acetate, alanine, glutamine, glycerol, isoleucine, lysine, valine, phenylalanine, leucine, and methanol in ITP spleen tissue were elevated and 3-hydroxybutyric acid, ascorbate, asparagine, ethanol, glycogen, low-density lipoprotein, malonate, myo-inositol, glycerophosphocholine, pyroglutamate, and taurine were decreased. Amino acids metabolic pathways, such as branched-chain amino acids pathway, were identified as the main involved pathways based on enrichment analysis. The decrease in taurine level in the spleen was the most obvious metabolic signature involving ITP with high sensitivity and specificity to distinguish the spleen of ITP from the normal (CI: 0.825-0.982). Notably, the level of taurine in the spleen was negatively correlated with the efficacy of splenectomy (r = 0.622, p = 0.006). Collectively, the data from our study revealed previously unknown ITP-related metabolomic changes in the spleen and found a potential diagnostic and efficacy-predictive biomarker for ITP treatment.

7.
Front Plant Sci ; 13: 1035038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531356

RESUMO

To clarify the differences in growth and yield responses to drought stress among genotypes contrasting in environmental background, dryland and irrigated genotypes, as well as the underlying biochemical mechanism would provide valuable information for developing superior dryland cultivars. Pot experiments for the whole life cycle in fifteen genotypes and comparative metabolomics analysis for seedlings between two drought tolerant (DT) dryland genotypes and two drought sensitive (DS) irrigated ones were carried out. The DT dryland genotypes suffered heavy biomass loss during severer drought but showed minor yield loss ultimately, while the DS irrigated ones showed minor biomass loss but greater yield loss. Additionally, the superior DT dryland genotypes showed better yield performance under both drought stress and well-watered conditions, indicating their possessing both drought tolerance and high yield potential traits. Suffering severer drought stress, seedling leaves of the DS irrigated genotypes increased some amino acids and organic acids to maintain cell metabolism and accumulate more biomass. Proline in particular was overproduced, which might cause toxicity to cell systems and lead to enormous yield loss ultimately. In contrast, DT dryland genotypes increased the beneficial amino acid and phenolic acids to enhance cell self-protection for alleviating drought damage and efficiently minimized yield loss ultimately.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA